1
|
Chen R, Ma C, Qian H, Xie X, Zhang Y, Lu D, Hu S, Zhang M, Liu F, Zou Y, Gao Q, Zhou H, Liu H, Lin M, Ge G, Gao D. Mutant KRAS and CK2 Cooperatively Stimulate SLC16A3 Activity to Drive Intrahepatic Cholangiocarcinoma Progression. Cancer Res 2025; 85:1253-1269. [PMID: 39854318 DOI: 10.1158/0008-5472.can-24-2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/14/2024] [Accepted: 01/16/2025] [Indexed: 01/26/2025]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignancy affecting the liver and biliary system. Enhanced understanding of the pathogenic mechanisms underlying iCCA tumorigenesis and the discovery of appropriate therapeutic targets are imperative to improve patient outcomes. In this study, we investigated the functions and regulations of solute carrier family 16 member 3 (SLC16A3), which has been reported to be a biomarker of poor prognosis in iCCA. High SLC16A3 expression was enriched in KRAS viral oncogene homolog-mutated iCCA tumors, and mutant KRAS elevated SLC16A3 expression via the PI3K-AKT-mTORC1-HIF1α pathway. SLC16A3 not only enhanced glycolysis but also induced epigenetic reprogramming to regulate iCCA progression. Phosphorylation of SLC16A3 at S436 was vital for its oncogenic function and was linked to iCCA progression. Casein kinase 2 (CK2) directly phosphorylated SLC16A3 at S436, and CK2 inhibition with CX-4945 (silmitasertib) reduced the growth of KRAS-mutated iCCA tumor xenografts and patient-derived organoids. Together, this study provides valuable insights into the diverse functions of SLC16A3 in iCCA and comprehensively elucidates the upstream regulatory mechanisms, providing potential therapeutic strategies for patients with iCCA with KRAS mutations. Significance: Characterization of the oncogenic function and regulators of SLC16A3 in intrahepatic cholangiocarcinogenesis revealed the potential of CK2 inhibitors as a promising treatment for KRAS-mutated tumors.
Collapse
Affiliation(s)
- Ran Chen
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cuihong Ma
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoran Qian
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Xie
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxue Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dayun Lu
- Jiangsu Key Laboratory of Drug Target and Drug for Degenerative Diseases, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shunjie Hu
- Department of Hepatobiliary Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mao Zhang
- Department of Hepatobiliary Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fen Liu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunhao Zou
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Gao
- Department of Hepatobiliary Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Hu Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Hailong Liu
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gaoxiang Ge
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daming Gao
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
2
|
Behera MM, Purkait S, Ghosh A, Sable MN, Sahu RN, Chhabra G. The Monocarboxylate Transporters MCT1 and MCT4 Are Highly Expressed in Glioblastoma and Crucially Implicated in the Pathobiology. Neuropathology 2025. [PMID: 40145253 DOI: 10.1111/neup.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/02/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
Monocarboxylate transporters (MCTs) are crucially implicated in cancer cell metabolism by transporting lactate/H+ ions and thus regulating the pH of the microenvironment. We assessed MCT1 and MCT4 expression in 98 cases of adult-type hemispheric Glioblastomas (GBMs) (IDH wild-type), along with 51 cases of IDH-mutant astrocytic and oligodendroglial tumors (grade 2-4) for comparison. U87MG and LN229 cell lines were used for in vitro analysis. Both MCT-1 and MCT-4 showed significantly higher expression in GBMs on immunohistochemistry than in IDH-mutated gliomas, which mostly showed weak or negative immunoreactivity. The mRNA expression was also in a similar line. Interestingly, in all areas of the pathological endothelial proliferation of grade 4 tumors, there was MCT-1 loss of expression, unlike the nonproliferating endothelium. High MCT1/4 expression was associated with shorter overall survival in all gliomas together but not in GBM separately. Syrosingopine, a dual MCT1/4 inhibitor, showed significant antitumor effects in both the glioma cell lines, including dose-dependent cytotoxicity, increased apoptosis, and decreased migration/invasion. The results indicated the role of MCT1/4 in the pathobiology of GBM and the diagnostic utility at the immunohistochemical level. Syrosingopine, an antihypertensive agent with good CNS penetration and previously used in different malignancies, may be an essential therapeutic adjunct in GBM.
Collapse
Affiliation(s)
- Minakshi M Behera
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Suvendu Purkait
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Amit Ghosh
- Department of Physiology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Mukund N Sable
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Rabi Narayan Sahu
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Gaurav Chhabra
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, India
| |
Collapse
|
3
|
Camacho M, Vázquez-López C, Valero C, Holgado A, Terra X, Avilés-Jurado FX, León X. Transcriptional expression of SLC16A7 as a biomarker of occult lymph node metastases in patients with head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2024; 281:6637-6644. [PMID: 39215860 DOI: 10.1007/s00405-024-08882-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Glucose is the main energy substrate of tumor cells. This study aims to assess whether the transcriptional expression of glucose metabolism-related genes is associated with occult lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. METHODS We examined the transcriptional expression of a panel of glucose metabolism-related genes in a cohort of 53 patients with HNSCC without cervical lymph node involvement at the time of diagnosis (cN0) and subsequently treated with elective neck dissection. RESULTS Occult lymph node metastases were found in 37.7% (n = 20) of the patients. Among the analyzed genes, SLC16A7 exhibited the strongest association with the presence of occult lymph node metastases. Patients with occult lymph node metastases (cN0/pN +) had significantly lower SLC16A7 expression values (p = 0.001). Patients with low SLC16A7 expression (n = 17, 32.1%) had a frequency of occult lymph node metastases of 76.5%, while for patients with high SLCA16A7 expression (n = 36, 67.9%) it was 19.4% (P = 0.0001). A multivariable analysis showed that patients with low expression of SLC16A7 had a 12.6 times higher risk of developing occult lymph node metastases. CONCLUSION cN0 HNSCC patients with low SLC16A7 expression had a higher risk of occult lymph node metastases.
