1
|
Ying C, Han C, Li Y, Zhang M, Xiao S, Zhao L, Zhang H, Yu Q, An J, Mao W, Cai Y. Plasma circulating cell-free DNA integrity and relative telomere length as diagnostic biomarkers for Parkinson's disease and multiple system atrophy: a cross-sectional study. Neural Regen Res 2025; 20:3553-3563. [PMID: 39665795 PMCID: PMC11974668 DOI: 10.4103/nrr.nrr-d-24-00599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202512000-00025/figure1/v/2025-01-31T122243Z/r/image-tiff In clinical specialties focusing on neurological disorders, there is a need for comprehensive and integrated non-invasive, sensitive, and specific testing methods. Both Parkinson's disease and multiple system atrophy are classified as α-synucleinopathies, characterized by abnormal accumulation of α-synuclein protein, which provides a shared pathological background for their comparative study. In addition, both Parkinson's disease and multiple system atrophy involve neuronal death, a process that may release circulating cell-free DNA (cfDNA) into the bloodstream, leading to specific alterations. This premise formed the basis for investigating cell-free DNA as a potential biomarker. Cell-free DNA has garnered attention for its potential pathological significance, yet its characteristics in the context of Parkinson's disease and multiple system atrophy are not fully understood. This study investigated the total concentration, nonapoptotic level, integrity, and cell-free DNA relative telomere length of cell-free DNA in the peripheral blood of 171 participants, comprising 76 normal controls, 62 patients with Parkinson's disease, and 33 patients with multiple system atrophy. In our cohort, 75.8% of patients with Parkinson's disease (stage 1-2 of Hoehn & Yahr) and 60.6% of patients with multiple system atrophy (disease duration less than 3 years) were in the early stages. The diagnostic potential of the cell-free DNA parameters was evaluated using receiver operating characteristic (ROC) analysis, and their association with disease prevalence was examined through logistic regression models, adjusting for confounders such as age, sex, body mass index, and education level. The results showed that cell-free DNA integrity was significantly elevated in both Parkinson's disease and multiple system atrophy patients compared with normal controls ( P < 0.001 for both groups), whereas cell-free DNA relative telomere length was markedly shorter ( P = 0.003 for Parkinson's disease and P = 0.010 for multiple system atrophy). Receiver operating characteristic analysis indicated that both cell-free DNA integrity and cell-free DNA relative telomere length possessed good diagnostic accuracy for differentiating Parkinson's disease and multiple system atrophy from normal controls. Specifically, higher cell-free DNA integrity was associated with increased risk of Parkinson's disease (odds ratio [OR]: 5.72; 95% confidence interval [CI]: 1.54-24.19) and multiple system atrophy (OR: 10.10; 95% CI: 1.55-122.98). Conversely, longer cell-free DNA relative telomere length was linked to reduced risk of Parkinson's disease (OR: 0.16; 95% CI: 0.04-0.54) and multiple system atrophy (OR: 0.10; 95% CI: 0.01-0.57). These findings suggest that cell-free DNA integrity and cell-free DNA relative telomere length may serve as promising biomarkers for the early diagnosis of Parkinson's disease and multiple system atrophy, potentially reflecting specific underlying pathophysiological processes of these neurodegenerative disorders.
Collapse
Affiliation(s)
- Chao Ying
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory of Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Mingkai Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuying Xiao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lifang Zhao
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hui Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qian Yu
- School of Health Professions, Stony Brook University, Stony Brook, NY, USA
| | - Jing An
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Mao
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanning Cai
- Department of Neurobiology, Xuanwu Hospital, Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of the Ministry of Education, Beijing Key Laboratory of Parkinson’s Disease, Parkinson’s Disease Center for Beijing Institute on Brain Disorders, Clinical and Research Center for Parkinson’s Disease, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Clinical Biobank and Central Laboratory, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Hamova I, Maco M, Tkachenko A, Kupcova K, Velasova A, Trneny M, Mocikova H, Havranek O. Circulating tumor DNA as a powerful tool in diagnostics and treatment outcome prediction - focus on large B-cell lymphomas and follicular lymphomas. Expert Rev Mol Diagn 2025. [PMID: 40326242 DOI: 10.1080/14737159.2025.2500659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION Pathogenesis of large B-cell lymphomas (LBCL) and follicular lymphomas (FL) is a multistep process associated with development of diverse DNA alterations and consequent deregulation of critical cellular processes. Detection of tumor-associated mutations within non-tumor compartments (mainly plasma) is the basis of the 'liquid biopsy' concept. Apart from tumor mutational profiling, quantitative analysis of circulating tumor DNA (ctDNA) allows longitudinal assessment of tumor burden. ctDNA-based technologies provide a new tool for tumor diagnostics and treatment personalization. AREAS COVERED Our review provides a comprehensive overview and summary of available ctDNA studies in LBCL and FL. The accuracy of ctDNA based detection of lymphoma associated DNA alterations is correlated to the known LBCL and FL molecular landscape. Additionally, we summarized available evidence that supports and justifies the clinical use of ctDNA for lymphoma risk stratification, treatment response evaluation, and treatment response-adapted therapy. Lastly, we discuss other clinically important ctDNA applications: monitoring of lymphoma clonal evolution within resistance and/or relapse development and utilization of ctDNA for diagnostics in non-blood fluids and compartments (e.g. cerebrospinal fluid in primary CNS lymphomas). EXPERT OPINION Despite certain challenges including methodological standardization, ctDNA holds promise to soon become an integral part of lymphoma diagnostics and treatment management.
Collapse
Affiliation(s)
- Iva Hamova
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Maria Maco
- Department of Haematology, Fakultni nemocnice Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anton Tkachenko
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristyna Kupcova
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Adriana Velasova
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marek Trneny
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Mocikova
- Department of Haematology, Fakultni nemocnice Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ondrej Havranek
- Biocev, First Faculty of Medicine, Charles University, Prague, Czech Republic
- First Department of Medicine - Hematology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
3
|
Hrušková H, Řemínek R, Minarik M, Chung DS, Foret F. 3D-printed device for time- and cost-efficient sample preparation and DNA fractionation. Talanta 2025; 286:127461. [PMID: 40022309 DOI: 10.1016/j.talanta.2024.127461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 03/03/2025]
Abstract
Direct detection of DNA in complex biological samples bears several challenges regarding the selectivity and sensitivity of analyses. Therefore, DNA pre-extraction from bio-fluids is an emerging tool in biologically related fields. Specifically, a newly developing family of liquid biopsy techniques using PCR detection of circulating tumor DNA from blood serum or blood plasma could be significantly improved by harnessing fast and high-throughput DNA sample preparation. To address these needs, a 3D-printed device and a method based on gel electrophoresis combined with electrodialysis for the time-, cost- and labor-efficient preparative separation of DNA fragments from blood was developed. The proposed system also successfully eliminated large DNA fragments from the samples. Recovery for short DNA fragments was reaching up to 80 %. The method was tested on human genomic DNA and blood and blood serum spiked with DNA standards, and it significantly alleviated the signal of matrix DNA.
Collapse
Affiliation(s)
- Helena Hrušková
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967/97, Brno, 602 00, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Roman Řemínek
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967/97, Brno, 602 00, Czech Republic.
| | - Marek Minarik
- Elphogene, s.r.o., Drnovska 1112/60, 161 00, Prague, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 00, Prague, Czech Republic
| | - Doo Soo Chung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 967/97, Brno, 602 00, Czech Republic
| |
Collapse
|
4
|
Swarup N, Leung HY, Choi I, Aziz MA, Cheng JC, Wong DTW. Cell-Free DNA: Features and Attributes Shaping the Next Frontier in Liquid Biopsy. Mol Diagn Ther 2025:10.1007/s40291-025-00773-x. [PMID: 40237938 DOI: 10.1007/s40291-025-00773-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2025] [Indexed: 04/18/2025]
Abstract
Cell-free DNA (cfDNA) is changing the face of liquid biopsy as a minimally invasive tool for disease detection and monitoring, with its main applications in oncology and prenatal testing, and rising roles in transplant patient monitoring. However, the processes of cfDNA biogenesis, fragmentation, and clearance are complex and require further investigation. Evidence suggests that cfDNA production relates to mechanisms of cell death and DNA repair, both of which further influence fragment size and its applicability as a biomarker. An emerging domain, cfDNA fragmentomics is being explored for advancing the field of diagnostics using non-mutational signatures such as fragment size ratios and methylation patterns. Thus, this review examines structural diversity in cfDNA with various fragment sizes. In examining these cfDNA subsets, we discuss their distinct biological origins and potential clinical utility. Development of sequencing methodologies has broadened the application of cfDNA in diagnosing cancers and organ-specific pathologies, as well as directing personalized therapies. This has been achieved by identifying and uncovering different subsets of cfDNA in biofluids using different methodologies and biofluids. Different cfDNA subsets provide important insights regarding genomic and epigenetic features, enhancing the understanding of gene regulation, tissue-specific functions, and disease progression. Advancement of these key areas further asserts increasing clinical relevance for the use of cfDNA as a biomarker. Continued exploration of cfDNA subsets is expected to drive further innovation in liquid biopsy and its integration into routine clinical practice.
Collapse
Affiliation(s)
- Neeti Swarup
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ho Yeung Leung
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Irene Choi
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mohammad Arshad Aziz
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jordan C Cheng
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Lindskrog SV, Strandgaard T, Nordentoft I, Galsky MD, Powles T, Agerbæk M, Jensen JB, Alix-Panabières C, Dyrskjøt L. Circulating tumour DNA and circulating tumour cells in bladder cancer - from discovery to clinical implementation. Nat Rev Urol 2025:10.1038/s41585-025-01023-9. [PMID: 40234713 DOI: 10.1038/s41585-025-01023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/17/2025]
Abstract
Liquid biopsies, indicating the sampling of body fluids rather than solid-tissue biopsies, have the potential to revolutionize cancer care through personalized, noninvasive disease detection and monitoring. Circulating tumour DNA (ctDNA) and circulating tumour cells (CTCs) are promising blood-based biomarkers in bladder cancer. Results from several studies have shown the clinical potential of ctDNA and CTCs in bladder cancer for prognostication, treatment-response monitoring, and early detection of minimal residual disease and disease recurrence. Following successful clinical trial evaluation, assessment of ctDNA and CTCs holds the potential to transform the therapeutic pathway for patients with bladder cancer - potentially in combination with the analysis of urinary tumour DNA - through tailored treatment guidance and optimized disease surveillance.
Collapse
Affiliation(s)
- Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Strandgaard
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Iver Nordentoft
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Matthew D Galsky
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Powles
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Mads Agerbæk
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Bjerggaard Jensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Catherine Alix-Panabières
- Laboratory of Rare Circulating Human Cells - Liquid Biopsy Laboratory, Site Unique de Biology, University Medical Center of Montpellier, Montpellier, France
- CREEC/CANECEV MIVEGEC (CREES), University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
6
|
Liu S, Wang L, Liu S, Zhao Y. Donor-derived cell-free dna as a diagnostic biomarker for acute rejection in heart transplantation: A systematic review and meta-analysis. Transplant Rev (Orlando) 2025; 39:100916. [PMID: 40132451 DOI: 10.1016/j.trre.2025.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/14/2025] [Accepted: 03/16/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Endomyocardial biopsy is widely acknowledged as the gold standard for detecting rejection following heart transplantation. However, the operation itself carries a risk of myocardial tissue damage and associated complications during and after surgery. Given the limitations of existing diagnostic approaches, non-invasive biomarkers are crucial. OBJECTIVE This study assessed the diagnostic utility of donor-derived cell-free DNA (dd-cfDNA) in detecting AR in heart transplant recipients. METHODS A systematic literature search was conducted across PubMed, Embase, Cochrane Library, and Web of Science from inception to August 1, 2024, to identify studies evaluating the diagnostic performance of dd-cfDNA for AR in heart transplant recipients. Retrieved studies were screened using EndNote X9. Meta-analysis was performed using Meta-Disc software version 1.4 and STATA/SE 14.0. RESULTS Ten studies were included in the meta-analysis. The pooled sensitivity, specificity, and area under the receiver operating characteristic curve with 95 % confidence intervals (CIs) were 65 % (95 % CI, 61-68 %), 79 % (95 % CI, 78-80 %), and 0.83, respectively. CONCLUSIONS This meta-analysis indicates that plasma dd-cfDNA may serve as a promising non-invasive biomarker for the diagnosis of acute rejection in heart transplant recipients. However, further research is warranted to investigate factors influencing diagnostic performance and optimize clinical utility.
