1
|
Peters DK, Garcea RL. Murine polyomavirus DNA transitions through spatially distinct nuclear replication subdomains during infection. PLoS Pathog 2020; 16:e1008403. [PMID: 32203554 PMCID: PMC7117779 DOI: 10.1371/journal.ppat.1008403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 02/13/2020] [Indexed: 12/16/2022] Open
Abstract
The replication of small DNA viruses requires both host DNA replication and repair factors that are often recruited to subnuclear domains termed viral replication centers (VRCs). Aside from serving as a spatial focus for viral replication, little is known about these dynamic areas in the nucleus. We investigated the organization and function of VRCs during murine polyomavirus (MuPyV) infection using 3D structured illumination microscopy (3D-SIM). We localized MuPyV replication center components, such as the viral large T-antigen (LT) and the cellular replication protein A (RPA), to spatially distinct subdomains within VRCs. We found that viral DNA (vDNA) trafficked sequentially through these subdomains post-synthesis, suggesting their distinct functional roles in vDNA processing. Additionally, we observed disruption of VRC organization and vDNA trafficking during mutant MuPyV infections or inhibition of DNA synthesis. These results reveal a dynamic organization of VRC components that coordinates virus replication.
Collapse
Affiliation(s)
- Douglas K. Peters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Robert L. Garcea
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, United States of America
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| |
Collapse
|
2
|
Abstract
The maintenance of genome stability in eukaryotic cells relies on accurate and efficient replication along each chromosome following every cell division. The terminal position, repetitive sequence, and structural complexities of the telomeric DNA make the telomere an inherently difficult region to replicate within the genome. Thus, despite functioning to protect genome stability mammalian telomeres are also a source of replication stress and have been recognized as common fragile sites within the genome. Telomere fragility is exacerbated at telomeres that rely on the Alternative Lengthening of Telomeres (ALT) pathway. Like common fragile sites, ALT telomeres are prone to chromosome breaks and are frequent sites of recombination suggesting that ALT telomeres are subjected to chronic replication stress. Here, we will review the features of telomeric DNA that challenge the replication machinery and also how the cell overcomes these challenges to maintain telomere stability and ensure the faithful duplication of the human genome.
Collapse
Affiliation(s)
- Emily Mason-Osann
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Himabindu Gali
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA
| | - Rachel Litman Flynn
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Cancer Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Low level phosphorylation of histone H2AX on serine 139 (γH2AX) is not associated with DNA double-strand breaks. Oncotarget 2018; 7:49574-49587. [PMID: 27391338 PMCID: PMC5226530 DOI: 10.18632/oncotarget.10411] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/12/2016] [Indexed: 11/25/2022] Open
Abstract
Phosphorylation of histone H2AX on serine 139 (γH2AX) is an early step in cellular response to a DNA double-strand break (DSB). γH2AX foci are generally regarded as markers of DSBs. A growing body of evidence demonstrates, however, that while induction of DSBs always brings about phosphorylation of histone H2AX, the reverse is not true - the presence of γH2AX foci should not be considered an unequivocal marker of DNA double-strand breaks. We studied DNA damage induced in A549 human lung adenocarcinoma cells by topoisomerase type I and II inhibitors (0.2 μM camptothecin, 10 μM etoposide or 0.2 μM mitoxantrone for 1 h), and using 3D high resolution quantitative confocal microscopy, assessed the number, size and the integrated intensity of immunofluorescence signals of individual γH2AX foci induced by these drugs. Also, investigated was spatial association between γH2AX foci and foci of 53BP1, the protein involved in DSB repair, both in relation to DNA replication sites (factories) as revealed by labeling nascent DNA with EdU. Extensive 3D and correlation data analysis demonstrated that γH2AX foci exhibit a wide range of sizes and levels of H2AX phosphorylation, and correlate differently with 53BP1 and DNA replication. This is the first report showing lack of a link between low level phosphorylation γH2AX sites and double-strand DNA breaks in cells exposed to topoisomerase I or II inhibitors. The data are discussed in terms of mechanisms that may be involved in formation of γH2AX sites of different sizes and intensities.
Collapse
|
4
|
The impact of replication stress on replication dynamics and DNA damage in vertebrate cells. Nat Rev Genet 2017; 18:535-550. [DOI: 10.1038/nrg.2017.46] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Abstract
Genomic instability is a hallmark of cancer and a common feature of human disorders, characterized by growth defects, neurodegeneration, cancer predisposition, and aging. Recent evidence has shown that DNA replication stress is a major driver of genomic instability and tumorigenesis. Cells can undergo mitosis with under-replicated DNA or unresolved DNA structures, and specific pathways are dedicated to resolving these structures during mitosis, suggesting that mitotic rescue from replication stress (MRRS) is a key process influencing genome stability and cellular homeostasis. Deregulation of MRRS following oncogene activation or loss-of-function of caretaker genes may be the cause of chromosomal aberrations that promote cancer initiation and progression. In this review, we discuss the causes and consequences of replication stress, focusing on its persistence in mitosis as well as the mechanisms and factors involved in its resolution, and the potential impact of incomplete replication or aberrant MRRS on tumorigenesis, aging and disease.