Collapse
Affiliation(s)
- Mercedes Camacho
- Genomics of Complex Diseases. Institut de Recerca, IIB Sant Pau, Barcelona, Spain
| | - Cristina Vázquez-López
- Otorhinolaryngology Head-Neck Surgery Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Cristina Valero
- Otorhinolaryngology Head-Neck Surgery Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Holgado
- Otorhinolaryngology Head-Neck Surgery Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira I Virgili, Tarragona, Spain
| | - Francesc Xavier Avilés-Jurado
- Otorhinolaryngology Head-Neck Surgery Department. Hospital Clínic de Barcelona. IDIBAPS Universitat de Barcelona, Barcelona, Spain
| | - Xavier León
- Otorhinolaryngology Head-Neck Surgery Department, Hospital de La Santa Creu I Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center On Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
4
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
Zhao H, Li C, Shi X, Zhang J, Jia X, Hu Z, Gao Y, Tian J. Near-infrared II fluorescence-guided glioblastoma surgery targeting monocarboxylate transporter 4 combined with photothermal therapy. EBioMedicine 2024; 106:105243. [PMID: 39004066 PMCID: PMC11284385 DOI: 10.1016/j.ebiom.2024.105243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 06/30/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
BACKGROUND Surgery is crucial for glioma treatment, but achieving complete tumour removal remains challenging. We evaluated the effectiveness of a probe targeting monocarboxylate transporter 4 (MCT4) in recognising gliomas, and of near-infrared window II (NIR-II) fluorescent molecular imaging and photothermal therapy as treatment strategies. METHODS We combined an MCT4-specific monoclonal antibody with indocyanine green to create the probe. An orthotopic mouse model and a transwell model were used to evaluate its ability to guide tumour resection using NIR-II fluorescence and to penetrate the blood-brain barrier (BBB), respectively. A subcutaneous tumour model was established to confirm photothermal therapy efficacy. Probe specificity was assessed in brain tissue from mice and humans. Finally, probe effectiveness in photothermal therapy was investigated. FINDINGS MCT4 was differentially expressed in tumour and normal brain tissue. The designed probe exhibited precise tumour targeting. Tumour imaging was precise, with a signal-to-background (SBR) ratio of 2.8. Residual tumour cells were absent from brain tissue postoperatively (SBR: 6.3). The probe exhibited robust penetration of the BBB. Moreover, the probe increased the tumour temperature to 50 °C within 5 min of laser excitation. Photothermal therapy significantly reduced tumour volume and extended survival time in mice without damage to vital organs. INTERPRETATION These findings highlight the potential efficacy of our probe for fluorescence-guided surgery and therapeutic interventions. FUNDING Jilin Province Department of Science and Technology (20200403079SF), Department of Finance (2021SCZ06) and Development and Reform Commission (20200601002JC); National Natural Science Foundation of China (92059207, 92359301, 62027901, 81930053, 81227901, U21A20386); and CAS Youth Interdisciplinary Team (JCTD-2021-08).
Collapse
Affiliation(s)
- Hongyang Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Chunzhao Li
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiaojing Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China
| | - Xiaohua Jia
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; National Key Laboratory of Kidney Diseases, Beijing, China.
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China; Jilin Province Neuro-oncology Engineering Laboratory, Changchun, China; Jilin Provincial Key Laboratory of Neuro-oncology, Changchun, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China; School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China; National Key Laboratory of Kidney Diseases, Beijing, China; Beijing Advanced Innovation Center for Big Data-based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China.
| |
Collapse
|
6
|
Rincon-Torroella J, Dal Molin M, Mog B, Han G, Watson E, Wyhs N, Ishiyama S, Ahmedna T, Minn I, Azad NS, Bettegowda C, Papadopoulos N, Kinzler KW, Zhou S, Vogelstein B, Gabrielson K, Sur S. ME3BP-7 is a targeted cytotoxic agent that rapidly kills pancreatic cancer cells expressing high levels of monocarboxylate transporter MCT1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550207. [PMID: 37546808 PMCID: PMC10401962 DOI: 10.1101/2023.07.23.550207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Nearly 30% of Pancreatic ductal adenocarcinoma (PDAC)s exhibit a marked overexpression of Monocarboxylate Transporter 1 (MCT1) offering a unique opportunity for therapy. However, biochemical inhibitors of MCT1 have proven unsuccessful in clinical trials. In this study we present an alternative approach using 3-Bromopyruvate (3BP) to target MCT1 overexpressing PDACs. 3BP is a cytotoxic agent that is known to be transported into cells via MCT1, but its clinical usefulness has been hampered by difficulties in delivering the drug systemically. We describe here a novel microencapsulated formulation of 3BP (ME3BP-7), that is effective against a variety of PDAC cells in vitro and remains stable in serum. Furthermore, systemically administered ME3BP-7 significantly reduces pancreatic cancer growth and metastatic spread in multiple orthotopic models of pancreatic cancer with manageable toxicity. ME3BP-7 is, therefore, a prototype of a promising new drug, in which the targeting moiety and the cytotoxic moiety are both contained within the same single small molecule. One Sentence Summary ME3BP-7 is a novel formulation of 3BP that resists serum degradation and rapidly kills pancreatic cancer cells expressing high levels of MCT1 with tolerable toxicity in mice.
Collapse
|
7
|
van Schaik JE, van der Vegt B, Slagter-Menkema L, van der Laan BFAM, Witjes MJH, Oosting SF, Fehrmann RSN, Plaat BEC. Identification of new head and neck squamous cell carcinoma molecular imaging targets. Oral Oncol 2024; 151:106736. [PMID: 38422829 DOI: 10.1016/j.oraloncology.2024.106736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/23/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
OBJECTIVES Intraoperative fluorescence imaging (FI) of head and neck squamous cell carcinoma (HNSCC) is performed to identify tumour-positive surgical margins, currently using epidermal growth factor receptor (EGFR) as imaging target. EGFR, not exclusively present in HNSCC, may result in non-specific tracer accumulation in normal tissues. We aimed to identify new potential HNSCC FI targets. MATERIALS AND METHODS Publicly available transcriptomic data were collected, and a biostatistical method (Transcriptional Adaptation to Copy Number Alterations (TACNA)-profiling) was applied. TACNA-profiling captures downstream effects of CNAs on mRNA levels, which may translate to protein-level overexpression. Overexpressed genes were identified by comparing HNSCC versus healthy oral mucosa. Potential targets, selected based on overexpression and plasma membrane expression, were immunohistochemically stained. Expression was compared to EGFR on paired biopsies of HNSCC, adjacent macroscopically suspicious mucosa, and healthy mucosa. RESULTS TACNA-profiling was applied on 111 healthy oral mucosa and 410 HNSCC samples, comparing expression levels of 19,635 genes. The newly identified targets were glucose transporter-1 (GLUT-1), placental cadherin (P-cadherin), monocarboxylate transporter-1 (MCT-1), and neural/glial antigen-2 (NG2), and were evaluated by IHC on samples of 31 patients. GLUT-1 was expressed in 100 % (median; range: 60-100 %) of tumour cells, P-cadherin in 100 % (50-100 %), EGFR in 70 % (0-100 %), MCT-1 in 30 % (0-100 %), and NG2 in 10 % (0-70 %). GLUT-1 and P-cadherin showed higher expression than EGFR (p < 0.001 and p = 0.015). CONCLUSIONS The immunohistochemical confirmation of TACNA-profiling results showed significantly higher GLUT-1 and P-cadherin expression than EGFR, warranting further investigation as HNSCC FI targets.
