1
|
Fani F, Talebpour C, Leprohon P, Salimnia H, Alamdari H, Ouellette M. Mode of action of silver-based perovskite against Gram-negative bacteria. Microbiol Spectr 2025; 13:e0164824. [PMID: 39656007 PMCID: PMC11705935 DOI: 10.1128/spectrum.01648-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025] Open
Abstract
Although silver is known for its antibacterial activity, its exact mode of action remains unclear. In our previous work, we described AgNbO3 nanoparticles (AgNbO3 NPs) prepared using a ceramic method, followed by high-energy and low-energy ball-milling processes, which exhibited antimicrobial activity with negligible release of Ag+ in deionized water. Here, we investigated thoroughly the mode of action of these AgNbO3 NPs against Escherichia coli. Drastic morphological changes in E. coli were observed after their exposure to AgNbO3 NPs. In addition to cellular damage, AgNbO3 NPs induced the production of reactive oxygen species and lipid peroxidation, likely following the release of small amounts of Ag+. This was concluded from the characterization of mutants resistant to AgNbO3 NPs that showed cross-resistance to AgNO3, impaired reactive oxygen species production and lipid peroxidation, and harbored a key mutation in a two-component regulatory system regulating an Ag+ efflux pump. We calculated, however, that the quantity of Ag+ released from AgNbO3 NPs is not sufficient by itself to lead to bacterial death. We propose that bacterial contact with the AgNbO3 NPs in combination with Ag+ release is necessary for the mode of action of AgNbO3 NPs.IMPORTANCESilver is known for its antibacterial activity, but its exact mode of action remains unclear. Here, we investigated thoroughly the mode of action of AgNbO3 nanoparticles against Escherichia coli. Our data suggest that AgNbO3 nanoparticles have dual effects on the cell and that both are required for its lethal action.
Collapse
Affiliation(s)
- Fereshteh Fani
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de recherche en infectiologie du Centre de Recherche CHU de Québec, Université Laval, Québec, Canada
| | - Cyrus Talebpour
- Department of Mining, Metallurgical and Materials Engineering, Université Laval, Québec, Canada
| | - Philippe Leprohon
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de recherche en infectiologie du Centre de Recherche CHU de Québec, Université Laval, Québec, Canada
| | - Hossein Salimnia
- Department of Pathology, School of Medicine, Children’s Hospital of Michigan, Wayne State University, Detroit Medical Center, Detroit, Michigan, USA
| | - Houshang Alamdari
- Department of Mining, Metallurgical and Materials Engineering, Université Laval, Québec, Canada
| | - Marc Ouellette
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Centre de recherche en infectiologie du Centre de Recherche CHU de Québec, Université Laval, Québec, Canada
| |
Collapse
|
2
|
Sree BK, Kumar N, Singh S. Reproductive toxicity perspectives of nanoparticles: an update. Toxicol Res (Camb) 2024; 13:tfae077. [PMID: 38939724 PMCID: PMC11200103 DOI: 10.1093/toxres/tfae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/08/2024] [Accepted: 05/08/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION The rapid development of nanotechnologies with their widespread prosperities has advanced concerns regarding potential health hazards of the Nanoparticles. RESULTS Nanoparticles are currently present in several consumer products, including medications, food, textiles, sports equipment, and electrical components. Despite the advantages of Nanoparticles, their potential toxicity has negative impact on human health, particularly on reproductive health. CONCLUSIONS The impact of various NPs on reproductive system function is yet to be determined. Additional research is required to study the potential toxicity of various Nanoparticles on reproductive health. The primary objective of this review is to unravel the toxic effects of different Nanoparticles on the human reproductive functions and recent investigations on the reproductive toxicity of Nanoparticles both in vitro and in vivo.
