1
|
Lu M, Ren Y, Feng S, Wang S, Xia W, Gu B, Shen Y, Yue A, Li N, Zhang Y, Zhong J. MDM2 inhibitor induces apoptosis in colon cancer cells through activation of the CHOP-DR5 pathway, independent of p53 phenotype. Front Pharmacol 2025; 16:1508421. [PMID: 40264676 PMCID: PMC12011796 DOI: 10.3389/fphar.2025.1508421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Murine double minute 2 (MDM2), a key negative regulator of p53, forms a feedback loop with p53 to drive tumor progression, including colorectal cancer. Nutlin-3a, an MDM2 inhibitor, induces apoptosis in wild-type p53 tumors, but its effects on p53-mutated cancers and potential p53-independent apoptotic mechanisms remain unclear. Methods We investigated Nutlin-3a's effects on colon cancer cells with varying p53 phenotypes. Endoplasmic reticulum (ER) stress-associated CHOP was detected and knocked down to explore mechanisms. In vitro and in vivo experiments assessed Nutlin-3a's synergy with 5-fluorouracil and TRAIL. Results Nutlin-3a activated caspase-8-dependent extrinsic apoptosis in colon cancer cells via DR5 upregulation, independent of p53 status. ER stress and CHOP activation mediated DR5 induction, driven by calcium release. Combined Nutlin-3a treatment enhanced sensitivity to 5-fluorouracil and TRAIL in vitro and in vivo through caspase-8 pathway activation. Discussion These findings reveal a novel p53-independent apoptotic mechanism of Nutlin-3a involving ER stress and death receptor signaling. This pathway highlights Nutlin-3a's potential as an adjuvant therapy for colon cancer, even in p53-mutated tumors, by enhancing chemotherapeutic efficacy through extrinsic apoptosis.
Collapse
Affiliation(s)
- Manman Lu
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yingli Ren
- College of Medicine, Henan Polytechnic University, Jiaozuo, China
| | - Sijia Feng
- Henan Province Engineering Technology Research Center of Tumor Diagnostic Biomarkers and RNA Interference Drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shenggen Wang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Weiyue Xia
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Baoru Gu
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yuhou Shen
- Department of Abdominal Surgical Oncology Ward 2, Xinxiang Central Hospital, Xinxiang, China
- Department of Abdominal Surgical Oncology Ward 2, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Aimin Yue
- Department of Abdominal Surgical Oncology Ward 2, Xinxiang Central Hospital, Xinxiang, China
- Department of Abdominal Surgical Oncology Ward 2, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, China
| | - Na Li
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongxi Zhang
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Province Engineering Technology Research Center of Tumor Diagnostic Biomarkers and RNA Interference Drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiateng Zhong
- Department of Oncology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Province Engineering Technology Research Center of Tumor Diagnostic Biomarkers and RNA Interference Drugs, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
2
|
Weng C, Jin R, Jin X, Yang Z, He C, Zhang Q, Xu J, Lv B. Exploring the Mechanisms, Biomarkers, and Therapeutic Targets of TRIM Family in Gastrointestinal Cancer. Drug Des Devel Ther 2024; 18:5615-5639. [PMID: 39654601 PMCID: PMC11626976 DOI: 10.2147/dddt.s482340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Rijuan Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zimei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenghai He
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Qiuhua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
3
|
Mishra T, Dubey N, Basu S. Small molecules for impairing endoplasmic reticulum in cancer. Org Biomol Chem 2024; 22:8689-8699. [PMID: 39373910 DOI: 10.1039/d4ob01238k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The endoplasmic reticulum plays an important role in maintaining the protein homeostasis of cells as well as regulating Ca2+ storage. An increased load of unfolded proteins in the endoplasmic reticulum due to alterations in the cell's metabolic pathway leads to the activation of the unfolded protein response, also known as ER stress. ER stress plays a major role in maintaining the growth and survival of various cancer cells, but persistent ER stress can also lead to cell death and hence can be a therapeutic pathway in the treatment of cancer. In this review, we focus on different types of small molecules that impair different ER stress sensors, the protein degradation machinery, and chaperone proteins. We also review the metal complexes and other miscellaneous compounds inducing ER stress through multiple mechanisms. Finally, we discuss the challenges in this emerging area of research and the potential direction of research to overcome them towards next-generation ER-targeted cancer therapy.