Collapse
Affiliation(s)
- Jeroen E van Schaik
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Lorian Slagter-Menkema
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands; Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Bernard F A M van der Laan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Max J H Witjes
- Department of Oral & Maxillofacial Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Sjoukje F Oosting
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Rudolf S N Fehrmann
- Department of Medical Oncology, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands
| | - Boudewijn E C Plaat
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands.
| |
Collapse
|
8
|
Liao S, Wu G, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. pH regulators and their inhibitors in tumor microenvironment. Eur J Med Chem 2024; 267:116170. [PMID: 38308950 DOI: 10.1016/j.ejmech.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/14/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
As an important characteristic of tumor, acidic tumor microenvironment (TME) is closely related to immune escape, invasion, migration and drug resistance of tumor. The acidity of the TME mainly comes from the acidic products produced by the high level of tumor metabolism, such as lactic acid and carbon dioxide. pH regulators such as monocarboxylate transporters (MCTs), carbonic anhydrase IX (CA IX), and Na+/H+ exchange 1 (NHE1) expel protons directly or indirectly from the tumor to maintain the pH balance of tumor cells and create an acidic TME. We review the functions of several pH regulators involved in the construction of acidic TME, the structure and structure-activity relationship of pH regulator inhibitors, and provide strategies for the development of small-molecule antitumor inhibitors based on these targets.
Collapse
Affiliation(s)
- Senyi Liao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guang Wu
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan, 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
9
|
Silva A, Cerqueira MC, Rosa B, Sobral C, Pinto-Ribeiro F, Costa MF, Baltazar F, Afonso J. Prognostic Value of Monocarboxylate Transporter 1 Overexpression in Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24065141. [PMID: 36982217 PMCID: PMC10049181 DOI: 10.3390/ijms24065141] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Energy production by cancer is driven by accelerated glycolysis, independently of oxygen levels, which results in increased lactate production. Lactate is shuttled to and from cancer cells via monocarboxylate transporters (MCTs). MCT1 works both as an importer and an extruder of lactate, being widely studied in recent years and generally associated with a cancer aggressiveness phenotype. The aim of this systematic review was to assess the prognostic value of MCT1 immunoexpression in different malignancies. Study collection was performed by searching nine different databases (PubMed, EMBASE, ScienceDirect, Scopus, Cochrane Library, Web of Science, OVID, TRIP and PsycINFO), using the keywords "cancer", "Monocarboxylate transporter 1", "SLC16A1" and "prognosis". Results showed that MCT1 is an indicator of poor prognosis and decreased survival for cancer patients in sixteen types of malignancies; associations between the transporter's overexpression and larger tumour sizes, higher disease stage/grade and metastasis occurrence were also frequently observed. Yet, MCT1 overexpression correlated with better outcomes in colorectal cancer, pancreatic ductal adenocarcinoma and non-small cell lung cancer patients. These results support the applicability of MCT1 as a biomarker of prognosis, although larger cohorts would be necessary to validate the overall role of MCT1 as an outcome predictor.
Collapse
Affiliation(s)
- Ana Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Mónica Costa Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Beatriz Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Catarina Sobral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Marta Freitas Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
11
|
Gholami S, Chamorro-Petronacci C, Pérez-Sayáns M, Suárez Peñaranda J, Longatto-Filho A, Baltazar F, Afonso J. Immunoexpression profile of hypoxia-inducible factor (HIF) targets in potentially malignant and malignant oral lesions: a pilot study. J Appl Oral Sci 2023; 31:e20220461. [PMID: 37194791 DOI: 10.1590/1678-7757-2022-0461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/18/2023] Open
Abstract
Oral potentially malignant disorders (OPMD) are associated with an increased risk of oral squamous cell carcinoma (OSCC). OSCC has an aggressive profile and is the most prevalent among different head and neck malignancies. Most OSCC patients are diagnosed with advanced stage tumors and have a poor prognosis. Cancer cells are able to reprogram their metabolism, even in the presence of oxygen, enhancing the conversion of glucose to lactate via the glycolytic pathway, a phenomenon mainly regulated by hypoxia-inducible factor (HIF) signaling. Thus, several glycometabolism-related biomarkers are upregulated. This study aimed to evaluate the immunoexpression of the HIF targets GLUT1, GLUT3, HK2, PFKL, PKM2, pPDH, LDHA, MCT4, and CAIX in OPMD and OSCC samples, in order to identify potential correlations between biomarkers' immunoexpression, clinicopathological features, and prognostic parameters. OSCC and OPMD samples from 21 and 34 patients (respectively) were retrospectively collected and stained for the different biomarkers by immunohistochemistry. CAIX and MCT4 expressions were significantly higher in OSCC samples when compared with OPMD samples, while the rest were also expressed by OPMD. GLUT3 and PKM2 alone, and the concomitant expression of more than four glycometabolism-related biomarkers were significantly correlated with the presence of dysplasia in OPMD. When considering OSCC cases, a trend toward increased expression of biomarkers and poor clinicopathological features was observed, and the differences regarding HK2, PFKL, LDHA and MCT4 expression were significant. Moreover, HK2 and CAIX were correlated with low survival rates. GLUT1 and GLUT3 were significantly associated with poor outcome when their expression was observed in the hypoxic region of malignant lesions. OPMD and OSCC cells overexpress glycolysis-related proteins, which is associated with aggressive features and poor patient outcome. Further research is needed to deeply understand the glycolic phenotype in the process of oral carcinogenesis.