Collapse
Affiliation(s)
- B Kavya Sree
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Industrial Area Hajipur, Vaishali, Hajipur, Bihar 844102, India
| |
Collapse
|
3
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
4
|
Nanda SS, Yi DK. Recent Advances in Synergistic Effect of Nanoparticles and Its Biomedical Application. Int J Mol Sci 2024; 25:3266. [PMID: 38542240 PMCID: PMC10969916 DOI: 10.3390/ijms25063266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The synergistic impact of nanomaterials is critical for novel intracellular and/or subcellular drug delivery systems of minimal toxicity. This synergism results in a fundamental bio/nano interface interaction, which is discussed in terms of nanoparticle translocation, outer wrapping, embedding, and interior cellular attachment. The morphology, size, surface area, ligand chemistry and charge of nanoparticles all play a role in translocation. In this review, we suggest a generalized mechanism to characterize the bio/nano interface, as we discuss the synergistic interaction between nanoparticles and cells, tissues, and other biological systems. Novel perceptions are reviewed regarding the ability of nanoparticles to improve hybrid nanocarriers with homogeneous structures to enhance multifunctional biomedical applications, such as bioimaging, tissue engineering, immunotherapy, and phototherapy.
Collapse
Affiliation(s)
| | - Dong Kee Yi
- Department of Chemistry, Myongji University, Yongin 17058, Republic of Korea;
| |
Collapse
|
5
|
Samal D, Khandayataray P, Sravani M, Murthy MK. Silver nanoparticle ecotoxicity and phytoremediation: a critical review of current research and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8400-8428. [PMID: 38182947 DOI: 10.1007/s11356-023-31669-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Silver nanoparticles (AgNPs) are widely used in various industries, including textiles, electronics, and biomedical fields, due to their unique optical, electronic, and antimicrobial properties. However, the extensive use of AgNPs has raised concerns about their potential ecotoxicity and adverse effects on the environment. AgNPs can enter the environment through different pathways, such as wastewater, surface runoff, and soil application and can interact with living organisms through adsorption, ingestion, and accumulation, causing toxicity and harm. The small size, high surface area-to-volume ratio, and ability to generate reactive oxygen species (ROS) make AgNPs particularly toxic. Various bioremediation strategies, such as phytoremediation, have been proposed to mitigate the toxic effects of AgNPs and minimize their impact on the environment. Further research is needed to improve these strategies and ensure their safety and efficacy in different environmental settings.
Collapse
Affiliation(s)
- Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Bhopal, Madhya Pradesh, India
| | - Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, 752057, Odisha, India
| | - Meesala Sravani
- Department of Computer Science and Engineering, GMR Institute of Technology, Rajam, 532127, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
6
|
Sharma S, Bhattacharya S, Joshi K, Singh S. A shift in focus towards precision oncology, driven by revolutionary nanodiagnostics; revealing mysterious pathways in colorectal carcinogenesis. J Cancer Res Clin Oncol 2023; 149:16157-16177. [PMID: 37650995 DOI: 10.1007/s00432-023-05331-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Multiple molecular mechanisms contribute to the development of colorectal cancer (CRC), with chromosomal instability (CIN) playing a significant role. CRC is influenced by mutations in several important genes, including APC, TP53, KRAS, PIK3CA, BRAF, and SMYD4. The three molecular subtypes of this disease are CIN, MSI-H, and CIMP (CpG-island phenotype). p53 dysfunction and aberrant Wnt signalling are common characteristics of CRC carcinogenesis. Despite advances in conventional therapy, metastatic CRC remains difficult to treat due to toxicity and resistance. Theranostics for cancer could significantly benefit from nanotechnology, as it would enable more targeted, individualised care with fewer side effects. Utilising functionalized nanoparticles has enabled MRI-guided gene therapy, magnetic hyperthermia, chemotherapy, immunotherapy, and photothermal/photodynamic therapy, thereby radically modifying the way cancer is treated. Active targeting using ligands or peptides on nanoparticles improves the delivery of drugs to cancer cells. Nanostructures such as drug peptide conjugates, chitosan nanoparticles, gold nanoparticles, carbon nanotubes, mesoporous silica-based nanoparticles, silver nanoparticles, hybrid lipid-polymer nanoparticles, iron oxide nanoparticles, and quantum dots may enable targeted drug delivery and enhanced therapeutic efficacy against CRC. Nanomedicines are presently being evaluated in clinical trials for the treatment of colorectal cancer, with the promise of more effective and individualised therapies. This article examines current nanomedicine patents for CRC, including the work of Delta-Fly, Merrimack, and Pfenning, Meaning & Partner, among others. In terms of future nanomedicine research and development, ligand production, particle size, and clearance are crucial factors. Lastly, the numerous nanostructures utilized in nanomedicine for targeted drug administration and diagnostics indicate optimistic prospects for enhancing CRC treatment. The successes of nanomedicine research and development for existing colon cancer treatments are also highlighted in this review.