Collapse
Affiliation(s)
- Shujun Liu
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lixing Wang
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shan Liu
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yinlong Zhao
- Department of Nuclear Medicine, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
7
|
Ramesh RPG, Yasmin H, Ponnachan P, Al-Ramadi B, Kishore U, Joseph AM. Phenotypic heterogeneity and tumor immune microenvironment directed therapeutic strategies in pancreatic ductal adenocarcinoma. Front Immunol 2025; 16:1573522. [PMID: 40230862 PMCID: PMC11994623 DOI: 10.3389/fimmu.2025.1573522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 04/16/2025] Open
Abstract
Pancreatic cancer is an aggressive tumor with high metastatic potential which leads to decreased survival rate and resistance to chemotherapy and immunotherapy. Nearly 90% of pancreatic cancer comprises pancreatic ductal adenocarcinoma (PDAC). About 80% of diagnoses takes place at the advanced metastatic stage when it is unresectable, which renders chemotherapy regimens ineffective. There is also a dearth of specific biomarkers for early-stage detection. Advances in next generation sequencing and single cell profiling have identified molecular alterations and signatures that play a role in PDAC progression and subtype plasticity. Most chemotherapy regimens have shown only modest survival benefits, and therefore, translational approaches for immunotherapies and combination therapies are urgently required. In this review, we have examined the immunosuppressive and dense stromal network of tumor immune microenvironment with various metabolic and transcriptional changes that underlie the pro-tumorigenic properties in PDAC in terms of phenotypic heterogeneity, plasticity and subtype co-existence. Moreover, the stromal heterogeneity as well as genetic and epigenetic changes that impact PDAC development is discussed. We also review the PDAC interaction with sequestered cellular and humoral components present in the tumor immune microenvironment that modify the outcome of chemotherapy and radiation therapy. Finally, we discuss different therapeutic interventions targeting the tumor immune microenvironment aimed at better prognosis and improved survival in PDAC.
Collapse
Affiliation(s)
- Remya P. G. Ramesh
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Pretty Ponnachan
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Uday Kishore
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ann Mary Joseph
- Department of Veterinary Medicine, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Papatheodoridi A, Lekakis V, Chatzigeorgiou A, Papatheodoridis G. The Current Role of Circulating Cell-Free DNA in the Management of Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:1042. [PMID: 40149374 PMCID: PMC11940583 DOI: 10.3390/cancers17061042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Circulating cell-free DNA (cfDNA) has emerged as a compelling candidate of liquid biopsy markers for the diagnosis and prognosis of several cancers. We systematically reviewed data on the role of cfDNA markers in the diagnosis, prognosis and treatment of hepatocellular carcinoma (HCC). Early studies suggested that levels of circulating cfDNA, mitochondrial DNA and cfDNA integrity are higher in patients with HCC than chronic liver diseases. In subsequent studies, methylation changes in circulating tumor DNA (ctDNA) as well as cfDNA fragmentation patterns and circulating nucleosomes were found to offer high sensitivity (>60%) and excellent specificity (>90%) for HCC diagnosis. The predictive role of cfDNA markers and ctDNA has been assessed in a few studies including untreated patients with HCC providing promising results for prediction of survival. However, port-hepatectomy detection of cfDNA/ctDNA markers or copy number variation indicators of cfDNA seem to reflect minimum residual disease and thus a high risk for HCC recurrence. The same markers can be useful for prediction after transarterial chemoembolization, radiofrequency ablation, radiotherapy and even systemic therapies. In conclusion, cfDNA markers can be useful in HCC surveillance, improving early diagnosis rates, as well as for monitoring treatment effectiveness and minimal residual disease post-treatment.
Collapse
Affiliation(s)
- Alkistis Papatheodoridi
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, “Alexandra” General Hospital of Athens, 11528 Athens, Greece;
| | - Vasileios Lekakis
- First Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, 11527 Athens, Greece;
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - George Papatheodoridis
- First Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, 11527 Athens, Greece;
| |
Collapse
|
9
|
Newell ME, Babbrah A, Aravindan A, Rathnam R, Halden RU. DNA Methylation in Urine and Feces Indicative of Eight Major Human Cancer Types Globally. Life (Basel) 2025; 15:482. [PMID: 40141826 PMCID: PMC11943902 DOI: 10.3390/life15030482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/05/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Toxic chemicals and epigenetic biomarkers associated with cancer have been used successfully in clinical diagnostic screening of feces and urine from individuals, but they have been underutilized in a global setting. We analyzed peer-reviewed literature to achieve the following: (i) compile epigenetic biomarkers of disease, (ii) explore whether research locations are geographically aligned with disease hotspots, and (iii) determine the potential for tracking disease-associated epigenetic biomarkers. Studies (n = 1145) of epigenetic biomarkers (n = 146) in urine and feces from individuals have established notable diagnostic potential for detecting and tracking primarily gastric and urinary cancers. Panels with the highest sensitivity and specificity reported more than once were SEPT9 (78% and 93%, respectively) and the binary biomarker combinations GDF15, TMEFF2, and VIM (93% and 95%), NDRG4 and BMP3 (98% and 90%), and TWIST1 and NID2 (76% and 79%). Screening for epigenetic biomarkers has focused on biospecimens from the U.S., Europe, and East Asia, whereas data are limited in regions with similar/higher disease incidence rates (i.e., data for New Zealand, Japan, and Australia for colorectal cancer). The epigenetic markers discussed here may aid in the future monitoring of multiple cancers from individual- to population-level scales by leveraging the emerging science of wastewater-based epidemiology (WBE).
Collapse
Affiliation(s)
- Melanie Engstrom Newell
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (M.E.N.)
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85281, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA
| | - Ayesha Babbrah
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (M.E.N.)
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85281, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85281, USA
| | - Anumitha Aravindan
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (M.E.N.)
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85281, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85281, USA
| | - Raj Rathnam
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (M.E.N.)
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85281, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85281, USA
| | - Rolf U. Halden
- Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (M.E.N.)
- Biodesign Center for Environmental Health Engineering, Tempe, AZ 85281, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85281, USA
- Barrett, The Honors College, Arizona State University, Tempe, AZ 85281, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
10
|
Sun HT. Helicobacter pylori-related serum indicators: Cutting-edge advances to enhance the efficacy of gastric cancer screening. World J Gastrointest Oncol 2025; 17:100739. [PMID: 40092953 PMCID: PMC11866254 DOI: 10.4251/wjgo.v17.i3.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/08/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025] Open
Abstract
Helicobacter pylori (H. pylori) infection induces pathological changes via chronic inflammation and virulence factors, thereby increasing the risk of gastric cancer development. Compared with invasive examination methods, H. pylori-related serum indicators are cost-effective and valuable for the early detection of gastric cancer (GC); however, large-scale clinical validation and sufficient understanding of the specific molecular mechanisms involved are lacking. Therefore, a comprehensive review and analysis of recent advances in this field is necessary. In this review, we systematically analyze the relationship between H. pylori and GC and discuss the application of new molecular biomarkers in GC screening. We also summarize the screening potential and application of anti-H. pylori immunoglobulin G and virulence factor-related serum antibodies for identifying GC risk. These indicators provide early warning of infection and enhance screening accuracy. Additionally, we discuss the potential combination of multiple screening indicators for the comprehensive analysis and development of emerging testing methods to improve the accuracy and efficiency of GC screening. Although this review may lack sufficient evidence due to limitations in existing studies, including small sample sizes, regional variations, and inconsistent testing methods, it contributes to advancing personalized precision medicine in high-risk populations and developing GC screening strategies.
Collapse
Affiliation(s)
- Hao-Tian Sun
- Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Cox M, Vitello D, Chawla A. Translating the multifaceted use of liquid biopsy to management of early disease in pancreatic adenocarcinoma. Front Oncol 2025; 15:1520717. [PMID: 40182037 PMCID: PMC11966063 DOI: 10.3389/fonc.2025.1520717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality, primarily due to late stage at diagnosis. This review examines the multifaceted applications of liquid biopsy and circulating tumor DNA (ctDNA) analysis in the diagnosis and management of PDAC. We review the current literature on the technological advancements in liquid biopsy analysis such as next generation sequencing (NGS) and digital droplet PCR (ddPCR) as well as multi-omics technologies, highlighting their potential for accurate molecular subtyping through ctDNA analysis. This review highlights the significant role of ctDNA in the assessment of tumor behavior, disease subtyping, prediction and monitoring of treatment response, and evaluation of minimal residual disease. We discuss the implications of integrating liquid biopsy techniques into clinical practice as well as its challenges and limitations. By drawing insights from recent studies, this review aims to provide a comprehensive overview of how liquid biopsy and ctDNA analysis can enhance early disease management strategies in PDAC. We underscore the need for additional prospective studies and clinical trials to validate its feasibility and accuracy in order to establish clinical utility, with the ultimate goal of routine incorporation into practice to improve patient outcomes and transform the treatment landscape for PDAC.
Collapse
Affiliation(s)
- Madison Cox
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
| | - Dominic Vitello
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Aydın Ş, Özdemir S, Adıgüzel A. The Potential of cfDNA as Biomarker: Opportunities and Challenges for Neurodegenerative Diseases. J Mol Neurosci 2025; 75:34. [PMID: 40080233 PMCID: PMC11906534 DOI: 10.1007/s12031-025-02317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive and gradual degeneration of neurons. The prevalence and rates of these disorders rise significantly with age. As life spans continue to increase in many countries, the number of cases is expected to grow in the foreseeable future. Early and precise diagnosis, along with appropriate surveillance, continues to pose a challenge. The high heterogeneity of neurodegenerative diseases calls for more accurate and definitive biomarkers to improve clinical therapy. Cell-free DNA (cfDNA), including fragmented DNA released into bodily fluids via apoptosis, necrosis, or active secretion, has emerged as a promising non-invasive diagnostic tool for various disorders including neurodegenerative diseases. cfDNA can serve as an indicator of ongoing cellular damage and mortality, including neuronal loss, and may provide valuable insights into disease processes, progression, and therapeutic responses. This review will first cover the key aspects of cfDNA and then examine recent advances in its potential use as a biomarker for neurodegenerative disorders.
