1
|
Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R, Chubarev V, Fan R, Liu J. MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies. Am J Cancer Res 2023; 13:6147-6175. [PMID: 38187051 PMCID: PMC10767355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Small non-coding RNAs (microRNA, miR), powerful epigenetic regulators, were found involved in the regulation of most biological functions via post-translational inhibition of protein expression. Increased expression of pro-oncogenic miRs (known as miR cancer biomarkers) and inhibition of pro-apoptotic miR expression have been demonstrated in different tumors. The recently identified miR-183 was found implicated in gastrointestinal tumor metabolism regulation. Elevated miR-183 expression and cancer-promoting effects were reported in esophageal and colorectal cancers, which was partially contradicted by controversial data observed in gastric cancers. Anti-cancer effect of miR-183 in gastric cancer cells was associated with the Bim-1 and Ezrin genes regulation. Many studies indicated that miR-183 can inhibit tumor suppressor genes in most cell lines, promoting tumor cell proliferation and migration. Increased miR-183 level results in the downregulation of FOXO1, PDCD4, and other tumor suppressor genes in gastrointestinal tumor cells. MiR-183 also influences the signaling of PI3K/AKT/mTOR, Wnt/β-catenin, and Bcl-2/p53 signaling pathways. Mir-183 inhibits apoptosis and autophagy, and promotes epithelial-to-mesenchymal transition, cancer cell proliferation, and migration. Accordingly, gastrointestinal cancer occurrence, development of chemoradiotherapy resistance, recurrence/metastasis, and prognosis were associated with miR-183 expression. The current study assessed reported miR-183 functions and signaling, providing new insights for the diagnosis and treatment of gastrointestinal malignancies.
Collapse
Affiliation(s)
- Yufei Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Olga Sukocheva
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide HospitalAdelaide, SA 5000, Australia
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of SciencesSevernij Pr. 1, Chernogolovka 142432, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of SciencesAkad. Arbuzov St. 8, Kazan 420088, Russia
| | - Ruiwen Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Vladimir Chubarev
- Sechenov First Moscow State Medical University (Sechenov University)8-2 Trubetskaya St., Moscow 119991, Russia
| | - Ruitai Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
| |
Collapse
|
2
|
Shen X, Niu N, Xue J. Oncogenic KRAS triggers metabolic reprogramming in pancreatic ductal adenocarcinoma. J Transl Int Med 2023; 11:322-329. [PMID: 38130635 PMCID: PMC10732496 DOI: 10.2478/jtim-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an extremely high lethality rate. Oncogenic KRAS activation has been proven to be a key driver of PDAC initiation and progression. There is increasing evidence that PDAC cells undergo extensive metabolic reprogramming to adapt to their extreme energy and biomass demands. Cell-intrinsic factors, such as KRAS mutations, are able to trigger metabolic rewriting. Here, we update recent advances in KRAS-driven metabolic reprogramming and the associated metabolic therapeutic potential in PDAC.
Collapse
Affiliation(s)
- Xuqing Shen
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Ningning Niu
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai200127, China
| |
Collapse
|
3
|
Zhou K, Liu Y, Yuan S, Zhou Z, Ji P, Huang Q, Wen F, Li Q. Signalling in pancreatic cancer: from pathways to therapy. J Drug Target 2023; 31:1013-1026. [PMID: 37869884 DOI: 10.1080/1061186x.2023.2274806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Pancreatic cancer (PC) is a common malignant tumour in the digestive system. Due to the lack of sensitive diagnostic markers, strong metastasis ability, and resistance to anti-cancer drugs, the prognosis of PC is inferior. In the past decades, increasing evidence has indicated that the development of PC is closely related to various signalling pathways. With the exploration of RAS-driven, epidermal growth factor receptor, Hedgehog, NF-κB, TGF-β, and NOTCH signalling pathways, breakthroughs have been made to explore the mechanism of pancreatic carcinogenesis, as well as the novel therapies. In this review, we discussed the signalling pathways involved in PC and summarised current targeted agents in the treatment of PC. Furthermore, opportunities and challenges in the exploration of potential therapies targeting signalling pathways were also highlighted.