Collapse
Affiliation(s)
- Shakiba Gholami
- University of Minho, School of Medicine, Life and Health Sciences Research Institute (ICVS), Braga, Portugal
- University of Minho, ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Cintia Chamorro-Petronacci
- Universidad de Santiago de Compostela, Facultad de Medicina y Odontología, Unidad de Medicina Oral, Cirugía Oral e Implantología, Grupo MedOralRes, Santiago de Compostela, España
- Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Grupo ORALRES, Santiago de Compostela, España
| | - Mario Pérez-Sayáns
- Universidad de Santiago de Compostela, Facultad de Medicina y Odontología, Unidad de Medicina Oral, Cirugía Oral e Implantología, Grupo MedOralRes, Santiago de Compostela, España
- Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Grupo ORALRES, Santiago de Compostela, España
| | - José Suárez Peñaranda
- Universidad de Santiago de Compostela, Facultad de Medicina y Odontología, Unidad de Medicina Oral, Cirugía Oral e Implantología, Grupo MedOralRes, Santiago de Compostela, España
- Universidad de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Grupo ORALRES, Santiago de Compostela, España
| | - Adhemar Longatto-Filho
- University of Minho, School of Medicine, Life and Health Sciences Research Institute (ICVS), Braga, Portugal
- University of Minho, ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
- Universidade Estadual Paulista, Faculdade de Medicina, Laboratório de Investigação Médica (LIM 14), São Paulo, Brasil
- Hospital do Câncer de Barretos (Hospital de Amor), Centro de Pesquisa em Oncologia Molecular, São Paulo, Brasil
| | - Fátima Baltazar
- University of Minho, School of Medicine, Life and Health Sciences Research Institute (ICVS), Braga, Portugal
- University of Minho, ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Julieta Afonso
- University of Minho, School of Medicine, Life and Health Sciences Research Institute (ICVS), Braga, Portugal
- University of Minho, ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
12
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
13
|
Liu KX, Everdell E, Pal S, Haas-Kogan DA, Milligan MG. Harnessing Lactate Metabolism for Radiosensitization. Front Oncol 2021; 11:672339. [PMID: 34367959 PMCID: PMC8343095 DOI: 10.3389/fonc.2021.672339] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer cells rewire their metabolism to promote cell proliferation, invasion, and metastasis. Alterations in the lactate pathway have been characterized in diverse cancers, correlate with outcomes, and lead to many downstream effects, including decreasing oxidative stress, promoting an immunosuppressive tumor microenvironment, lipid synthesis, and building chemo- or radio-resistance. Radiotherapy is a key modality of treatment for many cancers and approximately 50% of patients with cancer will receive radiation for cure or palliation; thus, overcoming radio-resistance is important for improving outcomes. Growing research suggests that important molecular controls of the lactate pathway may serve as novel therapeutic targets and in particular, radiosensitizers. In this mini-review, we will provide an overview of lactate metabolism in cancer, discuss three important contributors to lactate metabolism (lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier), and present data that inhibition of these three pathways can lead to radiosensitization. Future research is needed to further understand critical regulators of lactate metabolism and explore clinical safety and efficacy of inhibitors of lactate dehydrogenase, monocarboxylate transporters, and mitochondrial pyruvate carrier alone and in combination with radiation.
Collapse
Affiliation(s)
- Kevin X Liu
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Sharmistha Pal
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Daphne A Haas-Kogan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael G Milligan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
14
|
Chandel V, Kumar D. Targeting Signalling Cross-Talk between Cancer Cells and Cancer-Associated Fibroblast through Monocarboxylate Transporters in Head and Neck Cancer. Anticancer Agents Med Chem 2021; 21:1369-1378. [PMID: 32698754 DOI: 10.2174/1871520620666200721135230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive malignancy affecting more than 600,000 cases worldwide annually, associated with poor prognosis and significant morbidity. HNSCC tumors are dysplastic, with up to 80% fibroblasts. It has been reported that Cancer-Associated Fibroblasts (CAFs) facilitate HNSCC progression. Unlike normal cells, malignant cells often display increased glycolysis, even in the presence of oxygen; a phenomenon known as the Warburg effect. As a consequence, there is an increase in Lactic Acid (LA) production. Earlier, it has been reported that HNSCC tumors exhibit high LA levels that correlate with reduced survival. It has been reported that the activation of the receptor tyrosine kinase, c- MET, by CAF-secreted Hepatocyte Growth Factor (HGF) is a major contributing event in the progression of HNSCC. In nasopharyngeal carcinoma, c-MET inhibition downregulates the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) and NADPH production resulting in apoptosis. Previously, it was demonstrated that HNSCC tumor cells are highly glycolytic. Further, CAFs show a higher capacity to utilize LA as a carbon source to fuel mitochondrial respiration than HNSCC. Earlier, we have reported that in admixed cultures, both cell types increase the expression of Monocarboxylate Transporters (MCTs) for a bidirectional LA transporter. Consequently, MCTs play an important role in signalling cross-talk between cancer cells and cancer associate fibroblast in head and neck cancer, and targeting MCTs would lead to the development of a potential therapeutic approach for head and neck cancer. In this review, we focus on the regulation of MCTs in head and neck cancer through signalling cross-talk between cancer cells and cancer-associated fibroblasts, and targeting this signalling cross talk would lead to the development of a potential therapeutic approach for head and neck cancer.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| |
Collapse
|
15
|
Jiang Z, Shi Y, Zhao W, Zhang Y, Xie Y, Zhang B, Tan G, Wang Z. Development of an Immune-Related Prognostic Index Associated With Glioblastoma. Front Neurol 2021; 12:610797. [PMID: 34093386 PMCID: PMC8172186 DOI: 10.3389/fneur.2021.610797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although the tumor microenvironment (TME) is known to influence the prognosis of glioblastoma (GBM), the underlying mechanisms are not clear. This study aims to identify hub genes in the TME that affect the prognosis of GBM. Methods: The transcriptome profiles of the central nervous systems of GBM patients were downloaded from The Cancer Genome Atlas (TCGA). The ESTIMATE scoring algorithm was used to calculate immune and stromal scores. The application of these scores in histology classification was tested. Univariate Cox regression analysis was conducted to identify genes with prognostic value. Subsequently, functional enrichment analysis and protein-protein interaction (PPI) network analysis were performed to reveal the pathways and biological functions associated with the genes. Next, these prognosis genes were validated in an independent GBM cohort from the Chinese Glioma Genome Atlas (CGGA). Finally, the efficacy of current antitumor drugs targeting these genes against glioma was evaluated. Results: Gene expression profiles and clinical data of 309 GBM samples were obtained from TCGA database. Higher immune and stromal scores were found to be significantly correlated with tissue type and poor overall survival (OS) (p = 0.15 and 0.77, respectively). Functional enrichment analysis identified 860 upregulated and 162 downregulated cross genes, which were mainly linked to immune response, inflammatory response, cell membrane, and receptor activity. Survival analysis identified 228 differentially expressed genes associated with the prognosis of GBM (p ≤ 0.05). A total of 48 hub genes were identified by the Cytoscape tool, and pathway enrichment analysis of the genes was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID). The 228 genes were validated in an independent GBM cohort from the CGGA. In total, 10 genes were found to be significantly associated with prognosis of GBM. Finally, 14 antitumor drugs were identified by drug-gene interaction analysis. Conclusions: Here, 10 TME-related genes and 14 corresponding antitumor agents were found to be associated with the prognosis and OS of GBM.