Collapse
Affiliation(s)
- Tripti Mishra
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Navneet Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| | - Sudipta Basu
- Department of Chemistry, Indian Institute of Technology (IIT) Gandhinagar, Palaj, Gandhinagar, Gujarat, 382355, India.
| |
Collapse
|
4
|
Hu Y, Luo X, Chen H, Ke J, Feng M, Yuan W. MiR-204-5p regulates SIRT1 to promote the endoplasmic reticulum stress-induced apoptosis of inner ear cells in C57BL/6 mice with hearing loss. PLoS One 2024; 19:e0309892. [PMID: 39531447 PMCID: PMC11556682 DOI: 10.1371/journal.pone.0309892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study investigated the effect of miR-204-5p-mediated silencing of SIRT1 on the development of deafness in C57BL/6 mice and the roles of miR-204-5p and SIRT1 in deafness. METHODS Auditory brainstem response recordings, H&E staining, and immunohistochemistry were used to observe changes in hearing function and cochlear tissue morphology in 2-month-old and 15-month-old C57BL/6 mice. A senescence model was induced using H2O2 in inner ear cells (HEI-OC1). Changes in HEI-OC1 cell proliferation were detected using the CCK-8 assay, whereas flow cytometry was used to detect changes in apoptosis. MiR-204-5p expression was measured via RT‒qPCR. The SIRT1 agonist RSV and a miR-204-5p inhibitor were used to study changes in ER stress (ERS), proliferation, and apoptosis in HEI-OC1 cells. Western blotting was performed to detect changes in ATF4, CHOP, SIRT1, PERK, p-PERK, Bax, and Bcl-2 protein levels. A dual-luciferase reporter gene assay was carried out to assess the ability of miR-204-5p to target SIRT1. RESULTS Relative miR-204-5p expression levels in the cochleae of aged C57BL/6 mice increased, whereas SIRT1 expression levels decreased, and miR-204-5p and SIRT1 expression levels were negatively correlated. ERS and increased 8-OHDG levels were observed in aged C57BL/6 mice. In a model of inner ear cell aging, H2O2 treatment induced increases in miR-204-5p expression and ERS-mediated apoptosis. MiR-204-5p was found to target SIRT1 and inhibit its expression. SIRT1 activation and a miR-204-5p inhibitor promoted HEI-OC1 cell proliferation and reduced apoptosis. The miR-204-5p inhibitor regulated expression of the ERS proteins PERK, ATF4, and CHOP to upregulate Bcl-2 and downregulate Bax. CONCLUSION This study identified the roles of miR-204-5p and SIRT1 in deafness in C57BL/6 mice and investigated the loss of cochlear outer hair cells and the involvement of apoptosis and ERS in deafness.