Collapse
Affiliation(s)
- Michalis Fragkos
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| | - Valeria Naim
- a CNRS UMR8200 , University Paris-Saclay , Gustave Roussy, Villejuif , France
| |
Collapse
|
6
|
Pierzyńska-Mach A, Szczurek A, Cella Zanacchi F, Pennacchietti F, Drukała J, Diaspro A, Cremer C, Darzynkiewicz Z, Dobrucki JW. Subnuclear localization, rates and effectiveness of UVC-induced unscheduled DNA synthesis visualized by fluorescence widefield, confocal and super-resolution microscopy. Cell Cycle 2017; 15:1156-67. [PMID: 27097376 DOI: 10.1080/15384101.2016.1158377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2'-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.
Collapse
Affiliation(s)
- Agnieszka Pierzyńska-Mach
- a Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland
| | | | | | | | - Justyna Drukała
- d Department of Cell Biology , Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland
| | - Alberto Diaspro
- c Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | | | - Zbigniew Darzynkiewicz
- e Brander Cancer Research Institute and Department of Pathology, New York Medical College , Valhalla , NY , USA
| | - Jurek W Dobrucki
- a Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland
| |
Collapse
|
7
|
Feng W, Guo Y, Huang J, Deng Y, Zang J, Huen MSY. TRAIP regulates replication fork recovery and progression via PCNA. Cell Discov 2016; 2:16016. [PMID: 27462463 PMCID: PMC4923944 DOI: 10.1038/celldisc.2016.16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022] Open
Abstract
PCNA is a central scaffold that coordinately assembles replication and repair machineries at DNA replication forks for faithful genome duplication. Here, we describe TRAIP (RNF206) as a novel PCNA-interacting factor that has important roles during mammalian replicative stress responses. We show that TRAIP encodes a nucleolar protein that migrates to stalled replication forks, and that this is accomplished by its targeting of PCNA via an evolutionarily conserved PIP box on its C terminus. Accordingly, inactivation of TRAIP or its interaction with the PCNA clamp compromised replication fork recovery and progression, and leads to chromosome instability. Together, our findings establish TRAIP as a component of the mammalian replicative stress response network, and implicate the TRAIP-PCNA axis in recovery of stalled replication forks.
Collapse
Affiliation(s)
- Wanjuan Feng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Yingying Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Zhejiang, China
| | - Yiqun Deng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianye Zang
- School of Life Sciences, University of Science of Technology of China , Hefei, China
| | - Michael Shing-Yan Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| |
Collapse
|
8
|
Desplancq D, Freund G, Conic S, Sibler AP, Didier P, Stoessel A, Oulad-Abdelghani M, Vigneron M, Wagner J, Mély Y, Chatton B, Tora L, Weiss E. Targeting the replisome with transduced monoclonal antibodies triggers lethal DNA replication stress in cancer cells. Exp Cell Res 2016; 342:145-58. [PMID: 26968636 DOI: 10.1016/j.yexcr.2016.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
Although chemical inhibition of the DNA damage response (DDR) in cancer cells triggers cell death, it is not clear if the fork blockade achieved with inhibitors that neutralise proteins of the replisome is sufficient on its own to overcome the DDR. Monoclonal antibodies to PCNA, which block the DNA elongation process in vitro, have been developed. When these antibodies were transduced into cancer cells, they are able to inhibit the incorporation of nucleoside analogues. When co-delivered with anti-PCNA siRNA, the cells were flattened and the size of their nuclei increased by up to 3-fold, prior to cell death. Analysis of these nuclei by super-resolution microscopy revealed the presence of large numbers of phosphorylated histone H2AX foci. A senescence-like phenotype of the transduced cells was also observed upon delivery of the corresponding Fab molecules or following PCNA gene disruption or when the Fab fragment of an antibody that neutralises DNA polymerase alpha was used. Primary melanoma cells and leukaemia cells that are resistant to chemical inhibitors were similarly affected by these antibody treatments. These results demonstrate that transduced antibodies can trigger a lethal DNA replication stress, which kills cancer cells by abolishing the biological activity of several constituents of the replisome.
Collapse
Affiliation(s)
- Dominique Desplancq
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Guillaume Freund
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Sascha Conic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Annie-Paule Sibler
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Pascal Didier
- Faculté de Pharmacie, UMR 7213, CNRS/Université de Strasbourg, route du Rhin, 67401 Illkirch, France
| | - Audrey Stoessel
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Marc Vigneron
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Jérôme Wagner
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Yves Mély
- Faculté de Pharmacie, UMR 7213, CNRS/Université de Strasbourg, route du Rhin, 67401 Illkirch, France
| | - Bruno Chatton
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UMR 7104, CNRS/Université de Strasbourg, INSERM U964, rue Laurent Fries, 67404 Illkirch, France
| | - Etienne Weiss
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242, CNRS/Université de Strasbourg, boulevard Sébastien Brant, 67412 Illkirch, France.
| |
Collapse
|