Collapse
Affiliation(s)
- Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ahmet Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
13
|
Fu L, Zhou X, Zhang X, Li X, Zhang F, Gu H, Wang X. Circulating tumor DNA in lymphoma: technologies and applications. J Hematol Oncol 2025; 18:29. [PMID: 40069858 PMCID: PMC11900646 DOI: 10.1186/s13045-025-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Lymphoma, a malignant tumor derived from lymphocytes and lymphoid tissues, presents with complex and heterogeneous clinical manifestations, requiring accurate patient classification for appropriate treatment. While invasive pathological examination of lymph nodes or lymphoid tissue remains the gold standard for lymphoma diagnosis, its utility is limited in cases of deep-seated tumors such as intraperitoneal and central nervous system lymphomas. In addition, biopsy procedures carry an inherent risk of complications. Computed tomography (CT) and positron emission tomography/computed tomography (PET/CT) imaging are essential for treatment assessment and monitoring, but lack the ability to detect early clonal evolution and minimal residual disease (MRD). Liquid biopsy-based analysis of circulating tumor DNA (ctDNA) offers a non-invasive alternative that allows for repeated sampling and overcomes the limitations of spatial heterogeneity and invasive biopsies. ctDNA provides genetic and epigenetic insights into lymphoma and serves as a dynamic, quantifiable biomarker for diagnosis, risk stratification, and treatment response. This review comprehensively summarizes common genetic variations in lymphoma and systematically evaluates ctDNA detection technologies, including PCR-based assays and next-generation sequencing (NGS). Applications of ctDNA detection in noninvasive genotyping, risk stratification, therapeutic response monitoring, and MRD detection are discussed across various lymphoma subtypes, including diffuse large B-cell lymphoma, Hodgkin lymphoma, follicular lymphoma, and T-cell lymphoma. By integrating recent research findings, the review highlights the role of ctDNA profiling in advancing precision medicine, enabling personalized therapeutic strategies, and improving clinical outcomes in lymphoma.
Collapse
Affiliation(s)
- Lina Fu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Xuerong Zhou
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China
| | - Xiaoyu Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong Province, 250012, Jinan, China
| | - Xuhua Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Fan Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, Anhui Province, China.
| | - Xiaoxue Wang
- Department of Hematology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning Province, China.
| |
Collapse
|
14
|
Ghanam J, Lichá K, Chetty VK, Pour OA, Reinhardt D, Tamášová B, Hoyer P, Lötvall J, Thakur BK. Unravelling the Significance of Extracellular Vesicle-Associated DNA in Cancer Biology and Its Potential Clinical Applications. J Extracell Vesicles 2025; 14:e70047. [PMID: 40091452 PMCID: PMC11911540 DOI: 10.1002/jev2.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) play a key role in cell-to-cell communication and have drawn significant attention due to their potential clinical applications. However, much remains to be understood about the biology of EV-associated DNA (EV-DNA). EV-DNA is actively released by both normal and malignant cells and consists of diverse fragments with varying structures. Because EV-DNA spans the entire genome of cells from which it originates, it continues to be attractive as a biomarker for cancer diagnosis and monitoring. Further, EV-DNA delivery can alter the function of recipient cells by interfering with cytoplasmic DNA sensor pathways. This review explores the biology and significance of EV-DNA, including its topology and fragmentomics features, modality of association with EVs, packaging mechanisms, and potential functions. It also emphasizes the specificity of vesicular DNA in identifying genetic and epigenetic changes in cancer. Additionally, it delves into the impact of EV-DNA on cellular behaviour and its potential use as a therapeutic target in cancer. The review discusses new insights into EV-DNA biology and provides perspectives and alternatives to address the challenges and concerns for future EV-DNA studies.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Kristína Lichá
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | | | | | | | - Barbora Tamášová
- Institute of Molecular Biomedicine, Faculty of MedicineComenius UniversityBratislavaSlovakia
| | - Peter Hoyer
- Department of Pediatrics IIUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | |
Collapse
|
15
|
Perdikakis M, Papadimitrakis D, Floros N, Tzavellas E, Piperi C, Gargalionis AN, Papavassiliou AG. Diagnostic role of circulating cell-free DNA in schizophrenia and neuro-degenerative disorders. Biomark Med 2025; 19:165-176. [PMID: 39995102 PMCID: PMC11916377 DOI: 10.1080/17520363.2025.2468151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/13/2025] [Indexed: 02/26/2025] Open
Abstract
Over the past few years, circulating cell-free DNA (cfDNA) research has grown exponentially. Several studies have associated the release of cfDNA in the bloodstream, cerebrospinal fluid, and other body fluids with increased apoptosis and cell death. Therefore, their possible use as biomarkers for cancer and other diseases has emerged. The diagnosis of pathological entities such as schizophrenia and neurodegenerative diseases involves many challenges and requires ruling out conditions with similar symptoms. In this context, cfDNA could serve as a valuable diagnostic biomarker. This study encompasses the recent bibliography and research regarding the utilization of circulating cfDNA for diagnostic purposes in schizophrenia, Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. This minimally invasive method has provided important evidence regarding the diagnosis of the aforementioned diseases although further research is necessary.
Collapse
Affiliation(s)
- Miltiadis Perdikakis
- Laboratory of Clinical Biochemistry, Medical School, 'Attikon' University General Hospital, Athens, Greece
| | - Dimosthenis Papadimitrakis
- Laboratory of Clinical Biochemistry, Medical School, 'Attikon' University General Hospital, Athens, Greece
| | - Nikitas Floros
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elias Tzavellas
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Laboratory of Clinical Biochemistry, Medical School, 'Attikon' University General Hospital, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
16
|
El-Ahmad P, Mendes-Silva AP, Diniz BS. Liquid Biopsy in Neuropsychiatric Disorders: A Step Closer to Precision Medicine. Mol Neurobiol 2025; 62:3462-3479. [PMID: 39298102 DOI: 10.1007/s12035-024-04492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Psychiatric disorders are among the leading causes of disease burden worldwide. Despite their significant impact, their diagnosis remains challenging due to symptom heterogeneity, psychiatric comorbidity, and the lack of objective diagnostic tests and well-defined biomarkers. Leveraging genomic, epigenomic, and fragmentomic technologies, circulating cell-free DNA (ccfDNA)-based liquid biopsies have emerged as a potential non-invasive diagnosis and disease-monitoring tool. ccfDNA is a DNA species released into circulation from all types of cells through passive and active mechanisms and can serve as a biomarker for various diseases, namely, cancer. Despite their potential, the application of ccfDNA in neuropsychiatry remains underdeveloped. In this review, we provide an overview of liquid biopsies and their components, with a particular focus on ccfDNA. With a summary of pre-analytical practices and current ccfDNA technologies, we highlight the current state of research regarding the use of ccfDNA as a biomarker for neuropsychiatric disorders. Finally, we discuss future steps to unlock ccfDNA's potential in clinical practice.
Collapse
Affiliation(s)
- Perla El-Ahmad
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada
- Department of Psychiatry, University of Saskatchewan, Saskatoon, Canada
| | - Breno S Diniz
- UConn Center on Aging, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
17
|
Somekawa K, Kobayashi N, Nagaoka S, Seki K, Kajita Y, Muraoka S, Izawa A, Kaneko A, Otsu Y, Hirata M, Kubo S, Nagasawa R, Murohashi K, Fuji H, Teranishi S, Tashiro K, Watanabe K, Horita N, Hara Y, Kudo M, Kaneko T. Rapid detection of non-small cell lung cancer driver mutations using droplet digital polymerase chain reaction analysis of bronchial washings: a prospective multicenter study. Transl Lung Cancer Res 2025; 14:353-362. [PMID: 40114932 PMCID: PMC11921443 DOI: 10.21037/tlcr-24-772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/24/2024] [Indexed: 03/22/2025]
Abstract
Background Molecular profiling of non-small cell lung cancer (NSCLC) is crucial for personalized treatment, but obtaining adequate tumor tissue can be challenging. This study evaluated the utility of droplet digital polymerase chain reaction (ddPCR) analysis of bronchial washings (BWs) and serum for detecting driver oncogene mutations in NSCLC patients, comparing its performance to standard tissue genotyping methods. Methods In this prospective, multicenter study conducted at two university hospitals in Yokohama, Japan, 73 treatment-naïve NSCLC patients underwent bronchoscopy with BW collection and blood sampling between October 2022 and April 2024. ddPCR was performed on BW and serum samples to detect epidermal growth factor receptor (EGFR; L858R, exon 19 deletions, G719X), KRAS (G12/13), and BRAF (V600E) mutations. Results were compared with standard tissue genotyping methods, including AmoyDx and Oncomine Dx Target Test (DxTT) assays. Turnaround time (TAT) for results was also assessed. The study protocol was approved by the institutional review boards, and all participants provided informed consent. Results ddPCR analysis of BW samples showed high concordance with tissue genotyping, detecting EGFR mutations in 31.5% of cases (identical to tissue). For common EGFR mutations (L858R and exon 19 deletions), BW genotyping demonstrated 100% sensitivity and 98.0% specificity compared to tissue. TAT was significantly shorter for BW ddPCR compared to tissue genotyping (4.4±1.8 vs. 20.4±7.7 days, P<0.001). Serum ddPCR showed lower sensitivity (7.8% vs. 33.3% for EGFR mutations) compared to tissue genotyping, with detection associated with the presence of bone metastases. KRAS and BRAF mutations were detected at similar rates in BW and tissue samples, but at lower rates in serum. Conclusions ddPCR analysis of BWs demonstrates high accuracy and rapid TAT for detecting common driver mutations in NSCLC. This approach represents a promising alternative to tissue biopsy for molecular profiling, potentially expediting treatment decisions. While serum ddPCR showed limited utility, it may complement tissue genotyping in specific clinical scenarios.
Collapse
Affiliation(s)
- Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Satoshi Nagaoka
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Kenichi Seki
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Yukihito Kajita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yukiko Otsu
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Momo Hirata
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sousuke Kubo
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroaki Fuji
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shuhei Teranishi
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Ken Tashiro
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
18
|
Wotman MT, Xiao W, Du RR, Jiang B, Akagi K, Liu S, Gillison ML. Development and Validation of an Assay to Quantify Plasma Circulating Tumor Human Papillomavirus DNA for 13 High-Risk Types that Cause 98% of HPV-Positive Cancers. Head Neck Pathol 2025; 19:25. [PMID: 39998590 PMCID: PMC11861489 DOI: 10.1007/s12105-025-01752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE Plasma circulating tumor HPV DNA (ctHPVDNA) persistence after curative-intent treatment may identify patients with HPV-positive cancers at risk for recurrence. Technical validation is required for use as an integral biomarker in a prospective clinical trial. METHODS Development and analytical validation of a digital droplet PCR assay for detection and quantification of 13 high-risk HPV types (i.e., Cell-Free 13) was performed with oligonucleotides/plasmids encoding type-specific E6/E7 coding regions. Clinical performance, determinants of detection/quantification, and associations of pre-treatment ctHPVDNA with progression-free survival (PFS) were also evaluated in a prospective cohort of 272 head and neck cancer patients. RESULTS Limit of detection, limit of quantification, and linear range of quantification were 5, 16 and 16-200,000 virus copies for all 13 high-risk HPV types. No cross-reactivity was detected across all 13 HPV types. At 10,000 copies, inter-assay coefficients of variation ranged from 0.3 to 4.6%. Multiplexing, DNA purification method, input plasma volume, total input cell-free (< 1800 ng) or genomic (< 700 ng) DNA did not affect HPV detection or quantification. The assay had a sensitivity of 91.7% (95%CI 87.3-94.9%) and specificity of 97.7% (95%CI 87.7-99.9%) for ctHPVDNA detection in the setting of newly diagnosed HPV-positive oropharyngeal cancer. Tumor and nodal stage categories, tumor viral load (ρ = 0.41, p < 0.05), and HPV integration status were associated with ctHPVDNA quantitative level. Pre-treatment ctHPVDNA greater than the median (231 copies/ml) was associated with worse PFS (HR = 2.14, 95%CI 1.16-3.97, p = 0.0156) in univariate analysis. However, this was no longer significant after adjustment for clinical covariates (HRadj = 1.81, 95%CI 0.97-3.37, p = 0.0635). CONCLUSION Cell-Free 13 demonstrated excellent analytical performance and clinical sensitivity/specificity in HPV-positive oropharyngeal cancer. Pre-treatment ctHPVDNA may be associated with oncologic outcomes.