Collapse
Affiliation(s)
- Yaqin Hu
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Xiaoqin Luo
- Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, China
| | - Hongjiang Chen
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Jing Ke
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Wei Yuan
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
5
|
Zhu SL, Qi M, Chen MT, Lin JP, Huang HF, Deng LJ, Zhou XW. A novel DDIT3 activator dehydroevodiamine effectively inhibits tumor growth and tumor cell stemness in pancreatic cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155377. [PMID: 38503154 DOI: 10.1016/j.phymed.2024.155377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The existence of pancreatic cancer stem cells (PCSCs) results in limited survival benefits from current treatment options. There is a scarcity of effective agents for treating pancreatic cancer patients. Dehydroevodiamine (DeHE), a quinazoline alkaloid isolated from the traditional Chinese herb Evodiae fructus, exhibited potent inhibition of pancreatic ductal adenocarcinoma (PDAC) cell proliferation and tumor growth both in vitro and in vivo. METHODS The cytotoxic effect of DeHE on PDAC cells was assessed using CCK-8 and colony formation assays. The antitumor efficacy of DeHE were appraised in human PANC-1 xenograft mouse model. Sphere formation assay and flow cytometry were employed to quantify the tumor stemness. RNA-Seq analysis, drug affinity responsive target stability assay (DARTS), and RNA interference transfection were conducted to elucidate potential signaling pathways. Western blotting and immunohistochemistry were utilized to assess protein expression levels. RESULTS DeHE effectively inhibited PDAC cell proliferation and tumor growth in vitro and in vivo, and exhibited a better safety profile compared to the clinical drug gemcitabine (GEM). DeHE inhibited PCSCs, as evidenced by its suppression of self-renewal capabilities of PCSCs, reduced the proportion of ALDH+ cells and downregulated stemness-associated proteins (Nanog, Sox-2, and Oct-4) both in vitro and in vivo. Furthermore, there is potential involvement of DDIT3 and its downstream DDIT3/TRIB3/AKT/mTOR pathway in the suppression of stemness characteristics within DeHE-treated PDAC cells. Additionally, results from the DARTS assay indicated that DeHE interacts with DDIT3, safeguarding it against degradation mediated by pronase. Notably, the inhibitory capabilities of DeHE on PDAC cell proliferation and tumor stemness were partially restored by siDDIT3 or the AKT activator SC-79. CONCLUSION In summary, our study has identified DeHE, a novel antitumor natural product, as an activator of DDIT3 with the ability to suppress the AKT/mTOR pathway. This pathway is intricately linked to tumor cell proliferation and stemness characteristics in PDAC. These findings suggest that DeHE holds potential as a promising candidate for the development of innovative anticancer therapeutics.
Collapse
Affiliation(s)
- Su-Li Zhu
- Department of Biochemistry and Pharmacology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Mei-Ting Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, PR China
| | - Jia-Peng Lin
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Hai-Fu Huang
- Internal Medicine-Oncology, Shenzhen Hospital of Guangzhou University of Traditional Chinese Medicine, PR China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, PR China.
| | - Xing-Wang Zhou
- Department of Biochemistry and Pharmacology, Sun Yat-Sen University Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China.
| |
Collapse
|
6
|
Gazzaroli G, Angeli A, Giacomini A, Ronca R. Proteasome inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:775-796. [PMID: 37847492 DOI: 10.1080/13543776.2023.2272648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION The therapeutic targeting of the ubiquitin-proteasome pathway (UPP) through inhibitors of the 20S proteasome core proteolytic activities has revolutionized the treatment of hematological malignancies and is paving the way for its extension to solid tumors. AREAS COVERED This review covers the progress made in the field of proteasome inhibitors, ranging from the first-generation bortezomib to the latest second-generation inhibitors such as carfilzomib and ixazomib as well as the proteasome inhibitors in clinical phase such as oprozomib and marizomib. The development of selective and potent proteasome inhibitors with improved pharmacological properties is described from the synthesis to their basic biological, and clinical validation. EXPERT OPINION Proteasome inhibitors have transformed the treatment landscape for hematological malignancies and hold great promise for cancer therapy. Combination therapies targeting multiple pathways, the development of novel inhibitors or 'hybrid-inhibitors,' and the optimization of treatment protocols are key areas for future exploration. The extension of proteasome inhibitors for the treatment of solid tumors, and their ability to pass the blood-brain barrier open new possibilities for treating central nervous system cancers. However, managing adverse effects, particularly those affecting the central nervous system, remains a critical consideration and a strategic 'working on' aspect for the near future.