Collapse
Affiliation(s)
- Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yingping Liu
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Ziyu Zhou
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Pengfei Ji
- The Second Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Qianhan Huang
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Feng Wen
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Diehl AC, Hannan LM, Zhen DB, Coveler AL, King G, Cohen SA, Harris WP, Shankaran V, Wong KM, Green S, Ng N, Pillarisetty VG, Sham JG, Park JO, Reddi D, Konnick EQ, Pritchard CC, Baker K, Redman M, Chiorean EG. KRAS Mutation Variants and Co-occurring PI3K Pathway Alterations Impact Survival for Patients with Pancreatic Ductal Adenocarcinomas. Oncologist 2022; 27:1025-1033. [PMID: 36124727 DOI: 10.1093/oncolo/oyac179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND KRAS variant alleles may have differential biological properties which impact prognosis and therapeutic options in pancreatic ductal adenocarcinomas (PDA). MATERIALS AND METHODS We retrospectively identified patients with advanced PDA who received first-line therapy and underwent blood and/or tumor genomic sequencing at the University of Washington between 2013 and 2020. We examined the incidence of KRAS mutation variants with and without co-occurring PI3K or other genomic alterations and evaluated the association of these mutations with clinicopathological characteristics and survival using a Cox proportional hazards model. RESULTS One hundred twenty-six patients had genomic sequencing data; KRAS mutations were identified in 111 PDA and included the following variants: G12D (43)/G12V (35)/G12R (23)/other (10). PI3K pathway mutations (26% vs. 8%) and homologous recombination DNA repair (HRR) defects (35% vs. 12.5%) were more common among KRAS G12R vs. non-G12R mutated cancers. Patients with KRAS G12R vs. non-G12R cancers had significantly longer overall survival (OS) (HR 0.55) and progression-free survival (PFS) (HR 0.58), adjusted for HRR pathway co-mutations among other covariates. Within the KRAS G12R group, co-occurring PI3K pathway mutations were associated with numerically shorter OS (HR 1.58), while no effect was observed on PFS. CONCLUSIONS Patients with PDA harboring KRAS G12R vs. non-G12R mutations have longer survival, but this advantage was offset by co-occurring PI3K alterations. The KRAS/PI3K genomic profile could inform therapeutic vulnerabilities in patients with PDA.
Collapse
Affiliation(s)
- Adam C Diehl
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Lindsay M Hannan
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David B Zhen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew L Coveler
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Gentry King
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stacey A Cohen
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - William P Harris
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Veena Shankaran
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Kit M Wong
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Natasha Ng
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Jonathan G Sham
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - James O Park
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Deepti Reddi
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Eric Q Konnick
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Colin C Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.,Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | | | - Mary Redman
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - E Gabriela Chiorean
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, USA.,Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
5
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
6
|
Ferreira A, Pereira F, Reis C, Oliveira MJ, Sousa MJ, Preto A. Crucial Role of Oncogenic KRAS Mutations in Apoptosis and Autophagy Regulation: Therapeutic Implications. Cells 2022; 11:cells11142183. [PMID: 35883626 PMCID: PMC9319879 DOI: 10.3390/cells11142183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 11/16/2022] Open
Abstract
KRAS, one of the RAS protein family members, plays an important role in autophagy and apoptosis, through the regulation of several downstream effectors. In cancer cells, KRAS mutations confer the constitutive activation of this oncogene, stimulating cell proliferation, inducing autophagy, suppressing apoptosis, altering cell metabolism, changing cell motility and invasion and modulating the tumor microenvironment. In order to inhibit apoptosis, these oncogenic mutations were reported to upregulate anti-apoptotic proteins, including Bcl-xL and survivin, and to downregulate proteins related to apoptosis induction, including thymine-DNA glycosylase (TDG) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL). In addition, KRAS mutations are known to induce autophagy in order to promote cell survival and tumor progression through MAPK and PI3K regulation. Thus, these mutations confer resistance to anti-cancer drug treatment and, consequently, result in poor prognosis. Several therapies have been developed in order to overcome KRAS-induced cell death resistance and the downstream signaling pathways blockade, especially by combining MAPK and PI3K inhibitors, which demonstrated promising results. Understanding the involvement of KRAS mutations in apoptosis and autophagy regulation, might bring new avenues to the discovery of therapeutic approaches for CRCs harboring KRAS mutations.
Collapse
Affiliation(s)
- Anabela Ferreira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Flávia Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
| | - Celso Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Maria José Oliveira
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (C.R.); (M.J.O.)