Collapse
Affiliation(s)
- Michael T Wotman
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Weihong Xiao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Robyn R Du
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Bo Jiang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Keiko Akagi
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maura L Gillison
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Boulevard, Unit 432, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Liu F, Su Y, Liu X, Zhao L, Wu Z, Liu Y, Zhang L. Cell-free DNA: a metabolic byproduct with diagnostic and prognostic potential in rheumatic disorders. Front Pharmacol 2025; 16:1537934. [PMID: 40008123 PMCID: PMC11850341 DOI: 10.3389/fphar.2025.1537934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
The release of intracellular DNA into the extracellular area occurs via two pathways: cell death and active secretion by cells. The DNA, which is free in the extracellular space, is commonly known as Cell-Free DNA (cfDNA). In healthy people, the levels of cfDNA in the circulation are notably minimal. Within a healthy organism, cfDNA undergoes swift elimination and filtration upon release, ensuring a persistently low concentration in the bloodstream. Conversely, individuals suffering from diverse illnesses like stroke, trauma, myocardial infarction, and various cancers show markedly higher levels of cfDNA in their blood plasma or serum. Further research has shown that cfDNA is associated with a wide range of human diseases and may have a feedback relationship with inflammation, potentially serving as a non-invasive, accurate, sensitive, and rapid biomarker for clinical applications in disease differential diagnosis, activity monitoring, and prognosis assessment. Studies dating back to the 1970s have indicated elevated cfDNA concentrations in SLE. Currently, increased levels of cfDNA are noted in a range of rheumatic disorders. Inflammatory damage in patients with rheumatic diseases promotes the release of cfDNA, while potential abnormalities in cfDNA metabolism further increase its levels. Elevated concentrations of cfDNA are recognized by DNA receptors, initiating immune-inflammatory reactions which subsequently accelerate the progression of disease. Reducing excess cfDNA may help improve inflammation. Additionally, several trials have demonstrated a correlation between cfDNA concentrations and the activity of rheumatic diseases, indicating the potential of cfDNA, a novel marker for inflammation, in conjunction with C-creative protein (CRP), Erythrocyte Sedimentation Rate (ESR) to monitor disease activity in rheumatic conditions. This paper provides an overview of cfDNA and summarizes current research advancements in cfDNA in rheumatic diseases, aiming to offer new perspectives for researchers.
Collapse
Affiliation(s)
- Fancheng Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Yazhen Su
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Xinling Liu
- Third Clinical College, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Li Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Yang Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic Diseases), Shanxi Bethune Hospital, Taiyuan, China
| |
Collapse
|
20
|
Bisig B, Lefort K, Carras S, de Leval L. Clinical use of circulating tumor DNA analysis in patients with lymphoma. Hum Pathol 2025; 156:105679. [PMID: 39491629 DOI: 10.1016/j.humpath.2024.105679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The analysis of circulating tumor DNA (ctDNA) in liquid biopsy specimens has an established role for the detection of predictive molecular alterations and acquired resistance mutations in several tumors. The low-invasiveness of this approach allows for repeated sampling and dynamic monitoring of disease evolution. Originating from the entire body tumor bulk, plasma-derived ctDNA reflects intra- and interlesional genetic heterogeneity. In the management of lymphoma patients, ctDNA quantification at various timepoints of the patient's clinical history is emerging as a complementary tool that may improve risk stratification, assessment of treatment response and early relapse detection during follow-up, most prominently in patients with diffuse large B-cell lymphoma or classic Hodgkin lymphoma. While liquid biopsies have not yet entered standard-of-care treatment protocols in these settings, several trials have provided evidence that at least a subset of lymphoma patients may benefit from the introduction of liquid biopsies into daily clinical care. In parallel, continuous technological developments have enabled highly sensitive ctDNA assessment methods, which span from locus-specific techniques identifying single hotspot mutations, to sequencing panels and genome-wide approaches that explore broader genetic and epigenetic alterations. Here, we provide an overview of current methods and ongoing technical developments for ctDNA evaluation. We also summarize the most important data from a selection of clinical studies that have explored the clinical use of ctDNA in several lymphoma entities.
Collapse
Affiliation(s)
- Bettina Bisig
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Karine Lefort
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Sylvain Carras
- Institute for Advanced Biosciences (INSERM U1209, CNRS UMR 5309, UGA), Department of Molecular Biology and Department of Oncohematology, University Hospital Grenoble and University Grenoble Alpes, Grenoble, France
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
21
|
Park J, Lee YT, Agopian VG, Liu JS, Koltsova EK, You S, Zhu Y, Tseng HR, Yang JD. Liquid biopsy in hepatocellular carcinoma: Challenges, advances, and clinical implications. Clin Mol Hepatol 2025; 31:S255-S284. [PMID: 39604328 PMCID: PMC11925447 DOI: 10.3350/cmh.2024.0541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive primary liver malignancy often diagnosed at an advanced stage, resulting in a poor prognosis. Accurate risk stratification and early detection of HCC are critical unmet needs for improving outcomes. Several blood-based biomarkers and imaging tests are available for early detection, prediction, and monitoring of HCC. However, serum protein biomarkers such as alpha-fetoprotein have shown relatively low sensitivity, leading to inaccurate performance. Imaging studies also face limitations related to suboptimal accuracy, high cost, and limited implementation. Recently, liquid biopsy techniques have gained attention for addressing these unmet needs. Liquid biopsy is non-invasive and provides more objective readouts, requiring less reliance on healthcare professional's skills compared to imaging. Circulating tumor cells, cell-free DNA, and extracellular vesicles are targeted in liquid biopsies as novel biomarkers for HCC. Despite their potential, there are debates regarding the role of these novel biomarkers in the HCC care continuum. This review article aims to discuss the technical challenges, recent technical advancements, advantages and disadvantages of these liquid biopsies, as well as their current clinical application and future directions of liquid biopsy in HCC.
Collapse
Affiliation(s)
- Jaeho Park
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yi-Te Lee
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Vatche G. Agopian
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Jessica S Liu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Ekaterina K. Koltsova
- Smidt Heart Institute, Department of Medicine, Department of Biomedical Sciences, 8700 Beverly Blvd, Los Angeles, CA, USA
| | - Sungyong You
- Department of Urology and Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yazhen Zhu
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, USA
| | - Ju Dong Yang
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
22
|
Faulkner LG, Howells L, Lehman S, Cowley C, Sidat Z, Shaw J, Thomas AL. Clinical Validation of Local Versus Commercial Genomic Testing in Cancer: A Comparison of Tissue and Plasma Concordance. Cancer Invest 2025; 43:119-140. [PMID: 39989311 DOI: 10.1080/07357907.2025.2464684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
Genomic sequencing of tumours improves patient outcomes through implementation of precision oncology. At present, genomic testing is mainly confined to research settings, with samples sent to biopharmaceutical companies for analysis. The ever-expanding catalogue approved of targeted therapies has created an urgent unmet need for local genomic testing facilities, to enable upscaling of testing. Here, we compare the outcomes of local (IonTorrent™) and commercial (Foundation Medicine) genomic testing collected from 30 cancer patients in from plasma and tissue samples. Overall concordance was high in both tissue (98%) and plasma (94.2%). Variants identified by both platforms had a strong correlation in variant allele frequencies (VAF%): plasma: r = 0.99 p < 0.0001, tissue: r = 0.91 p < 0.0001. However, numerous low VAF% variants resulted in low positive percentage agreement (tissue 78.8% plasma 16.1%) and positive predictive values (tissue 56.3% plasma 71.4%). Local sequencing demonstrated higher fidelity in detecting fusions but low fidelity in detecting indels. Overall, this study supports the use of local genomic testing for routine molecular diagnostics but highlights outstanding issues before widespread implementation. Processing of variants detected at low VAF% and the limit of detection of assays needs to be addressed. Construction of gene panels requires careful consideration, including incorporation of markers of genomic instability.
Collapse
Affiliation(s)
- Lucy G Faulkner
- Department of Oncology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester, UK
| | - Lynne Howells
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester, UK
| | - Susann Lehman
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester, UK
| | - Caroline Cowley
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester, UK
| | - Zahirah Sidat
- Hope Clinical Trials Facility, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Jacqui Shaw
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester, UK
| | - Anne L Thomas
- Department of Oncology, Leicester Royal Infirmary, University Hospitals of Leicester NHS Trust, Leicester, UK
- Leicester Cancer Research Centre, Robert Kilpatrick Clinical Sciences Building, University of Leicester, Leicester, UK
| |
Collapse
|
23
|
Sim ES, Rhoades J, Xiong K, Walsh L, Crnjac A, Blewett T, Al-Inaya Y, Mendel J, Ruiz-Torres DA, Efthymiou V, Lumaj G, Benjamin WJ, Makrigiorgos GM, Tabrizi S, Adalsteinsson VA, Faden DL. Immediate postoperative minimal residual disease detection with MAESTRO predicts recurrence and survival in head and neck cancer patients treated with surgery. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.27.25321202. [PMID: 39974077 PMCID: PMC11838961 DOI: 10.1101/2025.01.27.25321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose While circulating tumor DNA (ctDNA) is a promising biomarker for minimal residual disease (MRD) detection in head and neck squamous cell carcinoma (HNSCC), more sensitive assays are needed for accurate MRD detection at clinically-relevant timepoints. Ultrasensitive MRD detection immediately after surgery could guide adjuvant therapy decisions, but early ctDNA dynamics are poorly understood. Experimental Design We applied MAESTRO, a whole-genome, tumor-informed, mutation-enrichment sequencing assay, in a pooled testing format called MAESTRO-Pool, to plasma samples from HNSCC patients collected immediately after surgery and during surveillance. We evaluated whether early MRD detection could predict outcomes. Results Among 24 predominantly HPV-independent (95.8%) HNSCC patients, rapid ctDNA clearance occurred by the first postoperative sample (1-3 days postoperatively) in 9 patients without an event (recurrence or death). 13/15 patients with an event were MRD+ (PPV = 92.9%; NPV = 80%) with a median tumor fraction (TFx) of 54 ppm (range 6-1,177 ppm). In the first and last sample of the immediate postoperative window, 8/13 and 10/13 patients had TFx below 100 ppm, respectively, the detection limit of leading commercial assays. Early MRD detection correlated with worse overall survival (HR = 8.3; 95% CI: 1.1-66.1; P = 0.02) and event-free survival (HR = 27.4; 95% CI: 3.5-214.5; P < 0.0001) independent of high-risk pathology. Conclusions Immediate postoperative MRD detection by MAESTRO was predictive of recurrence and death. Given the ultralow TFxs observed, ultrasensitive assays will be essential for reliable MRD detection during early postoperative timepoints to enable personalized adjuvant therapy decision-making in HNSCC.
Collapse
|
24
|
Halloran PF, Madill-Thomsen KS. Donor-derived Cell-free DNA: A Step Forward in the Quest for Transplant Truth. Transplantation 2025:00007890-990000000-00999. [PMID: 39883025 DOI: 10.1097/tp.0000000000005332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Affiliation(s)
- Philip F Halloran
- Alberta Transplant Applied Genomics Centre, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
25
|
Jacobsen CM, Matos do Canto L, Kahns S, Hansen TF, Andersen RF. What the Clinician Needs to Know About Laboratory Analyses of Circulating Tumor DNA. Clin Colorectal Cancer 2025:S1533-0028(25)00003-9. [PMID: 39956753 DOI: 10.1016/j.clcc.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/02/2024] [Accepted: 01/20/2025] [Indexed: 02/18/2025]
Abstract
Liquid biopsies offer the possibility to evaluate cancer patients using noninvasive approaches. Circulating cell-free DNA (ccfDNA) is 1 of the most used and promising sources. Detecting tumor DNA among ccfDNA (ctDNA) can be used for early cancer detection, treatment response assessment, prognosis, and predictive evaluations. Providing analyses that can increase the quality of patient treatment is very much a joint effort between laboratory scientists and clinicians. With its use approaching clinical practice, it is important for clinicians to be familiar with the basic concepts and analyses behind ctDNA results in a similar way as laboratory scientists should have knowledge of the clinical needs to provide relevant analyses. In this Perspective, we describe the whole process of ctDNA analyses, from the preanalytical standards to reporting/analyzing results, and highlight some important factors that need to be addressed in the process of implementing them to clinical practice.