Collapse
Affiliation(s)
- Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Wilson N, Reese S, Ptak L, Aziz F, Parajuli S, Jucaud V, Denham S, Mishra A, Cascalho M, Platt JL, Hematti P, Djamali A. Ixazomib for Desensitization (IXADES) in Highly Sensitized Kidney Transplant Candidates: A Phase II Clinical Trial. KIDNEY360 2023; 4:e796-e808. [PMID: 36951387 PMCID: PMC10371382 DOI: 10.34067/kid.0000000000000113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/30/2023] [Indexed: 03/24/2023]
Abstract
KEY POINTS Ixazomib treatment resulted in decreases in B-cell subsets and bone marrow lymphocytes. Ixazomib treatment resulted in modest decreases in certain anti-HLA antibody specificities. Ixazomib treatment was tolerated, with modest adverse events. BACKGROUND Ixazomib is a second-generation oral proteasome inhibitor approved for treatment of refractory multiple myeloma. We conducted an open-label phase II trial, IXAzomib for DESensitization (IXADES), testing the safety of ixazomib treatment as an approach to decreasing the level and diversity of specificities of anti-HLA antibodies in subjects awaiting kidney transplantation. The trial (NCT03213158) enrolled highly sensitized kidney transplant candidates, defined as subjects with calculated panel reactive antibodies (cPRA) >80%, awaiting kidney transplantation >24 months. The subjects were treated with 12 monthly cycles of ixazomib 3 mg+dexamethasone 20 mg. Efficacy was defined as a decrease of cPRA >20% or kidney transplantation. The safety end point was tolerability. METHODS In ten enrolled subjects, no grade IV, five grade III, 11 grade II, and 43 grade I adverse events were noted. The adverse events included infection, transient paresthesia, nausea, vomiting, and diarrhea. The IXADES regimen was not associated with significant change in levels or diversity of anti-HLA antibodies (cPRA). RESULTS Although the IXADES regimen did not exhibit a clear impact on levels and diversity of anti-HLA antibodies in this small cohort, the prolonged half-life of IgG could necessitate a longer duration of treatment for accurate evaluation of efficacy. CONCLUSIONS In conclusion, treatment with ixazomib/dexamethasone engendered mild-to-moderate toxicity. The impact on anti-HLA was modest and paradoxical in the case of anti-HLA-DR. Clinical trials combining ixazomib with other immunosuppressive agents may be more effective in addressing antibody-mediated processes in kidney transplantation.
Collapse
Affiliation(s)
- Nancy Wilson
- Department of Pathology and Laboratory Medicine, AVRL, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Shannon Reese
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Lucy Ptak
- Department of Administration, Division of Clinical Trials, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Fahad Aziz
- Department of Medicine, Division of Nephrology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Sandesh Parajuli
- Department of Medicine, Division of Nephrology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | | | | | - Ameet Mishra
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Marilia Cascalho
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey L. Platt
- Department of Surgery and Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan
| | - Peiman Hematti
- Department of Medicine, Division of Hematology and Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Arjang Djamali
- Department of Medicine, Maine Medical Center, Portland, Maine
| |
Collapse
|
8
|
Cepero A, Luque C, Cabeza L, Perazzoli G, Quiñonero F, Mesas C, Melguizo C, Prados J. Antibody-Functionalized Nanoformulations for Targeted Therapy of Colorectal Cancer: A Systematic Review. Int J Nanomedicine 2022; 17:5065-5080. [PMID: 36345508 PMCID: PMC9635983 DOI: 10.2147/ijn.s368814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/21/2022] [Indexed: 11/06/2022] Open
Abstract
The failure of chemotherapeutic treatment in colorectal cancer (CRC), the second most mortal cancer worldwide, is associated with several drug limitations, such as non-selective distribution, short half-life, and development of multiple resistances. One of the most promising strategies in CRC therapy is the development of delivery systems based on nanomaterials that can transport antitumor agents to the tumor site more efficiently, increasing accumulation within the tumor and thus the antitumor effect. In addition to taking advantage of the increased permeability and retention effect (EPR) of solid tumors, these nanoformulations can be conjugated with monoclonal antibodies that recognize molecular markers that are specifically over-expressed on CRC cells. Active targeting of nanoformulations reduces the adverse effects associated with the cytotoxic activity of drugs in healthy tissues, which will be of interest for improving the quality of life of cancer patients in the future. This review focuses on in vitro and in vivo studies of drug delivery nanoformulations functionalized with monoclonal antibodies for targeted therapy of CRC.