- Institute of Biomedical Engineering (INEB), University of Porto, 4200-135 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Maria João Sousa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Ana Preto
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (A.F.); (F.P.); (M.J.S.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-601524
| |
Collapse
|
7
|
Wang H, Chi L, Yu F, Dai H, Si X, Gao C, Wang Z, Liu L, Zheng J, Ke Y, Liu H, Zhang Q. The overview of Mitogen-activated extracellular signal-regulated kinase (MEK)-based dual inhibitor in the treatment of cancers. Bioorg Med Chem 2022; 70:116922. [PMID: 35849914 DOI: 10.1016/j.bmc.2022.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
Mitogen-activated extracellular signal-regulated kinase 1 and 2 (MEK1/2) are the critical components of the mitogen-activated protein kinase/extracellular signal-regulated kinase 1 and 2 (MAPK/ERK1/2) signaling pathway which is one of the well-characterized kinase cascades regulating cell proliferation, differentiation, growth, metabolism, survival and mobility both in normal and cancer cells. The aberrant activation of MAPK/ERK1/2 pathway is a hallmark of numerous human cancers, therefore targeting the components of this pathway to inhibit its dysregulation is a promising strategy for cancer treatment. Enormous efforts have been done in the development of MEK1/2 inhibitors and encouraging advancements have been made, including four inhibitors approved for clinical use. However, due to the multifactorial property of cancer and rapidly arising drug resistance, the clinical efficacy of these MEK1/2 inhibitors as monotherapy are far from ideal. Several alternative strategies have been developed to improve the limited clinical efficacy, including the dual inhibitor which is a single drug molecule able to simultaneously inhibit two targets. In this review, we first introduced the activation and function of the MAPK/ERK1/2 components and discussed the advantages of MEK1/2-based dual inhibitors compared with the single inhibitors and combination therapy in the treatment of cancers. Then, we overviewed the MEK1/2-based dual inhibitors for the treatment of cancers and highlighted the theoretical basis of concurrent inhibition of MEK1/2 and other targets for development of these dual inhibitors. Besides, the status and results of these dual inhibitors in both preclinical and clinical studies were also the focus of this review.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Lingling Chi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Fuqiang Yu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Hongling Dai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Xiaojie Si
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Chao Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Zhengjie Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Limin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Jiaxin Zheng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China
| | - Yu Ke
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China.
| | - Hongmin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450052, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| | - Qiurong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Collaborative Innovation Center of New Drug Research and Safety Evaluation of Henan Province, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China.
| |
Collapse
|
8
|
Van Dort ME, Jang Y, Bonham CA, Heist K, Palagama DSW, McDonald L, Zhang EZ, Chenevert TL, Luker GD, Ross BD. Structural effects of morpholine replacement in ZSTK474 on Class I PI3K isoform inhibition: Development of novel MEK/PI3K bifunctional inhibitors. Eur J Med Chem 2022; 229:113996. [PMID: 34802837 PMCID: PMC8792322 DOI: 10.1016/j.ejmech.2021.113996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023]
Abstract
Established roles for PI3K and MAPK signaling pathways in tumorigenesis has prompted extensive research towards the discovery of small-molecule inhibitors as cancer therapeutics. However, significant compensatory regulation exists between these two signaling cascades, leading to redundancy among survival pathways. Consequently, initial clinical trials aimed at either PI3K or MEK inhibition alone have proven ineffective and highlight the need for development of targeted and innovative therapeutic combination strategies. We designed a series of PI3K inhibitor derivatives wherein a single morpholine group of the PI3K inhibitor ZSTK474 was substituted with a variety of 2-aminoethyl functional groups. Analogs with pendant hydroxyl or methoxy groups maintained low nanomolar inhibition towards PI3Kα, PI3Kγ, and PI3Kδ isoforms in contrast to those with pendant amino groups which were significantly less inhibitory. Synthesis of prototype PI3K/MEK bifunctional inhibitors (6r, 6s) was guided by the structure-activity data, where a MEK-targeting inhibitor was tethered directly via a short PEG linker to the triazine core of the PI3K inhibitor analogs. These compounds (6r, 6s) displayed nanomolar inhibition towards PI3Kα, δ, and MEK (IC50 ∼105-350 nM), and low micromolar inhibition for PI3Kβ and PI3Kγ (IC50 ∼1.5-3.9 μM) in enzymatic inhibition assays. Cell viability assays demonstrated superior anti-proliferative activity for 6s over 6r in three tumor-derived cell lines (A375, D54, SET-2), which correlated with inhibition of downstream AKT and ERK1/2 phosphorylation. Compounds 6r and 6s also demonstrated in vivo tolerability with therapeutic efficacy through reduction of kinase activation and amelioration of disease phenotypes in the JAK2V617F mutant myelofibrosis mouse cancer model. Taken together, these results support further structure optimization of 6r and 6s as promising leads for combination therapy in human cancer as a new class of PI3K/MEK bifunctional inhibitors.