Collapse
Affiliation(s)
- Satyam Sharma
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| | - Kajal Joshi
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, Export Promotions Industrial Park (EPIP), National Institute of Pharmaceutical Education and Research, Industrial Area, Vaishali, Hajipur, Bihar, 844102, India
| |
Collapse
|
7
|
Piccioni M, Peila R, Varesano A, Vineis C. Dyeing Improvement and Stability of Antibacterial Properties in Chitosan-Modified Cotton and Polyamide 6,6 Fabrics. J Funct Biomater 2023; 14:524. [PMID: 37888189 PMCID: PMC10607697 DOI: 10.3390/jfb14100524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Cotton and polyamide 6,6 fabrics coated with chitosan, a natural biopolymer, have been tested against two different bacteria strains: Staphylococcus aureus as Gram-positive bacterium and Escherichia coli as Gram-negative bacterium. Using the ASTM standard method (Standard Test Method for Determining the Antimicrobial Activity of Antimicrobial Agents Under Dynamic Contact Conditions) for antibacterial testing, the treated fabrics is contacted for 1 h with the bacterial inoculum, the present study aims to investigate the possibility to reach interesting results considering shorter contact times. Moreover, the antibacterial activity of chitosan-treated fibers dyed with a natural dye, Carmine Red, was evaluated since chitosan has an interesting property that favors the attachment of the dye to the fiber (cross-linking ability). Finally, fabric samples were tested after washing cycles to verify the resistance of the dye and if the antibacterial property was maintained.
Collapse
Affiliation(s)
| | - Roberta Peila
- CNR-STIIMA (National Research Council—Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing), Corso Giuseppe Pella 16, 13900 Biella, Italy; (M.P.); (A.V.); (C.V.)
| | | | | |
Collapse
|
8
|
Korotkov SM. Mitochondrial Oxidative Stress Is the General Reason for Apoptosis Induced by Different-Valence Heavy Metals in Cells and Mitochondria. Int J Mol Sci 2023; 24:14459. [PMID: 37833908 PMCID: PMC10572412 DOI: 10.3390/ijms241914459] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
This review analyzes the causes and consequences of apoptosis resulting from oxidative stress that occurs in mitochondria and cells exposed to the toxic effects of different-valence heavy metals (Ag+, Tl+, Hg2+, Cd2+, Pb2+, Al3+, Ga3+, In3+, As3+, Sb3+, Cr6+, and U6+). The problems of the relationship between the integration of these toxic metals into molecular mechanisms with the subsequent development of pathophysiological processes and the appearance of diseases caused by the accumulation of these metals in the body are also addressed in this review. Such apoptosis is characterized by a reduction in cell viability, the activation of caspase-3 and caspase-9, the expression of pro-apoptotic genes (Bax and Bcl-2), and the activation of protein kinases (ERK, JNK, p53, and p38) by mitogens. Moreover, the oxidative stress manifests as the mitochondrial permeability transition pore (MPTP) opening, mitochondrial swelling, an increase in the production of reactive oxygen species (ROS) and H2O2, lipid peroxidation, cytochrome c release, a decline in the inner mitochondrial membrane potential (ΔΨmito), a decrease in ATP synthesis, and reduced glutathione and oxygen consumption as well as cytoplasm and matrix calcium overload due to Ca2+ release from the endoplasmic reticulum (ER). The apoptosis and respiratory dysfunction induced by these metals are discussed regarding their interaction with cellular and mitochondrial thiol groups and Fe2+ metabolism disturbance. Similarities and differences in the toxic effects of Tl+ from those of other heavy metals under review are discussed. Similarities may be due to the increase in the cytoplasmic calcium concentration induced by Tl+ and these metals. One difference discussed is the failure to decrease Tl+ toxicity through metallothionein-dependent mechanisms. Another difference could be the decrease in reduced glutathione in the matrix due to the reversible oxidation of Tl+ to Tl3+ near the centers of ROS generation in the respiratory chain. The latter may explain why thallium toxicity to humans turned out to be higher than the toxicity of mercury, lead, cadmium, copper, and zinc.