Collapse
Affiliation(s)
- Zhengye Jiang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Institute of Neurosurgery, Xiamen University, Xiamen, China
| | - Yanxi Shi
- Department of Cardiology, Jiaxing Second Hospital, Jiaxing, China
| | - Wenpeng Zhao
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Institute of Neurosurgery, Xiamen University, Xiamen, China
| | - Yaya Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Institute of Neurosurgery, Xiamen University, Xiamen, China
| | - Yuanyuan Xie
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Institute of Neurosurgery, Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Institute of Neurosurgery, Xiamen University, Xiamen, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Institute of Neurosurgery, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Institute of Neurosurgery, Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Leu M, Kitz J, Pilavakis Y, Hakroush S, Wolff HA, Canis M, Rieken S, Schirmer MA. Monocarboxylate transporter-1 (MCT1) protein expression in head and neck cancer affects clinical outcome. Sci Rep 2021; 11:4578. [PMID: 33633176 PMCID: PMC7907348 DOI: 10.1038/s41598-021-84019-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/04/2021] [Indexed: 01/31/2023] Open
Abstract
Treatment of locally advanced, unresectable head and neck squamous cell carcinoma (HNSCC) often yields only modest results with radiochemotherapy (RCT) as standard of care. Prognostic features related to outcome upon RCT might be highly valuable to improve treatment. Monocarboxylate transporters-1 and -4 (MCT1/MCT4) were evaluated as potential biomarkers. A cohort of HNSCC patients without signs for distant metastases was assessed eliciting 82 individuals eligible whereof 90% were diagnosed with locally advanced stage IV. Tumor specimens were stained for MCT1 and MCT4 in the cell membrane by immunohistochemistry. Obtained data were evaluated with respect to overall (OS) and progression-free survival (PFS). Protein expression of MCT1 and MCT4 in cell membrane was detected in 16% and 85% of the tumors, respectively. Expression of both transporters was not statistically different according to the human papilloma virus (HPV) status. Positive staining for MCT1 (n = 13, negative in n = 69) strongly worsened PFS with a hazard ratio (HR) of 3.1 (95%-confidence interval 1.6-5.7, p < 0.001). OS was likewise affected with a HR of 3.8 (2.0-7.3, p < 0.001). Multivariable Cox regression confirmed these findings. We propose MCT1 as a promising biomarker in HNSCC treated by primary RCT.
Collapse
Affiliation(s)
- Martin Leu
- grid.411984.10000 0001 0482 5331Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - J. Kitz
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - Y. Pilavakis
- grid.411984.10000 0001 0482 5331Clinic of Otorhinolaryngology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - S. Hakroush
- grid.411984.10000 0001 0482 5331Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - H. A. Wolff
- Department of Radiology, Nuclear Medicine and Radiotherapy, Radiology Munich, Maximiliansplatz 2, 80333 Munich, Germany ,grid.7727.50000 0001 2190 5763Department of Radiation Oncology, Medical Center, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - M. Canis
- grid.5252.00000 0004 1936 973XDepartment of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - S. Rieken
- grid.411984.10000 0001 0482 5331Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| | - M. A. Schirmer
- grid.411984.10000 0001 0482 5331Clinic of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany
| |
Collapse
|
17
|
Hernández IB, Kromhout JZ, Teske E, Hennink WE, van Nimwegen SA, Oliveira S. Molecular targets for anticancer therapies in companion animals and humans: what can we learn from each other? Theranostics 2021; 11:3882-3897. [PMID: 33664868 PMCID: PMC7914358 DOI: 10.7150/thno.55760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Despite clinical successes in the treatment of some early stage cancers, it is undeniable that novel and innovative approaches are needed to aid in the fight against cancer. Targeted therapies offer the desirable feature of tumor specificity while sparing healthy tissues, thereby minimizing side effects. However, the success rate of translation of these therapies from the preclinical setting to the clinic is dramatically low, highlighting an important point of necessary improvement in the drug development process in the oncology field. The practice of a comparative oncology approach can address some of the current issues, by introducing companion animals with spontaneous tumors in the linear drug development programs. In this way, animals from the veterinary clinic get access to novel/innovative therapies, otherwise inaccessible, while generating robust data to aid therapy refinement and increase translational success. In this review, we present an overview of targetable membrane proteins expressed in the most well-characterized canine and feline solid cancers, greatly resembling the counterpart human malignancies. We identified particular areas in which a closer collaboration between the human and veterinary clinic would benefit both human and veterinary patients. Considerations and challenges to implement comparative oncology in the development of anticancer targeted therapies are also discussed.
Collapse
|
18
|
Lorenzo-Pouso AI, Gallas-Torreira M, Pérez-Sayáns M, Chamorro-Petronacci CM, Alvarez-Calderon O, Takkouche B, Supuran CT, García-García A. Prognostic value of CAIX expression in oral squamous cell carcinoma: a systematic review and meta-analysis. J Enzyme Inhib Med Chem 2021; 35:1258-1266. [PMID: 32466707 PMCID: PMC7337009 DOI: 10.1080/14756366.2020.1772250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia-related protein considered as a predictor for oral squamous cell carcinoma (OSCC) biological behaviour. Nevertheless, this prognostic value is still yet to be validated. We aim to quantify prognostic significance of CAIX overexpression in OSCC by meta-analysis. We performed searches in MEDLINE, EMBASE, SCOPUS, WOS, WHO’S databases, CPCI, and OATD from inception to August 2019. Overall survival (OS), disease-free survival (DFS), locoregional control (LC), and disease-specific survival (DSS) were considered as outcomes of interest. Overall 18 studies were included. CAIX overexpression was associated with worse OS (hazard ratio [HR] = 1.45 95% confidence interval [CI] 1.17–1.80) and DFS (HR = 1.98 95% CI 1.18–3.32). To the contrary, it was neither associated with LC (HR = 1.01 95% CI 0.50–2.02) nor with DSS (HR = 1.35 95% CI 0.78–2.33). Heterogeneity was negligible in all analyses except for DSS. Small studies effect was not significant for OS and DFS. This study shows that immunohistochemical CAIX assessment is a useful OSCC prognostic biomarker.