Collapse
Affiliation(s)
- Cecilie Mondrup Jacobsen
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Luisa Matos do Canto
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Søren Kahns
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Torben Frøstrup Hansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Regional Health Research, University of Southern Denmark, Odense C, Denmark
| | - Rikke Fredslund Andersen
- Department of Biochemistry and Immunology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark; Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
| |
Collapse
|
26
|
Gaitsch H, Assinck P, Dimas P, Zhao C, Morcom L, Rowitch DH, Reich DS, Franklin RJM. Significant oligodendrocyte progenitor and microglial cell death is a feature of remyelination following toxin-induced experimental demyelination. Brain Commun 2025; 7:fcae386. [PMID: 39830424 PMCID: PMC11739797 DOI: 10.1093/braincomms/fcae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
The extent to which glial cell turnover features in successful remyelination is unclear. In this study, the rat caudal cerebellar peduncle-ethidium bromide lesion model was used to profile oligodendroglial and microglial/macrophage cell death and proliferation dynamics over the course of repair. Lesioned and control tissue was co-labelled with antibody markers for cell identity, proliferation, and apoptosis (TUNEL assay), then imaged at full thickness using confocal microscopy and quantified using custom CellProfiler pipelines. Early remyelination time points were marked by an increased density of total proliferating cells, including oligodendrocyte progenitor cells. Late remyelination time points featured increased TUNEL+ oligodendrocyte progenitor cells: however, most TUNEL+ cells within remyelinating lesions were Iba1+ microglia/macrophages. These results indicate that repairing lesions are characterized by a high degree of glial cell death and suggest that monitoring cell death-related by-products might have clinical value in the setting of remyelination.
Collapse
Affiliation(s)
- Hallie Gaitsch
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peggy Assinck
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| | - Penelope Dimas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| | - Chao Zhao
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| | - Laura Morcom
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - David H Rowitch
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Paediatrics, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robin J M Franklin
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK
- Altos Labs, Cambridge Institute of Science, Cambridge CB21 6GQ, UK
| |
Collapse
|
27
|
Harvey C, Nowak A, Zhang S, Moll T, Weimer AK, Barcons AM, Souza CDS, Ferraiuolo L, Kenna K, Zaitlen N, Caggiano C, Shaw PJ, Snyder MP, Mill J, Hannon E, Cooper-Knock J. Evaluation of a biomarker for amyotrophic lateral sclerosis derived from a hypomethylated DNA signature of human motor neurons. BMC Med Genomics 2025; 18:10. [PMID: 39810183 PMCID: PMC11734586 DOI: 10.1186/s12920-025-02084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals. By comparing MN methylation with an atlas of tissue methylation we have derived a MN-specific signature of hypomethylated genomic regions, which accords with genes important for MN function. Through simulation we have optimised the selection of regions for biomarker detection in plasma and CSF cell-free DNA (cfDNA). However, we show that MN-derived DNA is not detectable via WGBS in plasma cfDNA. In support of our experimental finding, we show theoretically that the relative sparsity of lower MN sets a limit on the proportion of plasma cfDNA derived from MN which is below the threshold for detection via WGBS. Our findings are important for the ongoing development of ALS biomarkers. The MN-specific hypomethylated genomic regions we have derived could be usefully combined with more sensitive detection methods and perhaps with study of CSF instead of plasma. Indeed we demonstrate that neuronal-derived DNA is detectable in CSF. Our work is relevant for all diseases featuring death of rare cell-types.
Collapse
Affiliation(s)
- Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alicja Nowak
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Annika K Weimer
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aina Mogas Barcons
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Kevin Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Noah Zaitlen
- Departments of Computational Medicine and Neurology, UCLA, Los Angeles, CA, USA
| | - Christa Caggiano
- Departments of Computational Medicine and Neurology, UCLA, Los Angeles, CA, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
28
|
de la Iglesia-San Sebastián I, López-Esteban M, Bastos-Oreiro M, Fernández de Córdoba-Oñate S, Gutierrez M, Carbonell D, Bailén R, Gómez-Centurión I, Fernández-Caldas P, Castilla L, Anguita J, Kwon M, García-Sanz R, Buño I, Martínez-Laperche C. Chimeric antigen receptor copies in cell-free DNA predict relapse in aggressive B-cell lymphoma patients treated with CAR T-cell therapy. Br J Haematol 2025; 206:195-203. [PMID: 39668521 DOI: 10.1111/bjh.19916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a transformative treatment for aggressive B-cell lymphomas (ABCL), However, about half of patients relapse, most of them early. This study investigates the detection of CAR copies in circulating cell-free DNA (cfDNA) as a potential predictive biomarker of early relapse (<6 months) to improve patient management. In this research, we have consecutively selected 73 ABCL patients treated with anti-CD19 CAR T-cells, analysing CAR levels in peripheral blood and other clinical variables. Our results indicate that no correlation is present between genomic DNA and cfDNA; moreover, higher levels of CAR-cfDNA on day +14 after infusion (0.44 vs. 0.07; p = 0.019) are associated with improved 6-month progression-free survival rates (74.2% vs. 26%. p < 0.01), suggesting that CAR-cfDNA could be a strong predictor of CAR T-cell therapy short-term outcomes. These findings underscore the potential of integrating CAR-cfDNA analysis into routine clinical practice to enhance the prognostic accuracy and therapeutic strategies for ABCL patients undergoing CAR T-cell therapy.
Collapse
Affiliation(s)
- Ismael de la Iglesia-San Sebastián
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
- Doctorate School, Autonomous University of Madrid, Madrid, Spain
| | - Miguel López-Esteban
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Mariana Bastos-Oreiro
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Sara Fernández de Córdoba-Oñate
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Maravillas Gutierrez
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Diego Carbonell
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Rebeca Bailén
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Ignacio Gómez-Centurión
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Paula Fernández-Caldas
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Lucía Castilla
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Javier Anguita
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Mi Kwon
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Ramón García-Sanz
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Ismael Buño
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
- Department of Cell Biology, Complutense University of Madrid, Madrid, Spain
- Genomics Unit, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón, Madrid, Spain
| | - Carolina Martínez-Laperche
- Department of Hematology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Health Research Institute Gregorio Marañón, Madrid, Spain
| |
Collapse
|
29
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
30
|
Tabrizi S, Martin-Alonso C, Xiong K, Bhatia SN, Adalsteinsson VA, Love JC. Modulating cell-free DNA biology as the next frontier in liquid biopsies. Trends Cell Biol 2024:S0962-8924(24)00249-6. [PMID: 39730275 DOI: 10.1016/j.tcb.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/05/2024] [Accepted: 11/20/2024] [Indexed: 12/29/2024]
Abstract
Technical advances over the past two decades have enabled robust detection of cell-free DNA (cfDNA) in biological samples. Yet, higher clinical sensitivity is required to realize the full potential of liquid biopsies. This opinion article argues that to overcome current limitations, the abundance of informative cfDNA molecules - such as circulating tumor DNA (ctDNA) - collected in a sample needs to increase. To accomplish this, new methods to modulate the biological processes that govern cfDNA production, trafficking, and clearance in the body are needed, informed by a deeper understanding of cfDNA biology. Successful development of such methods could enable a major leap in the performance of liquid biopsies and vastly expand their utility across the spectrum of clinical care.
Collapse
Affiliation(s)
- Shervin Tabrizi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Radiation Oncology, Mass General Brigham, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Carmen Martin-Alonso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute at Harvard University, Boston, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA
| | | | - J Christopher Love
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
31
|
Sun T, Yuan J, Zhu Y, Li J, Yang S, Zhou J, Ge X, Qu S, Li W, Li JJ, Li Y. Systematic evaluation of methylation-based cell type deconvolution methods for plasma cell-free DNA. Genome Biol 2024; 25:318. [PMID: 39702273 DOI: 10.1186/s13059-024-03456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Plasma cell-free DNA (cfDNA) is derived from cellular death in various tissues. Investigating the tissue origin of cfDNA through cell type deconvolution, we can detect changes in tissue homeostasis that occur during disease progression or in response to treatment. Consequently, cfDNA has emerged as a valuable noninvasive biomarker for disease detection and treatment monitoring. Although there are many methylation-based methods for cfDNA cell type deconvolution, a comprehensive and systematic evaluation of these methods has yet to be conducted. RESULTS In this study, we benchmark five methods: MethAtlas, cfNOMe toolkit, CelFiE, CelFEER, and UXM. Utilizing deep whole-genome bisulfite sequencing data from 35 human cell types, we generate in silico cfDNA samples with ground truth cell type proportions to assess the deconvolution performance of the five methods under multiple scenarios. Our findings indicate that multiple factors, including reference marker selection, sequencing depth, and reference atlas completeness, jointly influence the deconvolution performance. Notably, an incomplete reference with missing markers or cell types leads to suboptimal results. We observe performance differences among methods under varying conditions, underscoring the importance of tailoring cfDNA deconvolution analyses. To increase the clinical relevance of our findings, we further evaluate each method's performance in potential clinical applications using real-world datasets. CONCLUSIONS Based on the benchmark results, we propose general guidelines to choose the suitable methods based on sequencing depth of the cfDNA data and completeness of the reference atlas to maximize the performance of methylation-based cfDNA cell type deconvolution.
Collapse
Affiliation(s)
- Tongyue Sun
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jinqi Yuan
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yacheng Zhu
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jingqi Li
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shen Yang
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Junpeng Zhou
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xinzhou Ge
- Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA
| | - Susu Qu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, CA, 90095, USA.
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, University of California, Los Angeles, CA, 90095, USA.
| | - Yumei Li
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
32
|
Harary PM, Rajaram S, Chen MS, Hori YS, Park DJ, Chang SD. Genomic predictors of radiation response: recent progress towards personalized radiotherapy for brain metastases. Cell Death Discov 2024; 10:501. [PMID: 39695143 DOI: 10.1038/s41420-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
Radiotherapy remains a key treatment modality for both primary and metastatic brain tumors. Significant technological advances in precision radiotherapy, such as stereotactic radiosurgery and intensity-modulated radiotherapy, have contributed to improved clinical outcomes. Notably, however, molecular genetics is not yet widely used to inform brain radiotherapy treatment. By comparison, genetic testing now plays a significant role in guiding targeted therapies and immunotherapies, particularly for brain metastases (BM) of lung cancer, breast cancer, and melanoma. Given increasing evidence of the importance of tumor genetics to radiation response, this may represent a currently under-utilized means of enhancing treatment outcomes. In addition, recent studies have shown potentially actionable mutations in BM which are not present in the primary tumor. Overall, this suggests that further investigation into the pathways mediating radiation response variability is warranted. Here, we provide an overview of key mechanisms implicated in BM radiation resistance, including intrinsic and acquired resistance and intratumoral heterogeneity. We then discuss advances in tumor sampling methods, such as a collection of cell-free DNA and RNA, as well as progress in genomic analysis. We further consider how these tools may be applied to provide personalized radiotherapy for BM, including patient stratification, detection of radiotoxicity, and use of radiosensitization agents. In addition, we describe recent developments in preclinical models of BM and consider their relevance to investigating radiation response. Given the increase in clinical trials evaluating the combination of radiotherapy and targeted therapies, as well as the rising incidence of BM, it is essential to develop genomically informed approaches to enhance radiation response.