Collapse
Affiliation(s)
- Sergey M Korotkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez pr. 44, 194223 St. Petersburg, Russia
| |
Collapse
|
9
|
Priyanka S, Raja Namasivayam SK, Bharani RSA, John A. Biocompatible green technology principles for the fabrication of food packaging material with noteworthy mechanical and antimicrobial properties A sustainable developmental goal towards the effective, safe food preservation strategy. CHEMOSPHERE 2023; 336:139240. [PMID: 37348611 DOI: 10.1016/j.chemosphere.2023.139240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Biocompatible, eco-friendly, highly economical packaging methods should be needed as conventional packaging is known to cause undesirable effects. As food packaging is the major determining factor of food safety, the selection or methods of packaging materials plays a pioneering role. With this scope, modern food technology seeks unique sustainable approaches for the fabrication of package materials with notable desired properties. The principles, features, and fabrication methodology of modern food packaging are briefly covered in this review. We extensively revealed improved packaging (nanocoating, nanolaminates, and nano clay), active packaging (antimicrobial, oxygen scavenging, and UV barrier packaging), and intelligent/smart packaging (O2 indicator, CO2 indicator, Time Temperature Indicator, freshness indicator, and pH indicator). In particular, we described the role of nanomaterials in the fabrication of packaging material. Methods for the evaluation of mechanical, barrier properties, and anti-microbial assays have been featured. The present studies suggest the possible utilization of materials in the fabrication of food packaging for the production, utilization, and distribution of safe foods without affecting nutritional values.
Collapse
Affiliation(s)
- S Priyanka
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India.
| | | | - Arun John
- Department of Molecular Analytics, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
10
|
Griego A, Scarpa E, De Matteis V, Rizzello L. Nanoparticle delivery through the BBB in central nervous system tuberculosis. IBRAIN 2023; 9:43-62. [PMID: 37786519 PMCID: PMC10528790 DOI: 10.1002/ibra.12087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 10/04/2023]
Abstract
Recent advances in Nanotechnology have revolutionized the production of materials for biomedical applications. Nowadays, there is a plethora of nanomaterials with potential for use towards improvement of human health. On the other hand, very little is known about how these materials interact with biological systems, especially at the nanoscale level, mainly because of the lack of specific methods to probe these interactions. In this review, we will analytically describe the journey of nanoparticles (NPs) through the brain, starting from the very first moment upon injection. We will preliminarily provide a brief overlook of the physicochemical properties of NPs. Then, we will discuss how these NPs interact with the body compartments and biological barriers, before reaching the blood-brain barrier (BBB), the last gate guarding the brain. Particular attention will be paid to the interaction with the biomolecular, the bio-mesoscopic, the (blood) cellular, and the tissue barriers, with a focus on the BBB. This will be framed in the context of brain infections, especially considering central nervous system tuberculosis (CNS-TB), which is one of the most devastating forms of human mycobacterial infections. The final aim of this review is not a collection, nor a list, of current literature data, as it provides the readers with the analytical tools and guidelines for the design of effective and rational NPs for delivery in the infected brain.