Collapse
Affiliation(s)
- Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain
| | - Francisco Quiñonero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain,Correspondence: Consolación Melguizo, Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain, Tel +34-958-249833, Email
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada, 18100, Spain,Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18071, Spain,Biosanitary Institute of Granada (ibs.GRANADA), SAS-University of Granada, Granada, 18014, Spain
| |
Collapse
|
9
|
High-Throughput Screening of FDA-Approved Drug Library Reveals Ixazomib Is a Broad-Spectrum Antiviral Agent against Arboviruses. Viruses 2022; 14:v14071381. [PMID: 35891362 PMCID: PMC9322861 DOI: 10.3390/v14071381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
The emergence of significant arboviruses and their spillover transmission to humans represent a major threat to global public health. No approved drugs are available for the treatment of significant arboviruses in circulation today. The repurposing of clinically approved drugs is one of the most rapid and promising strategies in the identification of effective treatments for diseases caused by arboviruses. Here, we screened small-molecule compounds with anti-tick-borne encephalitis virus, West Nile virus, yellow fever virus and chikungunya virus activity from 2580 FDA-approved drugs. In total, 60 compounds showed antiviral efficacy against all four of the arboviruses in Huh7 cells. Among these compounds, ixazomib and ixazomib citrate (inhibitors of 20S proteasome β5) exerted antiviral effects at a low-micromolar concentration. The time-of-drug-addition assay suggested that ixazomib and ixazomib citrate disturbed multiple processes in viruses’ life cycles. Furthermore, ixazomib and ixazomib citrate potently inhibited chikungunya virus replication and relieved virus-induced footpad swelling in a mouse model. These results offer critical information which supports the role of ixazomib as a broad-spectrum agent against arboviruses.
Collapse
|
10
|
Eshraghi M, Ahmadi M, Afshar S, Lorzadeh S, Adlimoghaddam A, Rezvani Jalal N, West R, Dastghaib S, Igder S, Torshizi SRN, Mahmoodzadeh A, Mokarram P, Madrakian T, Albensi BC, Łos MJ, Ghavami S, Pecic S. Enhancing autophagy in Alzheimer's disease through drug repositioning. Pharmacol Ther 2022; 237:108171. [PMID: 35304223 DOI: 10.1016/j.pharmthera.2022.108171] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is one of the biggest human health threats due to increases in aging of the global population. Unfortunately, drugs for treating AD have been largely ineffective. Interestingly, downregulation of macroautophagy (autophagy) plays an essential role in AD pathogenesis. Therefore, targeting autophagy has drawn considerable attention as a therapeutic approach for the treatment of AD. However, developing new therapeutics is time-consuming and requires huge investments. One of the strategies currently under consideration for many diseases is "drug repositioning" or "drug repurposing". In this comprehensive review, we have provided an overview of the impact of autophagy on AD pathophysiology, reviewed the therapeutics that upregulate autophagy and are currently used in the treatment of other diseases, including cancers, and evaluated their repurposing as a possible treatment option for AD. In addition, we discussed the potential of applying nano-drug delivery to neurodegenerative diseases, such as AD, to overcome the challenge of crossing the blood brain barrier and specifically target molecules/pathways of interest with minimal side effects.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Mazaher Ahmadi
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Aida Adlimoghaddam
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada
| | | | - Ryan West
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz Iran
| | - Somayeh Igder
- Department of Clinical Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Benedict C Albensi
- St. Boniface Hospital Albrechtsen Research Centre, Division of Neurodegenerative Disorders, Winnipeg, MB R2H2A6, Canada; Nova Southeastern Univ. College of Pharmacy, Davie, FL, United States of America; University of Manitoba, College of Medicine, Winnipeg, MB R3E 0V9, Canada
| | - Marek J Łos
- Biotechnology Center, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University, Fullerton, United States of America.