Collapse
Affiliation(s)
- Paul M Harary
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sanjeeth Rajaram
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Maggie S Chen
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Yusuke S Hori
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
33
|
Nafar S, Hosseini K, Shokrgozar N, Farahmandi AY, Alamdari-Palangi V, Saber Sichani A, Fallahi J. An Investigation into Cell-Free DNA in Different Common Cancers. Mol Biotechnol 2024; 66:3462-3474. [PMID: 38071680 DOI: 10.1007/s12033-023-00976-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/23/2023] [Indexed: 11/15/2024]
Abstract
Diagnosis is the most important step in different diseases, especially in cancers and blood malignancies. There are different methods in order to better diagnose of cancer, but many of them are invasive and also, some of them are not useful for immediate diagnosis. Cell-free DNA (cfDNA) or liquid biopsy easily accessible in peripheral blood is one of the non-invasive prognostic biomarkers in various areas of cancer management. In fact, amounts of cfDNA in serum or plasma can be used for diagnosis. In this review, we have considered some cancers such as hepatocellular carcinoma, lung cancer, breast cancer, and hematologic malignancies to compare the various methods of cfDNA diagnosis.
Collapse
Affiliation(s)
- Samira Nafar
- Medical Genetic Department, Shiraz University of Medical Science, Shiraz, Iran
| | - Kamran Hosseini
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negin Shokrgozar
- Hematology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | | | - Vahab Alamdari-Palangi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Saber Sichani
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
34
|
Huang Z, Wei C, Xie H, Xiao X, Wang T, Zhang Y, Chen Y, Hei Z, Zhao T, Yao W. Treating acute lung injury through scavenging of cell-free DNA by cationic nanoparticles. Mater Today Bio 2024; 29:101360. [PMID: 39687793 PMCID: PMC11648789 DOI: 10.1016/j.mtbio.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome are life-threatening conditions induced by inflammatory responses, in which cell-free DNA (cfDNA) plays a pivotal role. This study investigated the therapeutic potential of biodegradable cationic nanoparticles (cNPs) in alleviating ALI. Using a mouse model of lipopolysaccharide-induced ALI, we examined the impact of intravenously administered cNPs. Our findings indicate that cNPs possess robust DNA binding capability, enhanced accumulation in inflamed lungs, and a favorable safety profile in vivo. Furthermore, cNPs attenuate the inflammatory response in LPS-induced ALI mice by scavenging cfDNA, mainly derived from neutrophil extracellular traps, and activating the macrophage-mediated cGAS-STING pathway. The findings suggest a potential treatment for ALI by targeting cfDNA with cNPs. This approach has demonstrated efficacy in mitigating lung injury and merits further exploration.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Cong Wei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hanbin Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Xue Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tienan Wang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yihan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| |
Collapse
|
35
|
Tagawa M, Hiroi H, Nakano Y, Morishita R, Kobayashi K, Sakai O. Clinical Utility of Circulating Cell-Free DNA as a Liquid Biopsy in Cats With Various Tumours. Vet Comp Oncol 2024; 22:592-601. [PMID: 39385318 DOI: 10.1111/vco.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024]
Abstract
Only a limited number of tumour biomarkers are currently available in veterinary medicine, particularly in cats. Cell-free DNA (cfDNA) is an extracellular DNA fragment released upon cell death and is considered a minimally invasive biomarker for the diagnosis and monitoring of various human malignancies. This study aimed to clarify the utility of circulating cfDNA as a liquid biopsy for various feline tumours. Plasma samples were collected from 44 cats with various tumours, 24 cats with other diseases and 10 healthy controls. A follow-up study was conducted in three tumour-bearing patients. All cfDNA concentrations were quantified via real-time polymerase chain reaction (PCR), which provided short and long fragments of a newly identified feline LINE-1 gene. We found that cfDNA levels were significantly higher in cats with various tumours than in those with other diseases or healthy controls. The cfDNA concentration was not correlated with serum amyloid A (SAA) levels. Cats with tumours exhibited elevated cfDNA levels that predicted tumour-bearing with a sensitivity and specificity of 50.5% and 91.2%, respectively (AUC 0.736; p < 0.001). In lymphoma cases, cats with high cfDNA levels had significantly shorter survival times than those with low cfDNA levels (median: 33 days vs. 178 days; p = 0.003). In addition, the cfDNA levels of the three patients correlated with clinical status during follow-up. Collectively, these findings indicate the potential of cfDNA as a useful biomarker for the diagnosis, therapeutic monitoring and prognostic assessment of tumours in cats.
Collapse
Affiliation(s)
- Michihito Tagawa
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hotaka Hiroi
- Veterinary Medical Center, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yuzuki Nakano
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Riyo Morishita
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Kosuke Kobayashi
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| | - Osamu Sakai
- Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
| |
Collapse
|
36
|
Albitar M, Charifa A, Agersborg S, Pecora A, Ip A, Goy A. Expanding the clinical utility of liquid biopsy by using liquid transcriptome and artificial intelligence. THE JOURNAL OF LIQUID BIOPSY 2024; 6:100270. [PMID: 40027317 PMCID: PMC11863701 DOI: 10.1016/j.jlb.2024.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 03/05/2025]
Abstract
Most of the current utilization of liquid biopsy (LBx) is based on analyzing cell-free DNA(cfDNA). There is limited data on using cell-free RNA (cfRNA) levels (liquid transcriptome) in LBx. The major hurdles for using liquid transcriptome is its low level in circulation and the dilutional effects of various tissues that may pour their RNA into circulation. We explored the potential of using artificial intelligence (AI) to normalize the cancer-specific cfRNA and to enable liquid transcriptome to predict diagnosis. cfRNA transcriptomic data from 1009 peripheral blood samples was generated by hybrid capture next generation sequencing (NGS). Using two-thirds of samples for training and one third for testing, we demonstrate that AI is able to distinguish between normal control (N = 368) and patients with solid tumors (N = 404) with AUC = 0.820 (95 % CI: 0.760-0.879), patients with myeloid neoplasms (N = 99) with AUC = 0.858 (95 % CI: 0.793-0.924) and patients with lymphoid neoplasms (N = 128) with AUC = 0.788 (95 % CI: 0.687-0.888). Specific diagnosis was also possible when patients with lung, breast, colorectal, and myelodysplastic subgroups were tested. This data suggests that liquid transcriptomics when used with AI has the potential of transforming "liquid biopsy" to "true" biopsy, replacing the need for tissue biopsy.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Ip
- John Theurer Cancer Center, Hackensack, NJ, USA
| | - Andre Goy
- John Theurer Cancer Center, Hackensack, NJ, USA
| |
Collapse
|
37
|
Sorg BS, Byun JS, Westbrook VA, Tricoli JV, Doroshow JH, Harris LN. NCI workshop on ctDNA in cancer treatment and clinical care. J Natl Cancer Inst 2024; 116:1890-1895. [PMID: 39087596 PMCID: PMC11630565 DOI: 10.1093/jnci/djae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Detection of cell-free circulating tumor DNA (ctDNA) from solid tumors is a fast-evolving field with significant potential for improving patient treatment outcomes. The spectrum of applications for ctDNA assays is broad and includes very diverse intended uses that will require different strategies to demonstrate utility. On September 14-15, 2023, the National Cancer Institute held an in-person workshop in Rockville, MD titled "ctDNA in Cancer Treatment and Clinical Care." The goal of the workshop was to examine what is currently known and what needs to be determined for various ctDNA liquid biopsy use cases related to treatment and management of patients with solid tumors and to explore how the community can best assess the value of ctDNA assays and technology. Additionally, new approaches were presented that may show promise in the future. The information exchanged in this workshop will provide the community with a better understanding of this field and its potential to affect and benefit decision-making in the treatment of patients with solid tumors.
Collapse
Affiliation(s)
- Brian S Sorg
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jung S Byun
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - V Anne Westbrook
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James V Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lyndsay N Harris
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Yuen N, Lemaire M, Wilson SL. Cell-free placental DNA: What do we really know? PLoS Genet 2024; 20:e1011484. [PMID: 39652523 PMCID: PMC11627368 DOI: 10.1371/journal.pgen.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cell-free placental DNA (cfpDNA) is present in maternal circulation during gestation. CfpDNA carries great potential as a research and clinical tool as it provides a means to investigate the placental (epi)genome across gestation, which previously required invasive placenta sampling procedures. CfpDNA has been widely implemented in the clinical setting for noninvasive prenatal testing (NIPT). Despite this, the basic biology of cfpDNA remains poorly understood, limiting the research and clinical utility of cfpDNA. This review will examine the current knowledge of cfpDNA, including origins and molecular characteristics, highlight gaps in knowledge, and discuss future research directions.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Lemaire
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Samantha L. Wilson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
39
|
Harvey C, Nowak A, Zhang S, Moll T, Weimer AK, Barcons AM, Dos Santos Souza C, Ferraiuolo L, Kenna K, Zaitlen N, Caggiano C, Shaw PJ, Snyder MP, Mill J, Hannon E, Cooper-Knock J. Evaluation of a biomarker for amyotrophic lateral sclerosis derived from a hypomethylated DNA signature of human motor neurons. RESEARCH SQUARE 2024:rs.3.rs-5397445. [PMID: 39649175 PMCID: PMC11623773 DOI: 10.21203/rs.3.rs-5397445/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals. By comparing MN methylation with an atlas of tissue methylation we have derived a MN-specific signature of hypomethylated genomic regions, which accords with genes important for MN function. Through simulation we have optimised the selection of regions for biomarker detection in plasma and CSF cell-free DNA (cfDNA). However, we show that MN-derived DNA is not detectable via WGBS in plasma cfDNA. In support of our experimental finding, we show theoretically that the relative sparsity of lower MN sets a limit on the proportion of plasma cfDNA derived from MN which is below the threshold for detection of WGBS. Our findings are important for the ongoing development of ALS biomarkers. The MN-specific hypomethylated genomic regions we have derived could be usefully combined with more sensitive detection methods and perhaps with study of CSF instead of plasma. Indeed we demonstrate that neuronal-derived DNA is detectable in CSF. Our work is relevant for all diseases featuring death of rare cell-types.
Collapse
Affiliation(s)
| | | | | | | | - Annika K Weimer
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute
| | | | | | | | | | | | | | | | | | - Jonathan Mill
- University of Exeter Medical School, University of Exeter
| | - Eilis Hannon
- University of Exeter Medical School, University of Exeter
| | | |
Collapse
|
40
|
Peker Eyüboğlu İ, Koca S, Çelik B, Güllü Amuran G, Uğurlu MÜ, Alan Ö, Akın Telli T, Yumuk PF, Akkiprik M. Neoadjuvant Chemotherapy Shortens the cfDNA Telomere Length in Breast Cancer Patients. Int J Breast Cancer 2024; 2024:6117394. [PMID: 39574517 PMCID: PMC11581796 DOI: 10.1155/2024/6117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/26/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction: Cancer is a genetic disease that affects people worldwide, and breast cancer is the most common cancer in women. Studies have been conducted on molecular parameters to predict tumor behavior and develop therapeutic strategies. Telomeres, which are at the end of chromosomes, have been studied for their relationship with breast cancer, but more research is needed to understand their role in the disease. Circulating-free DNA (cfDNA) is DNA that is free in the bloodstream and is considered a promising target for early cancer detection, treatment response monitoring, and prognosis assessment. This study is aimed at comparing cfDNA telomere length of breast cancer patients and healthy individuals and analyzing the impact of neoadjuvant chemotherapy on telomere length in cfDNA. Materials and Methods: Blood samples were collected from 33 breast cancer patients undergoing neoadjuvant chemotherapy before and after treatment. The quantitative PCR method is used to measure the average telomere lengths. Results: This study found that the telomere length of cfDNA in breast cancer patients before and after treatment is significantly shorter than in the control group. Neoadjuvant chemotherapy is found to shorten the cfDNA telomere length, especially in the treatment-responsive group. Conclusion: Our study suggests that telomere length in cfDNA may be a useful biomarker for predicting therapy response and possible reoccurrence of the disease in breast cancer patients.
