2
|
Tatosyan KA, Stasenko DV, Koval AP, Gogolevskaya IK, Kramerov DA. TATA-Like Boxes in RNA Polymerase III Promoters: Requirements for Nucleotide Sequences. Int J Mol Sci 2020; 21:ijms21103706. [PMID: 32466110 PMCID: PMC7279448 DOI: 10.3390/ijms21103706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023] Open
Abstract
tRNA and some other non-coding RNA genes are transcribed by RNA polymerase III (pol III), due to the presence of intragenic promoter, consisting of boxes A and B spaced by 30–40 bp. Such pol III promoters, called type 2, are also intrinsic to Short Interspersed Elements (SINEs). The contribution of 5′-flanking sequences to the transcription efficiency of genes containing type 2 promoters is still studied insufficiently. Here, we studied this issue, focusing on the genes of two small non-coding RNAs (4.5SH and 4.5SI), as well as B1 and B2 SINEs from the mouse genome. We found that the regions from position −31 to −24 may significantly influence the transcription of genes and SINEs. We studied the influence of nucleotide substitutions in these sites, representing TATA-like boxes, on transcription of 4.5SH and 4.5SI RNA genes. As a rule, the substitutions of A and T to G or C reduced the transcription level, although the replacement of C with A also lowered it. In 4.5SH gene, five distal nucleotides of −31/−24 box (TTCAAGTA) appeared to be the most important, while in the box −31/−24 of 4.5SI gene (CTACATGA), all nucleotides, except for the first one, contributed significantly to the transcription efficiency. Random sequences occurring at positions −31/−24 upstream of SINE copies integrated into genome, promoted their transcription with different efficacy. In the 5′-flanking sequences of 4.5SH and 4.5SI RNA genes, the recognition sites of CREB, C/EBP, and Sp1 factors were found, and their deletion decreased the transcription.
Collapse
|
3
|
Choquet K, Yang S, Moir RD, Forget D, Larivière R, Bouchard A, Poitras C, Sgarioto N, Dicaire MJ, Noohi F, Kennedy TE, Rochford J, Bernard G, Teichmann M, Coulombe B, Willis IM, Kleinman CL, Brais B. Absence of neurological abnormalities in mice homozygous for the Polr3a G672E hypomyelinating leukodystrophy mutation. Mol Brain 2017; 10:13. [PMID: 28407788 PMCID: PMC5391615 DOI: 10.1186/s13041-017-0294-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/04/2017] [Indexed: 01/08/2023] Open
Abstract
Recessive mutations in the ubiquitously expressed POLR3A gene cause one of the most frequent forms of childhood-onset hypomyelinating leukodystrophy (HLD): POLR3-HLD. POLR3A encodes the largest subunit of RNA Polymerase III (Pol III), which is responsible for the transcription of transfer RNAs (tRNAs) and a large array of other small non-coding RNAs. In order to study the central nervous system pathophysiology of the disease, we introduced the French Canadian founder Polr3a mutation c.2015G > A (p.G672E) in mice, generating homozygous knock-in (KI/KI) as well as compound heterozygous mice for one Polr3a KI and one null allele (KI/KO). Both KI/KI and KI/KO mice are viable and are able to reproduce. To establish if they manifest a motor phenotype, WT, KI/KI and KI/KO mice were submitted to a battery of behavioral tests over one year. The KI/KI and KI/KO mice have overall normal balance, muscle strength and general locomotion. Cerebral and cerebellar Luxol Fast Blue staining and measurement of levels of myelin proteins showed no significant differences between the three groups, suggesting that myelination is not overtly impaired in Polr3a KI/KI and KI/KO mice. Finally, expression levels of several Pol III transcripts in the brain showed no statistically significant differences. We conclude that the first transgenic mice with a leukodystrophy-causing Polr3a mutation do not recapitulate the childhood-onset HLD observed in the majority of human patients with POLR3A mutations, and provide essential information to guide selection of Polr3a mutations for developing future mouse models of the disease.
Collapse
Affiliation(s)
- Karine Choquet
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Sharon Yang
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada
| | - Robyn D Moir
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Diane Forget
- Translational Proteomics Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Roxanne Larivière
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada
| | - Annie Bouchard
- Translational Proteomics Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Christian Poitras
- Translational Proteomics Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Nicolas Sgarioto
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada
| | - Marie-Josée Dicaire
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada
| | - Forough Noohi
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada.,Department of Human Genetics, McGill University, Montréal, Québec, Canada
| | - Timothy E Kennedy
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada
| | | | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, and Pediatrics, McGill University, Montreal, Canada.,Department of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Martin Teichmann
- INSERM U1212 - CNRS UMR5320, Université de Bordeaux, Bordeaux, France
| | - Benoit Coulombe
- Translational Proteomics Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - Ian M Willis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, 3801 University Street, room 622, Montréal, Québec, H3A 2B4, Canada. .,Department of Human Genetics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|