| |
Collapse
|
11
|
Wang T, Zhang P, Chen L, Qi H, Chen H, Zhu Y, Zhang L, Zhong M, Shi X, Li Q. Ixazomib Induces Apoptosis and Suppresses Proliferation in Esophageal Squamous Cell Carcinoma through Activation of the c-Myc/NOXA Pathway. J Pharmacol Exp Ther 2022; 380:15-25. [PMID: 34740946 DOI: 10.1124/jpet.121.000837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the major subtypes of esophageal cancer. More than half of the patients with ESCC in the world are in China, and the 5-year survival rate is less than 10%. As a new oral proteasome inhibitor, ixazomib has shown strong therapeutic effect in many solid tumors. In this study, we aimed to investigate the effects of ixazomib on the proliferation inhibition and apoptosis of ESCC cells. We used four human ESCC cell lines, cell viability assay, cell cycle and apoptosis assay, reverse-transcription polymerase chain reaction (RT-PCR), Western blot, immunohistochemistry, and ESCC xenografts model to clarify the roles of the therapeutic effect and mechanism of ixazomib in ESCC. Ixazomib significantly inhibited the proliferation and induced apoptosis in ESCC cells. RT-PCR results showed that the expressions of endoplasmic reticulum stress-related gene phorbol-12-myristate-13-acetate-induced protein 1 (NOXA) and MYC proto-oncogene (c-Myc) significantly increase after treatment with ixazomib in ESCC cells. When we knocked down the NOXA and c-Myc by small interfering RNA, the therapeutic effect of ixazomib markedly decreased, which confirmed that c-Myc/NOXA pathway played a key role in the treatment of ESCC with ixazomib. In vivo, the xenograft ESCC model mice were given 10 mg/kg of ixazomib every other day for 30 days. The results showed that the tumor size in the treatment group was significantly smaller than the control group. These results suggested that ixazomib is known to suppress proliferation and induce apoptosis in ESCC cell lines, and this effect was likely mediated by increased activation of the c-Myc/NOXA signaling pathways. SIGNIFICANCE STATEMENT: Esophageal squamous cell carcinoma (ESCC) is the common worldwide malignant tumor, but conventional chemotherapeutics suffer from a number of limitations. In this study, the results suggested that ixazomib suppresses proliferation and induces apoptosis in ESCC cell lines. Therefore, ixazomib may be a potential new strategy for ESCC therapy.
Collapse
Affiliation(s)
- Tianxiao Wang
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Pengying Zhang
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Lu Chen
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Huijie Qi
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Haifei Chen
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Yongjun Zhu
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Liudi Zhang
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Mingkang Zhong
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaojin Shi
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| | - Qunyi Li
- Departments of Pharmacy (T.W., P.Z., L.C., H.Q., H.C., L.Z., M.Z., X.S., Q.L.) and Cardio-Thoracic Surgery (Y.Z.), Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chu X, Bu Y, Yang X. Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019. Front Oncol 2021; 11:785855. [PMID: 34976824 PMCID: PMC8718447 DOI: 10.3389/fonc.2021.785855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Chiral drugs usually contain chiral centers, which are present as single enantiomers or racemates. Compared with achiral drugs, they have significant advantages in safety and efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the solubility and pharmacokinetic characteristics but also has specific mechanistic characteristics on their targets. We noted that small molecules with unique chiral properties have emerged as novel components of antitumor drugs approved by the FDA in decade. Since approved, these drugs have been continuously explored for new indications, new mechanisms, and novel combinations. In this mini review, recent research progress of twenty-two FDA-approved chiral small molecular-targeted antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and advantages of their applications. We believe that these updated achievements may provide theoretical foundation and stimulate research interests for optimizing drug efficacy, expanding clinical application, overcoming drug resistance, and advancing safety in future clinical administrations of these chiral targeted drugs.