Collapse
Affiliation(s)
- İrem Peker Eyüboğlu
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul 34899, Türkiye
| | - Sinan Koca
- Department of Medical Oncology, Umraniye Education Research Hospital, Istanbul, Türkiye
| | - Betül Çelik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul 34899, Türkiye
| | - Gökçe Güllü Amuran
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul 34899, Türkiye
| | - M. Ümit Uğurlu
- Department of General Surgery, School of Medicine, Marmara University, Pendik, Istanbul, Türkiye
| | - Özkan Alan
- Division of Medical Oncology, Department of Internal Medicine, Koç University School of Medicine, Istanbul, Türkiye
| | - Tuğba Akın Telli
- Division of Medical Oncology, Department of Internal Medicine, Memorial Şişli Hospital, Istanbul, Türkiye
| | - Perran Fulden Yumuk
- Division of Medical Oncology, Department of Internal Medicine, Koç University School of Medicine, Istanbul, Türkiye
| | - Mustafa Akkiprik
- Department of Medical Biology, School of Medicine, Marmara University, Istanbul 34899, Türkiye
| |
Collapse
|
41
|
Alexander EM, Miller HA, Egger ME, Smith ML, Yaddanapudi K, Linder MW. The Correlation between Plasma Circulating Tumor DNA and Radiographic Tumor Burden. J Mol Diagn 2024; 26:952-961. [PMID: 39181324 PMCID: PMC11524323 DOI: 10.1016/j.jmoldx.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024] Open
Abstract
Conventional blood-based biomarkers and radiographic imaging are excellent for use in monitoring different aspects of malignant disease, but given their specific shortcomings, their integration with other, complementary markers such as plasma circulating tumor DNA (ctDNA) will be beneficial toward a precision medicine-driven future. Plasma ctDNA analysis utilizes the measurement of cancer-specific molecular alterations in a variety of bodily fluids released by dying tumor cells to monitor and profile response to therapy, and is being employed in several clinical scenarios. Plasma concentrations of ctDNA have been reported to correlate with tumor burden. However, the strength of this association is generally poor and highly variable, confounding the interpretation of longitudinal plasma ctDNA measurements in conjunction with routine radiographic assessments. Herein is discussed what is currently understood with respect to the fundamental characteristics of tumor growth that dictate plasma ctDNA concentrations, with a perspective on its interpretation in conjunction with radiographically determined tumor burden assessments.
Collapse
Affiliation(s)
- Evan M Alexander
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Hunter A Miller
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky
| | - Michael E Egger
- Hiram C. Polk, Jr, MD, Department of Surgery, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Melissa L Smith
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky
| | - Kavitha Yaddanapudi
- UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky; Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky; Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Mark W Linder
- Department of Pathology and Laboratory Medicine, University of Louisville, Louisville, Kentucky; UofL Health-Brown Cancer Center, University of Louisville, Louisville, Kentucky.
| |
Collapse
|
42
|
Aden D, Zaheer S, Khan S, Jairajpuri ZS, Jetley S. Navigating the landscape of HPV-associated cancers: From epidemiology to prevention. Pathol Res Pract 2024; 263:155574. [PMID: 39244910 DOI: 10.1016/j.prp.2024.155574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Human Papillomavirus (HPV) is a widespread infection associated with various cancers, including cervical, oropharyngeal, anal, and genital cancers. This infection contributes to 5 % of global cancer cases annually, affecting approximately 625,600 women and 69,400 men. Cervical cancer remains the most prevalent HPV-linked cancer among females, with the highest incidence seen in low and middle-income countries (LMICs). While most HPV infections are transient, factors such as HPV variants, age, gender, and socioeconomic status influence transmission risks. HPV is categorized into high-risk (HR-HPV) and low-risk types, with strains like HPV 16 and 18 displaying distinct demographic patterns. The intricate pathogenesis of HPV involves genetic and epigenetic interactions, with HPV oncogenes (E6 and E7) and integration into host DNA playing a pivotal role in driving malignancies. Early diagnostics, utilizing HPV DNA testing with surrogate markers such as p16, and advanced molecular techniques like PCR, liquid biopsy, and NGS, significantly impact the management of HPV-induced cancers. Effectively managing HPV-related cancers demands a multidisciplinary approach, including immunotherapy, integrating current therapies, ongoing trials, and evolving treatments. Prevention via HPV vaccination and the inclusion of cervical cancer screening in national immunization programs by conventional Pap smear examination and HPV DNA testing remains fundamental.Despite the preventability of HPV-related cancers, uncertainties persist in testing, vaccination, and treatment. This review article covers epidemiology, pathogenesis, diagnostics, management, prevention strategies, challenges, and future directions. Addressing issues like vaccine hesitancy, healthcare disparities, and advancing therapies requires collaboration among researchers, healthcare providers, policymakers, and the public. Advancements in understanding the disease's molecular basis and clinical progression are crucial for early detection, proper management, and improved outcomes.
Collapse
Affiliation(s)
- Durre Aden
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, VMMC and Safdarjang Hospital, New Delhi, India.
| | - Sabina Khan
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| | | | - Sujata Jetley
- Department of Pathology, HIMSR, Jamia Hamdard, New Delhi, India
| |
Collapse
|
43
|
Ge Q, Zhang ZY, Li SN, Ma JQ, Zhao Z. Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review). Oncol Lett 2024; 28:548. [PMID: 39319213 PMCID: PMC11420644 DOI: 10.3892/ol.2024.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Traditional tumor diagnosis methods rely on tissue biopsy, which can be invasive and unsuitable for long-term monitoring of tumor dynamics. The advent of liquid biopsy has notably improved the overall management of patients with cancer. Liquid biopsy techniques primarily involve detection of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). The present review focuses on ctDNA because of its significance in tumor diagnosis, monitoring and treatment. The use of ctDNA-based liquid biopsy offers several advantages, including non-invasive or minimally invasive collection methods, the ability to conduct repeated assessment and comprehensive insights into tumor biology. It serves crucial roles in disease management by facilitating screening of high-risk patients, dynamically monitoring therapeutic responses and diagnosis. Furthermore, ctDNA can be used to demonstrate pseudo-progression, monitor postoperative tumor status and guide adaptive treatment plans. The present study provides a comprehensive review of ctDNA, exploring its origins, metabolism, detection methods, clinical role and the current challenges associated with its application.
Collapse
Affiliation(s)
- Qian Ge
- Graduate School, Xi'an Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Zhi-Yun Zhang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Suo-Ni Li
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jie-Qun Ma
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zheng Zhao
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
44
|
Sirajee AS, Kabiraj D, De S. Cell-free nucleic acid fragmentomics: A non-invasive window into cellular epigenomes. Transl Oncol 2024; 49:102085. [PMID: 39178576 PMCID: PMC11388671 DOI: 10.1016/j.tranon.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 08/26/2024] Open
Abstract
Clinical genomic profiling of cell-free nucleic acids (e.g. cell-free DNA or cfDNA) from blood and other body fluids has ushered in a new era in non-invasive diagnostics and treatment monitoring strategies for health conditions and diseases such as cancer. Genomic analysis of cfDNAs not only identifies disease-associated mutations, but emerging findings suggest that structural, topological, and fragmentation characteristics of cfDNAs reveal crucial information about the location of source tissues, their epigenomes, and other clinically relevant characteristics, leading to the burgeoning field of fragmentomics. The field has seen rapid developments in computational and genomics methodologies for conducting large-scale studies on health conditions and diseases - that have led to fundamental, mechanistic discoveries as well as translational applications. Several recent studies have shown the clinical utilities of the cfDNA fragmentomics technique which has the potential to be effective for early disease diagnosis, determining treatment outcomes, and risk-free continuous patient monitoring in a non-invasive manner. In this article, we outline recent developments in computational genomic methodologies and analysis strategies, as well as the emerging insights from cfNA fragmentomics. We conclude by highlighting the current challenges and opportunities.
Collapse
Affiliation(s)
- Ahmad Salman Sirajee
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Debajyoti Kabiraj
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Subhajyoti De
- Department of Pathology and Laboratory Medicine, Rutgers Cancer Institute, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| |
Collapse
|
45
|
Gohil KM, Reddy JV, Mulla SK, Shah RS, Raghavendra SK, Singh R, Gohil SM. The ctDNA revolution: Insights on cancer care: A narrative review. Bioinformation 2024; 20:1287-1290. [PMID: 40092864 PMCID: PMC11904137 DOI: 10.6026/9732063002001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 03/19/2025] Open
Abstract
Circulating tumor DNA (ctDNA) is a revolutionary tool in the detection and monitoring of cancer: a minimally invasive, highly sensitive approach to analysing tumor-specific DNA in the bloodstream. Therefore, it is of interest to explore the current and evolving landscape of cancer genomics as precision tools in quantifying tumor dynamics. Thus, the role of ctDNA in tracking minimum residual disease, relapse, recurrence and the tailoring of therapeutic strategies for effective management of tumours is reviewed.
Collapse
Affiliation(s)
- Krutika Mahendra Gohil
- Department of Internal Medicine, Hinduhridaysamrat Balasaheb Thackarey Medical College (HBTMC) and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, Maharashtra, India
| | | | - Saniya Kifayetulla Mulla
- Department of Internal Medicine, Hinduhridaysamrat Balasaheb Thackarey Medical College (HBTMC) and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, Maharashtra, India
| | - Rutu Snehal Shah
- Department of Medicine Dr. Vaishampayan Memorial Government Medical College, Solapur, Maharashtra, India
| | | | - Rishika Singh
- Department of Internal Medicine, Hinduhridaysamrat Balasaheb Thackarey Medical College (HBTMC) and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, Maharashtra, India
| | - Sagar Mahendra Gohil
- Department of Medicine Mahatma Gandhi Mission Institute of Health Sciences, Navi Mumbai, Maharashtra, India
| |
Collapse
|
46
|
Lin Y, Rasmussen MH, Christensen MH, Frydendahl A, Maretty L, Andersen CL, Besenbacher S. Evaluating Bioinformatics Processing of Somatic Variant Detection in cfDNA Using Targeted Sequencing with UMIs. Int J Mol Sci 2024; 25:11439. [PMID: 39518990 PMCID: PMC11546253 DOI: 10.3390/ijms252111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Circulating tumor DNA (ctDNA) is a promising cancer biomarker, but accurately detecting tumor mutations in cell-free DNA (cfDNA) is challenging due to their low frequency and sequencing errors. Our study benchmarked Mutect2, VarScan2, shearwater, and DREAMS-vc using deep targeted sequencing of cfDNA with Unique Molecular Identifiers (UMIs) from 111 colorectal cancer patients. Performance was assessed at both the mutation level (distinguish tumor variants from errors) and the sample level (detect if an individual has cancer). Additionally, we investigated the effects of various UMI grouping and consensus strategies. The shearwater-AND variant calling method demonstrated the highest precision in detecting tumor-derived mutations from plasma, and reached the highest ROC-AUC of 0.984 for sample classification in tumor-informed cfDNA analyses. DREAMS-vc exhibited the highest ROC-AUC of 0.808 for sample classification in tumor-agnostic studies. We also found that sequencing depth differences in PBMCs could lead to false positives, particularly with VarScan2 and Mutect2, which was addressed by downsampling to equivalent mean depths. Additionally, network-based UMI grouping methods outperformed those using identical UMIs when all reads were retained. Our findings emphasize that the optimal variant caller depends on the study context-whether focused on mutation or sample classification, and whether conducted under tumor-informed or tumor-agnostic conditions.