Collapse
Affiliation(s)
- Marcian E Van Dort
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Youngsoon Jang
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Christopher A Bonham
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Kevin Heist
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Dilrukshika S W Palagama
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Lucas McDonald
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Edward Z Zhang
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Thomas L Chenevert
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Gary D Luker
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA.
| | - Brian D Ross
- Center for Molecular Imaging, The University of Michigan Medical School, MI, 48109, USA; Department of Radiology, The University of Michigan Medical School, MI, 48109, USA; Department of Biological Chemistry, The University of Michigan Medical School, MI, 48109, USA.
| |
Collapse
|
9
|
Zhao X, Zhang Q, Wang Y, Li S, Yu X, Wang B, Wang X. Oridonin induces autophagy-mediated cell death in pancreatic cancer by activating the c-Jun N-terminal kinase pathway and inhibiting phosphoinositide 3-kinase signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1084. [PMID: 34422996 PMCID: PMC8339817 DOI: 10.21037/atm-21-2630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Background Oridonin is a diterpenoid isolated from Rabdosia rubescens that has potent anticancer activity. This study set out to investigate the antitumor effects of oridonin in pancreatic carcinoma (PC) and their underlying mechanisms. Methods To investigate the antitumor effects of oridonin, we developed an orthotopic C57BL/6 mouse model of PC. After successful establishment of the model, the mice were given a daily intraperitoneal injection of phosphate-buffered saline containing 0.1% dimethyl sulfoxide or oridonin for 2 weeks. In vitro experiments including MTT assay and flow cytometry were performed to examine cell viability and apoptosis. Panc-1 and Panc02 cells were transfected with a green fluorescent protein (GFP)-LC3 plasmid. After the cells had been treated with or without 20 μM oridonin and 10 μM 3-MA, the formation of GFP-LC3 puncta was detected by fluorescence microscopy. The levels of the autophagy-related proteins Beclin-1, LC3, and p62 were measured by western blotting. Results Oridonin inhibited the proliferation of PC cells and induced their apoptosis in vitro and in vivo. Treatment with oridonin also led to an increase in the quantity of LC3B II protein and upregulation of the p62 and Beclin-1 levels in PC cells. The effects of oridonin on PC cell proliferation, apoptosis, and autophagy were mediated via the simultaneous inhibition of the phosphoinositide 3-kinase pathway and activation of the c-Jun N-terminal kinase pathway. Conclusions Our study is the first to confirm the antitumor and autophagy-activating effects of oridonin on PC cells. In light of these results, oridonin may be a promising therapeutic agent for PC.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Qi Zhang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| | - Yuanyuan Wang
- Department of Pharmacology, Tianjin Children's Hospital, Tianjin, China
| | - Shipeng Li
- Department of General Surgery, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, China
| | - Xiangyang Yu
- Department of Gastrointestinal Surgery, Tianjin Nankai Hospital, Tianjin, China
| | - Botao Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Key Laboratory for Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, China
| |
Collapse
|
10
|
Wu N, Huang Y, Liu F, Xu X, Liu B, Wei J. KRAS gene status in gastric signet-ring cell carcinoma patients and acts as biomarker of MEK inhibitor. J Gastrointest Oncol 2021; 12:1020-1030. [PMID: 34295553 DOI: 10.21037/jgo-20-617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Background Signet-ring cell carcinoma (SRCC) is a specific subtype of stomach cancer with unique epidemiology. Here, we sought to explore the role of KRAS in SRCC. Methods KRAS status was studied both in The Cancer Genome Atlas (TCGA) and internal cohorts. Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) were performed in formalin-fixed and paraffin-embedded (FFPE) samples. We explored patients' survival and clinicopathological characteristics in terms of KRAS mutation and expression. We also explored KRAS status and drug response curve of MEK/mTOR inhibitors in SRCC cell lines. Results Patients with KRAS mutations and copy number variation (CNV) showed higher mRNA level compared to non-mutant cases (P=0.003 and P<0.001). In internal cohort, 15 samples harbored KRAS mutations. Survival analysis showed that these patients had significantly lower overall survival (OS) (P=0.048). We further analyzed 75 patients with sufficient FFPE samples. Eight patients showed KRAS mutations and one patient showed KRAS amplification. The median OS was 12.5 months for patients with KRAS mutation, and 19.5 months for patients without KRAS mutation (P=0.005). Positive expression of KRAS as shown by IHC was detected in majority of SRCC samples, which was higher than our intestinal cohort (28% vs. 12.6%, P=0.033). We further explored the correlation between KRAS status and drug sensitivity in 4 SRCC cell lines. SNU601 and SNU668, which harbored KRAS mutation, were hypersensitive to MEK and mTOR inhibitors than KRAS wide type cell lines KATO-III and NUGC-4. Conclusions Our findings demonstrate that KRAS gene plays an important role in SRCC and reveals therapeutic potential of targeting tumors by inhibiting MEK and mTOR pathways.
Collapse
Affiliation(s)
- Nandie Wu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Ying Huang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Fangcen Liu
- Department of Pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingyun Xu
- Department of Pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Lu K, Chen Q, Li M, He L, Riaz F, Zhang T, Li D. Programmed cell death factor 4 (PDCD4), a novel therapy target for metabolic diseases besides cancer. Free Radic Biol Med 2020; 159:150-163. [PMID: 32745771 DOI: 10.1016/j.freeradbiomed.2020.06.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Programmed cell death factor 4 (PDCD4) is originally described as a tumor suppressor gene that exerts antineoplastic effects by promoting apoptosis and inhibiting tumor cell proliferation, invasion, and metastasis. Several investigations have probed the aberrant expression of PDCD4 with the progression of metabolic diseases, such as polycystic ovary syndrome (PCOS), obesity, diabetes, and atherosclerosis. It has been ascertained that PDCD4 causes glucose and lipid metabolism disorders, insulin resistance, oxidative stress, chronic inflammatory response, and gut flora disorders to regulate the progression of metabolic diseases. This review aims to summarize the latest researches to uncover the structure, expression regulation, and biological functions of PDCD4 and to elucidate the regulatory mechanism of the development of tumors and metabolic diseases. This review has emphasized the understanding of the PDCD4 role and to provide new ideas for the research, diagnosis, and treatment of tumors and metabolic diseases.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Mengda Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Tianyun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
12
|
Astragaloside IV alleviates the brain damage induced by subarachnoid hemorrhage via PI3K/Akt signaling pathway. Neurosci Lett 2020; 735:135227. [PMID: 32619654 DOI: 10.1016/j.neulet.2020.135227] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) caused brain damage accounts for more than 20 % death of patients with cerebrovascular diseases. We aimed to investigate the effects of Astragaloside IV (AS-IV) on SAH-induced brain damage and its underlying mechanism. SAH rat model was established and treated with or without AS-IV. Brain injury and function were evaluated by neurological score, brain water content, Nissl staining, and behavioral experiments using Morris water maze. The protein expression related to SAH caused inflammation and neuron apoptosis were assessed. As expected, after 24 h of SAH, Garcia score, beam balance score and the number of intact neurons were significantly reduced in SAH rats compared to sham rats, but AS-IV treatment dramatically elevated the two scores and the number of intact neuron number. Brain water content that increased after SAH was also declined in AS-IV treated rats compared to untreated rats. In addition, SAH rats treated with AS-IV also showed better neurological outcomes than untreated SAH rats including shorter escape time and swimming distance, longer quadrant stay in the Morris water maze and increased fall latency from the rod rotating. In addition, in the SAH rats, the anti-apoptosis pathway phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) was activated while nuclear factor-κB (NF-κB) signaling was markedly repressed by AS-IV. Several apoptosis associated genes including FoxO1, Bim, Bax and a typical apoptosis marker cleaved-caspase-3 were all downregulated by AS-IV. In conclusion, this study found a protective role of AS-IV in SAH-induced brain injury through regulating PI3K and NF-κB signaling pathways.