Collapse
Affiliation(s)
| | | | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
13
|
Tevyashova AN, Chudinov MV. Progress in the medicinal chemistry of organoboron compounds. RUSSIAN CHEMICAL REVIEWS 2021; 90:451-487. [DOI: 10.1070/rcr4977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The review aims to draw attention to the latest advances in the organoboron chemistry and therapeutic use of organoboron compounds. The synthetic strategies towards boron-containing compounds with proven in vitro and/or in vivo biological activities, including derivatives of boronic acids, benzoxaboroles, benzoxaborines and benzodiazaborines, are summarized. Approaches to the synthesis of hybrid structures containing an organoboron moiety as one of the pharmacophores are considered, and the effect of this modification on the pharmacological activity of the initial molecules is analyzed. On the basis of analysis of the published data, the most promising areas of research in the field of organoboron compounds are identified, including the latest methods of synthesis, modification and design of effective therapeutic agents.
The bibliography includes 246 references.
Collapse
|
14
|
Zhang J, Zhou Y, Li N, Liu W, Liang J, Sun Y, Zhang W, Fang R, Huang S, Sun Z, Wang Y, He Q. Curcumol Overcomes TRAIL Resistance of Non-Small Cell Lung Cancer by Targeting NRH:Quinone Oxidoreductase 2 (NQO2). ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002306. [PMID: 33240775 PMCID: PMC7675185 DOI: 10.1002/advs.202002306] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/01/2020] [Indexed: 05/09/2023]
Abstract
Resistance to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) of cancer cell remains a key obstacle for clinical cancer therapies. To overcome TRAIL resistance, this study identifies curcumol as a novel safe sensitizer from a food-source compound library, which exhibits synergistic lethal effects in combination with TRAIL on non-small cell lung cancer (NSCLC). SILAC-based cellular thermal shift profiling identifies NRH:quinone oxidoreductase 2 (NQO2) as the key target of curcumol. Mechanistically, curcumol directly targets NQO2 to cause reactive oxygen species (ROS) generation, which triggers endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP) death receptor (DR5) signaling, sensitizing NSCLC cell to TRAIL-induced apoptosis. Molecular docking analysis and surface plasmon resonance assay demonstrate that Phe178 in NQO2 is a critical site for curcumol binding. Mutation of Phe178 completely abolishes the function of NQO2 and augments the TRAIL sensitization. This study characterizes the functional role of NQO2 in TRAIL resistance and the sensitizing function of curcumol by directly targeting NQO2, highlighting the potential of using curcumol as an NQO2 inhibitor for clinical treatment of TRAIL-resistant cancers.