Collapse
Affiliation(s)
- Yixin Lin
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (Y.L.); (C.L.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mads Heilskov Rasmussen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (Y.L.); (C.L.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Mikkel Hovden Christensen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (Y.L.); (C.L.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Amanda Frydendahl
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (Y.L.); (C.L.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Lasse Maretty
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (Y.L.); (C.L.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Claus Lindbjerg Andersen
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (Y.L.); (C.L.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Søren Besenbacher
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (Y.L.); (C.L.A.)
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
- Bioinformatics Research Centre, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
47
|
Linthorst J, Nivard M, Sistermans EA. GWAS shows the genetics behind cell-free DNA and highlights the importance of p.Arg206Cys in DNASE1L3 for non-invasive testing. Cell Rep 2024; 43:114799. [PMID: 39331505 DOI: 10.1016/j.celrep.2024.114799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/16/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The properties of cell-free DNA (cfDNA) are intensely studied for their potential as non-invasive biomarkers. We explored the effect of common genetic variants on the concentration and fragmentation properties of cfDNA using a genome-wide association study (GWAS) based on low-coverage whole-genome sequencing data of 140,000 Dutch non-invasive prenatal tests (NIPTs). Our GWAS detects many genome-wide significant loci, functional enrichments for phagocytes, liver, adipose tissue, and macrophages, and genetic correlations with autoimmune and cardiovascular disease. A common (7%) missense variant in DNASE1L3 (p.Arg206Cys) strongly affects all cfDNA properties. It increases the size of fragments, lowers cfDNA concentrations, affects the distribution of cleave-site motifs, and increases the fraction of circulating fetal DNA during pregnancy. For the application of NIPT, and potentially other cfDNA-based tests, this variant has direct clinical consequences, as it increases the odds of inconclusive results and impairs the sensitivity of NIPT by causing predictors to overestimate the fetal fraction.
Collapse
Affiliation(s)
- Jasper Linthorst
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands; Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, the Netherlands.
| | - Michel Nivard
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Erik A Sistermans
- Department of Human Genetics, Amsterdam UMC Location VU, Amsterdam, the Netherlands; Amsterdam Reproduction & Development, Amsterdam, the Netherlands.
| |
Collapse
|
48
|
Bai J, Jiang P, Ji L, Lam WKJ, Zhou Q, Ma MJL, Ding SC, Ramakrishnan S, Wan CW, Yang TC, Yukawa M, Chan RWY, Qiao R, Yu SCY, Choy LYL, Shi Y, Wang Z, Tam THC, Law MF, Wong RSM, Wong J, Chan SL, Wong GLH, Wong VWS, Chan KCA, Lo YMD. Histone modifications of circulating nucleosomes are associated with changes in cell-free DNA fragmentation patterns. Proc Natl Acad Sci U S A 2024; 121:e2404058121. [PMID: 39382996 PMCID: PMC11494292 DOI: 10.1073/pnas.2404058121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
The analysis of tissues of origin of cell-free DNA (cfDNA) is of research and diagnostic interest. Many studies focused on bisulfite treatment or immunoprecipitation protocols to assess the tissues of origin of cfDNA. DNA loss often occurs during such processes. Fragmentomics of cfDNA molecules has uncovered a wealth of information related to tissues of origin of cfDNA. There is still much room for the development of tools for assessing contributions from various tissues into plasma using fragmentomic features. Hence, we developed an approach to analyze the relative contributions of DNA from different tissues into plasma, by identifying characteristic fragmentation patterns associated with selected histone modifications. We named this technique as FRAGmentomics-based Histone modification Analysis (FRAGHA). Deduced placenta-specific histone H3 lysine 27 acetylation (H3K27ac)-associated signal correlated well with the fetal DNA fraction in maternal plasma (Pearson's r = 0.96). The deduced liver-specific H3K27ac-associated signal correlated with the donor-derived DNA fraction in liver transplantation recipients (Pearson's r = 0.92) and was significantly increased in patients with hepatocellular carcinoma (HCC) (P < 0.01, Wilcoxon rank-sum test). Significant elevations of erythroblasts-specific and colon-specific H3K27ac-associated signals were observed in patients with β-thalassemia major and colorectal cancer, respectively. Furthermore, using the fragmentation patterns from tissue-specific H3K27ac regions, a machine learning algorithm was developed to enhance HCC detection, with an area under the curve (AUC) of up to 0.97. Finally, genomic regions with H3K27ac or histone H3 lysine 4 trimethylation (H3K4me3) were found to exhibit different fragmentomic patterns of cfDNA. This study has shed light on the relationship between cfDNA fragmentomics and histone modifications, thus expanding the armamentarium of liquid biopsy.
Collapse
Affiliation(s)
- Jinyue Bai
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Peiyong Jiang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Lu Ji
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - W. K. Jacky Lam
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Qing Zhou
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Mary-Jane L. Ma
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Spencer C. Ding
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Saravanan Ramakrishnan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Chun Wai Wan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
| | - Tongxin Claire Yang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Masashi Yukawa
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Rebecca W. Y. Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Rong Qiao
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Stephanie C. Y. Yu
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - L. Y. Lois Choy
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Yuwei Shi
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Zilong Wang
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Tommy H. C. Tam
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Man Fai Law
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Raymond S. M. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John Wong
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Stephen Lam Chan
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Clinical Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
| | - Grace L. H. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent W. S. Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - K. C. Allen Chan
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| | - Y. M. Dennis Lo
- Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong Special Administrative Region, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
- State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region, China
| |
Collapse
|
49
|
Boeken T, Pellerin O, Bourreau C, Palle J, Gallois C, Zaanan A, Taieb J, Lahlou W, Di Gaeta A, Al Ahmar M, Guerra X, Dean C, Laurent Puig P, Sapoval M, Pereira H, Blons H. Clinical value of sequential circulating tumor DNA analysis using next-generation sequencing and epigenetic modifications for guiding thermal ablation for colorectal cancer metastases: a prospective study. LA RADIOLOGIA MEDICA 2024; 129:1530-1542. [PMID: 39183242 DOI: 10.1007/s11547-024-01865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
INTRODUCTION While thermal ablation is now a standard treatment option for oligometastatic colorectal cancer patients, selecting those who will benefit most from locoregional therapies remains challenging. This proof-of-concept study is the first to assess the feasibility of routine testing of ctDNA before and after thermal ablation with curative intent, analyzed by next-generation sequencing (NGS) and methylation specific digital droplet PCR (ddPCR). Our prospective study primary objective was to assess the prognostic value of ctDNA before thermal ablation. METHODS This single-center prospective study from November 2021 to June 2022 included colorectal cancer patients referred for curative-intent thermal ablation. Cell-free DNA was tested at different time points by next-generation sequencing and detection of WIF1 and NPY genes hypermethylation using ddPCR. The ctDNA was considered positive if either a tumor mutation or hypermethylation was detected; recurrence-free survival was used as the primary endpoint. RESULTS The study enrolled 15 patients, and a total of 60 samples were analyzed. The median follow-up after ablation was 316 days, and median recurrence-free survival was 250 days. CtDNA was positive for 33% of the samples collected during the first 24 h. The hazard ratio for progression according to the presence of baseline circulating tumor DNA was estimated at 0.14 (CI 95%: 0.03-0.65, p = 0.019). The dynamics are provided, and patients with no recurrence were all negative at H24 for ctDNA. DISCUSSION This study shows the feasibility of routine testing of ctDNA before and after thermal ablation with curative intent. We report that circulating tumor DNA is detectable in patients with low tumor burden using 2 techniques. This study emphasizes the potential of ctDNA for discerning patients who are likely to benefit from thermal ablation from those who may not, which could shape future referrals. The dynamics of ctDNA before and after ablation shed light on the need for further research and larger studies.
Collapse
Affiliation(s)
- Tom Boeken
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France.
| | - Olivier Pellerin
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | | | - Juliette Palle
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Claire Gallois
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Aziz Zaanan
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Julien Taieb
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Widad Lahlou
- Department of Gastroenterology and Digestive Oncology, AP-HP, Hôpital Européen Georges Pompidou, SIRIC CARPEM, Université Paris Cité, Paris, France
| | - Alessandro Di Gaeta
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | - Marc Al Ahmar
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | - Xavier Guerra
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | | | - Pierre Laurent Puig
- Department of Biochemistry, Pharmacogenetics and Molecular Oncology (ONSTeP), AP-HP, Hôpital Européen Georges Pompidou, Paris Cancer Institute CARPEM, Université de Paris Cité, Paris, France
| | - Marc Sapoval
- Department of Vascular and Oncological Interventional Radiology, AP-HP, INSERM PARCC U 970, Hôpital Européen Georges Pompidou, HEKA INRIA, Université de Paris Cité, Paris, France
| | - Helena Pereira
- Centre d'investigation Clinique 1418 Épidémiologie Clinique, AP-HP, INSERM, Hôpital Européen Georges Pompidou, Clinical Research Unit, Paris, France
| | - Hélène Blons
- Department of Biochemistry, Pharmacogenetics and Molecular Oncology (ONSTeP), AP-HP, Hôpital Européen Georges Pompidou, Paris Cancer Institute CARPEM, Université de Paris Cité, Paris, France
| |
Collapse
|
50
|
González-Medina A, Vila-Casadesús M, Gomez-Rey M, Fabregat-Franco C, Sierra A, Tian TV, Castet F, Castillo G, Matito J, Martinez P, Miquel JM, Nuciforo P, Pérez-López R, Macarulla T, Vivancos A. Clinical Value of Liquid Biopsy in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma During Targeted Therapy. Clin Cancer Res 2024; 30:4491-4504. [PMID: 39078735 PMCID: PMC11443220 DOI: 10.1158/1078-0432.ccr-23-3780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 10/02/2024]
Abstract
PURPOSE FGFR2 fusions occur in 10% to 15% of patients with intrahepatic cholangiocarcinoma (iCCA), potentially benefiting from FGFR inhibitors (FGFRi). We aimed to assess the feasibility of detecting FGFR2 fusions in plasma and explore plasma biomarkers for managing FGFRi treatment. EXPERIMENTAL DESIGN We conducted a retrospective study in 18 patients with iCCA and known FGFR2 fusions previously identified in tissue samples from prior FGFRi treatment. Both tissue and synchronous plasma samples were analyzed using a custom hybrid capture gene panel with next-generation sequencing (VHIO-iCCA panel) and validated against commercial vendor results. Longitudinal plasma analysis during FGFRi was performed. Subsequently, we explored the correlation between plasma biomarkers, liver enzymes, tumor volume, and clinical outcomes. RESULTS Sixteen patients (88.9%) were positive for FGFR2 fusion events in plasma. Remarkably, the analysis of plasma suggests that lower levels of ctDNA are linked to clinical benefits from targeted therapy and result in improved progression-free survival and overall survival. Higher concentrations of cell-free DNA before FGFRi treatment were linked to worse overall survival, correlating with impaired liver function and indicating compromised cell-free DNA removal by the liver. Additionally, increased ctDNA or the emergence of resistance mutations allowed earlier detection of disease progression compared with standard radiologic imaging methods. CONCLUSIONS VHIO-iCCA demonstrated accurate detection of FGFR2 fusions in plasma. The integration of information from various plasma biomarkers holds the potential to predict clinical outcomes and identify treatment failure prior to radiologic progression, offering valuable guidance for the clinical management of patients with iCCA.
Collapse
Affiliation(s)
| | - Maria Vila-Casadesús
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Marina Gomez-Rey
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Carles Fabregat-Franco
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Alexandre Sierra
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tian V Tian
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Florian Castet
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Gloria Castillo
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Judit Matito
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paola Martinez
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Josep M Miquel
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Paolo Nuciforo
- Molecular Oncology Lab, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Raquel Pérez-López
- Radiomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Teresa Macarulla
- Gastrointestinal and Endocrine Tumor Unit, Vall d'Hebron Institute of Oncology (VHIO), Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Upper Gastrointestinal and Endocrine Tumor Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Ana Vivancos
- Cancer Genomics Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|