Collapse
Affiliation(s)
- Alejandro I Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mercedes Gallas-Torreira
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Cintia M Chamorro-Petronacci
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Bahi Takkouche
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Florence, Italy
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, The Health Research Institute Foundation, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
19
|
Sun X, Wang M, Wang M, Yao L, Li X, Dong H, Li M, Sun T, Liu X, Liu Y, Xu Y. Role of Proton-Coupled Monocarboxylate Transporters in Cancer: From Metabolic Crosstalk to Therapeutic Potential. Front Cell Dev Biol 2020; 8:651. [PMID: 32766253 PMCID: PMC7379837 DOI: 10.3389/fcell.2020.00651] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/01/2020] [Indexed: 01/18/2023] Open
Abstract
Proton-coupled monocarboxylate transporters (MCTs), representing the first four isoforms of the SLC16A gene family, mainly participate in the transport of lactate, pyruvate, and other monocarboxylates. Cancer cells exhibit a metabolic shift from oxidative metabolism to an enhanced glycolytic phenotype, leading to a higher production of lactate in the cytoplasm. Excessive accumulation of lactate threatens the survival of cancer cells, and the overexpression of proton-coupled MCTs observed in multiple types of cancer facilitates enhanced export of lactate from highly glycolytic cancer cells. Proton-coupled MCTs not only play critical roles in the metabolic symbiosis between hypoxic and normoxic cancer cells within tumors but also mediate metabolic interaction between cancer cells and cancer-associated stromal cells. Of the four proton-coupled MCTs, MCT1 and MCT4 are the predominantly expressed isoforms in cancer and have been identified as potential therapeutic targets in cancer. Therefore, in this review, we primarily focus on the roles of MCT1 and MCT4 in the metabolic reprogramming of cancer cells under hypoxic and nutrient-deprived conditions. Additionally, we discuss how MCT1 and MCT4 serve as metabolic links between cancer cells and cancer-associated stromal cells via transport of crucial monocarboxylates, as well as present emerging opportunities and challenges in targeting MCT1 and MCT4 for cancer treatment.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengshen Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyan Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haoran Dong
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Meng Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tie Sun
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- The Second Affiliated Hospital of China Medical University, Shenyang, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Sun NY, Yang MH. Metabolic Reprogramming and Epithelial-Mesenchymal Plasticity: Opportunities and Challenges for Cancer Therapy. Front Oncol 2020; 10:792. [PMID: 32509584 PMCID: PMC7252305 DOI: 10.3389/fonc.2020.00792] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/22/2020] [Indexed: 12/27/2022] Open
Abstract
Metabolic reprogramming and epithelial-mesenchymal plasticity are both hallmarks of the adaptation of cancer cells for tumor growth and progression. For metabolic changes, cancer cells alter metabolism by utilizing glucose, lipids, and amino acids to meet the requirement of rapid proliferation and to endure stressful environments. Dynamic changes between the epithelial and mesenchymal phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are critical steps for cancer invasion and metastatic colonization. Compared to the extensively studied metabolic reprogramming in tumorigenesis, the metabolic changes in metastasis are relatively unclear. Here, we review metabolic reprogramming, epithelial-mesenchymal plasticity, and their mutual influences on tumor cells. We also review the developing treatments for targeting cancer metabolism and the impact of metabolic targeting on EMT. In summary, understanding the metabolic adaption and phenotypic plasticity will be mandatory for developing new strategies to target metastatic and refractory cancers that are intractable to current treatments.
Collapse
Affiliation(s)
- Nai-Yun Sun
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
21
|
Baltazar F, Afonso J, Costa M, Granja S. Lactate Beyond a Waste Metabolite: Metabolic Affairs and Signaling in Malignancy. Front Oncol 2020; 10:231. [PMID: 32257942 PMCID: PMC7093491 DOI: 10.3389/fonc.2020.00231] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022] Open
Abstract
To sustain their high proliferation rates, most cancer cells rely on glycolytic metabolism, with production of lactic acid. For many years, lactate was seen as a metabolic waste of glycolytic metabolism; however, recent evidence has revealed new roles of lactate in the tumor microenvironment, either as metabolic fuel or as a signaling molecule. Lactate plays a key role in the different models of metabolic crosstalk proposed in malignant tumors: among cancer cells displaying complementary metabolic phenotypes and between cancer cells and other tumor microenvironment associated cells, including endothelial cells, fibroblasts, and diverse immune cells. This cell metabolic symbiosis/slavery supports several cancer aggressiveness features, including increased angiogenesis, immunological escape, invasion, metastasis, and resistance to therapy. Lactate transport is mediated by the monocarboxylate transporter (MCT) family, while another large family of G protein-coupled receptors (GPCRs), not yet fully characterized in the cancer context, is involved in lactate/acidosis signaling. In this mini-review, we will focus on the role of lactate in the tumor microenvironment, from metabolic affairs to signaling, including the function of lactate in the cancer-cancer and cancer-stromal shuttles, as well as a signaling oncometabolite. We will also review the prognostic value of lactate metabolism and therapeutic approaches designed to target lactate production and transport.
Collapse
Affiliation(s)
- Fátima Baltazar
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Julieta Afonso
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Marta Costa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| | - Sara Granja
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, Guimarães, Portugal
| |
Collapse
|
22
|
Lai SW, Lin HJ, Liu YS, Yang LY, Lu DY. Monocarboxylate Transporter 4 Regulates Glioblastoma Motility and Monocyte Binding Ability. Cancers (Basel) 2020; 12:cancers12020380. [PMID: 32045997 PMCID: PMC7073205 DOI: 10.3390/cancers12020380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma (GBM) is characterized by severe hypoxic and acidic stress in an abnormal microenvironment. Monocarboxylate transporter (MCT)4, a pH-regulating protein, plays an important role in pH homeostasis of the glycolytic metabolic pathways in cancer cells. The present study showed that GBM exposure to hypoxic conditions increased MCT4 expression. We further analyzed the glioma patient database and found that MCT4 was significantly overexpressed in patients with GBM, and the MCT4 levels positively correlated with the clinico-pathological grades of gliomas. We further found that MCT4 knockdown abolished the hypoxia-enhanced of GBM cell motility and monocyte adhesion. However, the overexpression of MCT4 promoted GBM cell migration and monocyte adhesion activity. Our results also revealed that MCT4-regulated GBM cell motility and monocyte adhesion are mediated by activation of the serine/threonine-specific protein kinase (AKT), focal adhesion kinase (FAK), and epidermal growth factor receptor (EGFR) signaling pathways. Moreover, hypoxia mediated the acetylated signal transducer and activator of transcription (STAT)3 expression and regulated the transcriptional activity of hypoxia inducible factor (HIF)-1α in GBM cell lines. In a GBM mouse model, MCT4 was significantly increased in the tumor necrotic tissues. These findings raise the possibility for the development of novel therapeutic strategies targeting MCT4.
Collapse
Affiliation(s)
- Sheng-Wei Lai
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan;
| | - Hui-Jung Lin
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair and Research Center for Biotechnology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 40402, Taiwan; (H.-J.L.); (Y.-S.L.)
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
- Correspondence: (L.-Y.Y.); (D.-Y.L.); Tel.: +886-4-2205-3366 (ext. 2253) (D.-Y.L.)