Collapse
Affiliation(s)
- Jing Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Ye Zhou
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Wan‐Ting Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Jun‐Ze Liang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yue Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Wei‐Xia Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Run‐Dong Fang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Sheng‐Ling Huang
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Zheng‐Hua Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringCollege of Life Science and TechnologyJinan UniversityGuangzhou510632China
- The First Affiliated HospitalJinan UniversityGuangzhou510632China
| |
Collapse
|
15
|
Liu C, Zhang A. ROS-mediated PERK-eIF2α-ATF4 pathway plays an important role in arsenite-induced L-02 cells apoptosis via regulating CHOP-DR5 signaling. ENVIRONMENTAL TOXICOLOGY 2020; 35:1100-1113. [PMID: 32506763 DOI: 10.1002/tox.22946] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chronic exposure to arsenic remains a worldwide environmental health issue, affecting hundreds of millions of people. Although, arsenic-induced oxidative stress and apoptosis have been determined, the underlying apoptosis mechanism has not been fully elucidated yet. Oxidative stress integrated-ER stress plays an important role in Life-and-Death decision of cells. The current study was to investigate whether NaAsO2 utilizes oxidative stress integrated-ER stress signaling to exert pro-apoptotic activity in L-02 cells. Results showed that death receptor 5 (DR5) was a mediator of NaAsO2 -induced apoptosis by enhancing construction of the death-inducing signaling complex (DISC). NaAsO2 -sensitized DR5 elevation required maintainable transcription and its transcription factor C/EBP homologous protein (CHOP). Further results showed that NaAsO2 increased expression in biomarker of endoplasmic reticulum (ER) stress and activated the protein kinase R-like ER kinase (PERK)-eukaryotic translation initiation 2α (eIF2α)-activating transcription factor 4 (ATF4) pathway. PERK inhibitor and ATF4 siRNA significantly attenuated NaAsO2 -induced CHOP and DR5 expressions. In addition, the antioxidant N-acetyl-l-cysteine (NAC) treatment led to amelioration of NaAsO2 -induced production of reactive oxygen species (ROS) and some ER stress- and apoptosis- related protein levels and cell viability. Taken together, the results indicate that ROS-mediated PERK-eIF2α-ATF4 pathway activated by NaAsO2 is the critical upstream event for subsequent apoptosis induction via regulating CHOP-DR5 signaling in L-02 cells when chronic exposure to arsenic, and support that antioxidants might be potential therapeutic agents for preventing or delaying the onset and progress of arsenic-induced hepatotoxicity.
Collapse
Affiliation(s)
- Chunyan Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, Guizhou Medical University, Guiyang, China
| |
Collapse
|
16
|
Li Z, Tang X, Zhu L, Qi X, Cao G, Lu G. Cytotoxic Screening and Transcriptomics Reveal Insights into the Molecular Mechanisms of Trihexyl Phosphate-Triggered Hepatotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11464-11475. [PMID: 32841022 DOI: 10.1021/acs.est.0c03824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mounting evidence shows that organophosphate flame retardants (OPFRs), especially aryl- and halogenated-OPFRs, exert various adverse health effects on living organisms. This study evaluated the hepatotoxic effect of trihexyl phosphate (THP) as a long-chain alkyl-OPFR on human hepatocyte cells (LO2) and mouse hepatocyte cells (AML12) by performing screening of cytotoxicity in vitro. In combination with transcriptomic analysis, toxicological mechanisms in vitro were further investigated. Results showed that THP triggered hepatotoxicity in vitro by altering four signaling pathways: endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and the glycolysis signaling pathway. Exposure of LO2 and AML12 liver cells to THP (25 μg/mL) significantly induced ER stress-mediated apoptosis and cell cycle arrest. Meanwhile, downregulation of glycolysis caused the blockage of energy metabolism. Furthermore, the high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) revealed that much of THP was absorbed into the cells and displayed stability in the two liver cell lines. In vivo assays using a mouse model demonstrated that exposure to THP at 400 mg/kg induced the ballooning degeneration of hepatocytes in liver tissue, whereas exposure to THP at 800 mg/kg caused acute liver injury with high alanine aminotransferase levels. This study provides novel insights into the impact of THP on hepatotoxicity in vitro and in vivo and uncovers the underlying toxicological mechanisms, which may serve as a guide for further ecological risk assessment and reasonable application of alkyl-OPFRs.
Collapse
Affiliation(s)
- Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Tang
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lingfei Zhu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaojie Qi
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
17
|
Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells. Arch Pharm Res 2019; 42:88-100. [DOI: 10.1007/s12272-018-01103-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
|