Collapse
Affiliation(s)
- Anna Griego
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Edoardo Scarpa
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| | - Valeria De Matteis
- Department of Mathematics and Physics “Ennio De Giorgi”University of SalentoLecceItaly
| | - Loris Rizzello
- Department of Pharmaceutical SciencesUniversity of MilanMilanItaly
- The National Institute of Molecular Genetics (INGM)MilanItaly
| |
Collapse
|
11
|
Yang C, Yang J, Lu A, Gong J, Yang Y, Lin X, Li M, Xu H. Nanoparticles in ocular applications and their potential toxicity. Front Mol Biosci 2022; 9:931759. [PMID: 35911959 PMCID: PMC9334523 DOI: 10.3389/fmolb.2022.931759] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Nanotechnology has been developed rapidly in recent decades and widely applied in ocular disease therapy. Nano-drug delivery systems overcome the bottlenecks of current ophthalmic drug delivery and are characterized with strong biocompatibility, stability, efficiency, sustainability, controllability, and few side effects. Nanoparticles have been identified as a promising and generally safe ophthalmic drug-delivery system based on the toxicity assessment in animals. Previous studies have found that common nanoparticles can be toxic to the cornea, conjunctiva, and retina under certain conditions. Because of the species differences between humans and animals, advanced in vitro cell culture techniques, such as human organoids, can mimic the human organism to a certain extent, bringing nanoparticle toxicity assessment to a new stage. This review summarizes the advanced application of nanoparticles in ocular drug delivery and the potential toxicity, as well as some of the current challenges and future opportunities in nanotoxicological evaluation.
Collapse
Affiliation(s)
- Cao Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Junling Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Ao Lu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yuanxing Yang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xi Lin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
- *Correspondence: Minghui Li, ; Haiwei Xu,
| |
Collapse
|
12
|
Abstract
This paper presents ways to modify epoxy resin matrix composites to increase their electrical conductivity. Good electrical properties are particularly important for materials used in the construction of vehicles (cars, trains, airplanes) and other objects exposed to lightning (e.g., wind turbines). When the hull plating is made of an electrical conductor (e.g., metal alloys) it acts as a Faraday cage and upon lightning discharge the electrical charge does not cause damage to the structure. Epoxy-resin-based composites have recently been frequently used to reduce the weight of structures, but due to the insulating properties of the resin, various modifications must be applied to improve the conductivity of the composite. The methods to improve the conductivity have been categorized into three groups: modification of the matrix with conductive fillers, modification of the composite reinforcement, and addition of layers with increased electrical conductivity to the composite.
Collapse
|
13
|
Yan H, Zhai B, Yang F, Chen Z, Zhou Q, Paiva-Santos AC, Yuan Z, Zhou Y. Nanotechnology-Based Diagnostic and Therapeutic Strategies for Neuroblastoma. Front Pharmacol 2022; 13:908713. [PMID: 35721107 PMCID: PMC9201105 DOI: 10.3389/fphar.2022.908713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB), as the most common extracranial solid tumor in childhood, is one of the critical culprits affecting children's health. Given the heterogeneity and invisibility of NB tumors, the existing diagnostic and therapeutic approaches are inadequate and ineffective in early screening and prognostic improvement. With the rapid innovation and development of nanotechnology, nanomedicines have attracted widespread attention in the field of oncology research for their excellent physiological and chemical properties. In this review, we first explored the current common obstacles in the diagnosis and treatment of NB. Then we comprehensively summarized the advancements in nanotechnology-based multimodal synergistic diagnosis and treatment of NB and elucidate the underlying mechanisms. In addition, a discussion of the pending challenges in biocompatibility and toxicity of nanomedicine was conducted. Finally, we described the development and application status of nanomaterials against some of the recognized targets in the field of NB research, and pointed out prospects for nanomedicine-based precision diagnosis and therapy of NB.
Collapse
Affiliation(s)
- Hui Yan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Bo Zhai
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Fang Yang
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhenliang Chen
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Qiang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Pathology, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ana Cláudia Paiva-Santos
- Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yang Zhou
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou University, Zhengzhou, China.,Department of Cardiothoracic Surgery, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| |
Collapse
|