| |
Collapse
|
23
|
Khammanivong A, Saha J, Spartz AK, Sorenson BS, Bush AG, Korpela DM, Gopalakrishnan R, Jonnalagadda S, Mereddy VR, O'Brien TD, Drewes LR, Dickerson EB. A novel MCT1 and MCT4 dual inhibitor reduces mitochondrial metabolism and inhibits tumour growth of feline oral squamous cell carcinoma. Vet Comp Oncol 2019; 18:324-341. [PMID: 31661586 DOI: 10.1111/vco.12551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022]
Abstract
Monocarboxylate transporters (MCTs) support tumour growth by regulating the transport of metabolites in the tumour microenvironment. High MCT1 or MCT4 expression is correlated with poor outcomes in human patients with head and neck squamous cell carcinoma (HNSCC). Recently, drugs targeting these transporters have been developed and may prove to be an effective treatment strategy for HNSCC. Feline oral squamous cell carcinoma (OSCC) is an aggressive and treatment-resistant malignancy resembling advanced or recurrent HNSCC. The goals of this study were to investigate the effects of a previously characterized dual MCT1 and MCT4 inhibitor, MD-1, in OSCC as a novel treatment approach for feline oral cancer. We also sought to determine the potential of feline OSCC as a large animal model for the further development of MCT inhibitors to treat human HNSCC. In vitro, MD-1 reduced the viability of feline OSCC and human HNSCC cell lines, altered glycolytic and mitochondrial metabolism and synergized with platinum-based chemotherapies. While MD-1 treatment increased lactate concentrations in an HNSCC cell line, the inhibitor failed to alter lactate levels in feline OSCC cells, suggesting an MCT-independent activity. In vivo, MD-1 significantly inhibited tumour growth in a subcutaneous xenograft model and prolonged overall survival in an orthotopic model of feline OSCC. Our results show that MD-1 may be an effective therapy for the treatment of feline oral cancer. Our findings also support the further investigation of feline OSCC as a large animal model to inform the development of MCT inhibitors and future clinical studies in human HNSCC.
Collapse
Affiliation(s)
- Ali Khammanivong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Jhuma Saha
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Angela K Spartz
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Brent S Sorenson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Alexander G Bush
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Derek M Korpela
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota
| | - Raj Gopalakrishnan
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Shirisha Jonnalagadda
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, Minnesota
| | - Venkatram R Mereddy
- Department of Chemistry and Biochemistry, University of Minnesota, Duluth, Minnesota
| | - Timothy D O'Brien
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
| | - Lester R Drewes
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, Minnesota
| | - Erin B Dickerson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Animal Cancer Care and Research Program, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
24
|
Pérez Sayáns M, Chamorro Petronacci CM, Lorenzo Pouso AI, Padín Iruegas E, Blanco Carrión A, Suárez Peñaranda JM, García García A. Comprehensive Genomic Review of TCGA Head and Neck Squamous Cell Carcinomas (HNSCC). J Clin Med 2019; 8:jcm8111896. [PMID: 31703248 PMCID: PMC6912350 DOI: 10.3390/jcm8111896] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this present study was to comprehensively describe somatic DNA alterations and transcriptional alterations in the last extension of the HNSCC subsets in TCGA, encompassing a total of 528 tumours. In order to achieve this goal, transcriptional analysis, functional enrichment assays, survival analysis, somatic copy number alteration analysis and somatic alteration analysis were carried out. A total of 3491 deregulated genes were found in HNSCC patients, and the functional analysis carried out determined that tissue development and cell differentiation were the most relevant signalling pathways in upregulated and downregulated genes, respectively. Somatic copy number alteration analysis showed a “top five” altered HNSCC genes: CDKN2A (deleted in 32.03% of patients), CDKN2B (deleted in 28.34% of patients), PPFIA1 (amplified in 26.02% of patients), FADD (amplified in 25.63% of patients) and ANO1 (amplified in 25.44% of patients). Somatic mutations analysis revealed TP53 mutation in 72% of the tumour samples followed by TTN (39%), FAT1 (23%) and MUC16 (19%). Another interesting result is the mutual exclusivity pattern that was discovered between the TP53 and PIK3CA mutations, and the co-occurrence of CDKN2A with the TP53 and FAT1 alterations. On analysis to relate differential expression genes and somatic copy number alterations, some genes were overexpressed and amplified, for example, FOXL2, but other deleted genes also showed overexpression, such as CDKN2A. Survival analysis revealed that overexpression of some oncogenes, such as EGFR, CDK6 or CDK4 were associated with poorer prognosis tumours. These new findings help us to develop new therapies and programs for the prevention of HNSCC.
Collapse
Affiliation(s)
- Mario Pérez Sayáns
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
- Correspondence: ; Tel.: +34-346-6101-1815; Fax: +34-349-8629-5424
| | - Cintia Micaela Chamorro Petronacci
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| | - Alejandro Ismael Lorenzo Pouso
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| | - Elena Padín Iruegas
- Area of Human Anatomy and Embryology, Faculty of Physiotherapy, Department of Functional Biology and Health Sciences, University of Vigo, 36310 Vigo, Pontevedra, Spain;
| | - Andrés Blanco Carrión
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| | - José Manuel Suárez Peñaranda
- Pathological Anatomy Service, University Hospital Complex of Santiago (CHUS), C.P. 15782 Santiago de Compostela, Spain;
| | - Abel García García
- Health Research Institute Foundation of Santiago (FIDIS); Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Dentistry, University of Santiago de Compostela, C.P. 15782 Santiago de Compostela, Spain; (C.M.C.P.); (A.I.L.P.); (A.B.C.); (A.G.G.)
| |
Collapse
|
25
|
Lorenzo-Pouso AI, Pérez-Sayáns M, Rodríguez-Zorrilla S, Chamorro-Petronacci C, García-García A. Dissecting the Proton Transport Pathway in Oral Squamous Cell Carcinoma: State of the Art and Theranostics Implications. Int J Mol Sci 2019; 20:ijms20174222. [PMID: 31470498 PMCID: PMC6747091 DOI: 10.3390/ijms20174222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer cells overexpress proton exchangers at the plasma membrane in order acidify the extracellular matrix and maintain the optimal pH for sustaining cancer growth. Among the families of proton exchangers implicated in carcinogenesis, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs), Na+/H+ exchangers (NHEs), sodium bicarbonate cotransporters (NBCs), and vacuolar ATPases (V-ATPases) are highlighted. Considerable research has been carried out into the utility of the understanding of these machineries in the diagnosis and prognosis of several solid tumors. In addition, as therapeutic targets, the interference of their functions has contributed to the discovery or optimization of cancer therapies. According to recent reports, the study of these mechanisms seems promising in the particular case of oral squamous cell carcinoma (OSCC). In the present review, the latest advances in these fields are summarized, in particular, the usefulness of proton exchangers as potential prognostic biomarkers and therapeutic targets in OSCC.
Collapse
Affiliation(s)
- Alejandro I Lorenzo-Pouso
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain.