Collapse
|
13
|
Zhu Z, Xiao S, Hao H, Hou Q, Fu X. Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Mutations in the Occurrence and Treatment of Pancreatic Cancer. Curr Top Med Chem 2019; 19:2176-2186. [PMID: 31456520 DOI: 10.2174/1568026619666190828160804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022]
Abstract
Pancreatic cancer is a highly malignant tumor with a 5-year survival rate of less than 6%, and incidence increasing year by year globally. Pancreatic cancer has a poor prognosis and a high recurrence rate, almost the same as the death rate. However, the available effective prevention and treatment measures for pancreatic cancer are still limited. The genome variation is one of the main reasons for the development of pancreatic cancer. In recent years, with the development of gene sequencing technology, in-depth research on pancreatic cancer gene mutation presents that a growing number of genetic mutations are confirmed to be in a close relationship with invasion and metastasis of pancreatic cancer. Among them, KRAS mutation is a special one. Therefore, it is particularly important to understand the mechanism of the KRAS mutation in the occurrence and development of pancreatic cancer, and to explore the method of its transformation into clinical tumor molecular targeted treatment sites, to further improve the therapeutic effect on pancreatic cancer. Therefore, to better design chemical drugs, this review based on the biological functions of KRAS, summarized the types of KRAS mutations and their relationship with pancreatic cancer and included the downstream signaling pathway Raf-MEK-ERK, PI3K-AKT, RalGDS-Ral of KRAS and the current medicinal treatment methods for KRAS mutations. Moreover, drug screening and clinical treatment for KRAS mutated cell and animal models of pancreatic cancer are also reviewed along with the prospect of targeted medicinal chemistry therapy for precision treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Ziying Zhu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Saisong Xiao
- Department of Anesthesia, Dongzhimen Hospital, Beijing University of Chinese Medicine, 100700 Beijing, China
| | - Haojie Hao
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Qian Hou
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| | - Xiaobing Fu
- Institute of Basic Medical Science, Wound Healing and Cell Biology Laboratory, Chinese PLA General Hospital, 100039 Beijing, China
| |
Collapse
|
14
|
Chen S, Yang L, Pan A, Duan S, Li M, Li P, Huang J, Gao X, Huang X, Lin Y. Inhibitory Effect on the Hepatitis B Cells through the Regulation of miR-122-MAP3K2 signal pathway. AN ACAD BRAS CIENC 2019; 91:e20180941. [PMID: 31141015 DOI: 10.1590/0001-3765201920180941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/07/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to investigate the inhibitory effect of regulation of miR-122-MAP3K2 signal pathway on the hepatitis B cells. We detected the content of MAP3K2 from patients with HBV blood serum samples and analyzed the correlation between content of MAP3K2 and copies of HBV-DNA. Wound healing and Transwell assays were used to detect the function of cells from control group (wild type) and observer group (overexpresses miR-122). Secretion levels of HBsAg and MAP3K2 in the supernatant and level of MAP3K2 in cells were detected by ELISA and western blot, respectively. The results showed that there was a positive correlation between the copies of HBV-DNA and MAP3K2 in serum. In the assays involving detection of the number of HBV-DNA copies, the supernatant levels of HBsAg and MAP3K2, and the level of MAP3K2 in the cells, the rate of increase of these indicators significantly slowed as culture time. In conclusion, overexpression of miR-122 could inhibit the migration of hepatoblastoma cells; however, following transfection with miR-122, DNA synthesis and the secretion of HBsAg were inhibited. Overexpression of miR-122 can also downregulate MAP3K2. Consequently, we concluded that regulating the miR-122-MAP3K2 signaling pathway exerts an inhibitory effect in hepatitis B cells.
Collapse
Affiliation(s)
- Songlin Chen
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Lei Yang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Aiping Pan
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Siliang Duan
- Medical College of Guangxi University of Science and Technology, Liuzhou 545005, Guangxi, People's Republic of China
| | - Mingfen Li
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Ping Li
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Jingjing Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Xingxin Gao
- First Affiliated Hospital of Guangxi Medical University, Nanning 530023, Guangxi, People's Republic of China
| | - Xiaoqi Huang
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| | - Yinghui Lin
- First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi, People's Republic of China
| |
Collapse
|