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain.
| | - Samuel Rodríguez-Zorrilla
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
| | - Cintia Chamorro-Petronacci
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
| | - Abel García-García
- Oral Medicine, Oral Surgery and Implantology Unit, Faculty of Medicine and Odontology, University of Santiago de Compostela, GI-1319 Research Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15782, Spain
| |
Collapse
|
26
|
Li Z, Jiang C, Yuan Y. TCGA based integrated genomic analyses of ceRNA network and novel subtypes revealing potential biomarkers for the prognosis and target therapy of tongue squamous cell carcinoma. PLoS One 2019; 14:e0216834. [PMID: 31141819 PMCID: PMC6541473 DOI: 10.1371/journal.pone.0216834] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES The study aimed to investigate the ceRNA network in biological development of Tongue Squamous Cell Carcinoma (TSCC) and to identify novel molecular subtypes of TSCC to screen potential biomarkers for target therapy and prognosis by using integrated genomic analysis based on The Cancer Genome Atlas (TCGA) database. MATERIAL AND METHODS Data on gene expressions were downloaded from TCGA and GEO database. Differentially expressed RNAs(DERNAs) were shown by DESeq2 package in R. Functional enrichment analysis of DEmRNAs was performed using clusterprofilers in R. PPI network was established by referring to String website. Survival analysis of DERNAs was carried out by survival package in R. Interactions among mRNAs, miRNAs and lncRNAs were obtained from Starbase v3.0 and used to construct ceRNA network. Consensus Cluster Plus package was applied to identify molecular subtypes. All key genes were validated by comparing them with GEO microarray data. Statistical analyses of clinical features among different subtypes were performed using SPSS 22.0. RESULTS A total of 2907 mRNAs (1366 up-regulated and 1541 down-regulated), 191miRNAs (98 up-regulated and 93 down-regulated) and 1831 lncRNAs (1151 up-regulated and 680 down-regulated) were identified from tumor and normal tissues. A ceRNA network was successfully constructed and 15 DEmRNAs, 1 DEmiRNA, 2 DElncRNAs associated with prognosis were employed. Furthermore, we firstly identified 2 molecular subtypes, basal and differentiated, and found that differentiated subtype consumed less alcohol and was related to a better overall survival. CONCLUSION The study constructed a ceRNA network and identified molecular subtypes of TSCC, and our findings provided a novel insight into this intractable cancer and potential therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Zaiye Li
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongxiang Yuan
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Peltanova B, Raudenska M, Masarik M. Effect of tumor microenvironment on pathogenesis of the head and neck squamous cell carcinoma: a systematic review. Mol Cancer 2019; 18:63. [PMID: 30927923 PMCID: PMC6441173 DOI: 10.1186/s12943-019-0983-5] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor microenvironment (TME) is comprised of many different cell populations, such as cancer-associated fibroblasts and various infiltrating immune cells, and non-cell components of extracellular matrix. These crucial parts of the surrounding stroma can function as both positive and negative regulators of all hallmarks of cancer development, including evasion of apoptosis, induction of angiogenesis, deregulation of the energy metabolism, resistance to the immune detection and destruction, and activation of invasion and metastasis. This review represents a summary of recent studies focusing on describing these effects of microenvironment on initiation and progression of the head and neck squamous cell carcinoma, focusing on oral squamous cell carcinoma, since it is becoming clear that an investigation of differences in stromal composition of the head and neck squamous cell carcinoma microenvironment and their impact on cancer development and progression may help better understand the mechanisms behind different responses to therapy and help define possible targets for clinical intervention.
Collapse
Affiliation(s)
- Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595,, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
28
|
Park SJ, Smith CP, Wilbur RR, Cain CP, Kallu SR, Valasapalli S, Sahoo A, Guda MR, Tsung AJ, Velpula KK. An overview of MCT1 and MCT4 in GBM: small molecule transporters with large implications. Am J Cancer Res 2018; 8:1967-1976. [PMID: 30416849 PMCID: PMC6220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 06/09/2023] Open
Abstract
Monocarboxylate transporters (MCTs) represent a diverse group of transmembrane proteins encoded by the SLC16 gene family found ubiquitously across mammalian species. Two members of this family, MCT1 and MCT4, have been linked to key roles in the metabolic activity of tissues through the proton-coupled transport of monocarboxylates, most notably L-lactate, ketone bodies, and pyruvate. This review aims to provide an overview of MCT1 and MCT4, followed by the implications of their expression in a multitude of cancers and in glioblastoma (GBM) specifically. Further, the possible mechanisms underlying these effects will be discussed. Given the relationships between MCT1 and MCT4 and cancer, they offer a unique opportunity for novel treatment strategies. We aim to explore current therapies focused on MCT1 and MCT4 and propose future studies to better understand their role in GBM to optimize future treatment regimens.
Collapse
Affiliation(s)
- Simon J Park
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Chase P Smith
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Ryan R Wilbur
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Charles P Cain
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Sankeerth R Kallu
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Srijan Valasapalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Arpit Sahoo
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| |
Collapse
|
29
|
Bisetto S, Whitaker-Menezes D, Wilski NA, Tuluc M, Curry J, Zhan T, Snyder CM, Martinez-Outschoorn UE, Philp NJ. Monocarboxylate Transporter 4 (MCT4) Knockout Mice Have Attenuated 4NQO Induced Carcinogenesis; A Role for MCT4 in Driving Oral Squamous Cell Cancer. Front Oncol 2018; 8:324. [PMID: 30211114 PMCID: PMC6120975 DOI: 10.3389/fonc.2018.00324] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/30/2018] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the 6th most common human cancer and affects approximately 50,000 new patients every year in the US. The major risk factors for HNSCC are tobacco and alcohol consumption as well as oncogenic HPV infections. Despite advances in therapy, the overall survival rate for all-comers is only 50%. Understanding the biology of HNSCC is crucial to identifying new biomarkers, implementing early diagnostic approaches and developing novel therapies. As in several other cancers, HNSCC expresses elevated levels of MCT4, a member of the SLC16 family of monocarboxylate transporters. MCT4 is a H+-linked lactate transporter which functions to facilitate lactate efflux from highly glycolytic cells. High MCT4 levels in HNSCC have been associated with poor prognosis, but the role of MCT4 in the development and progression of this cancer is still poorly understood. In this study, we used 4-nitroquinoline-1-oxide (4NQO) to induce oral cancer in MCT4-/- and wild type littermates, recapitulating the disease progression in humans. Histological analysis of mouse tongues after 23 weeks of 4NQO treatment showed that MCT4-/- mice developed significantly fewer and less extended invasive lesions than wild type. In mice, as in human samples, MCT4 was not expressed in normal oral mucosa but was detected in the transformed epithelium. In the 4NQO treated mice we detected MCT4 in foci of the basal layer undergoing transformation, and progressively in areas of carcinoma in situ and invasive carcinomas. Moreover, we found MCT4 positive macrophages within the tumor and in the stroma surrounding the lesions in both human samples of HNSCC and in the 4NQO treated animals. The results of our studies showed that MCT4 could be used as an early diagnostic biomarker of HNSCC. Our finding with the MCT4-/- mice suggest MCT4 is a driver of progression to oral squamous cell cancer and MCT4 inhibitors could have clinical benefits for preventing invasive HNSCC.
Collapse
Affiliation(s)
- Sara Bisetto
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Diana Whitaker-Menezes
- Department of Medical Oncology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nicole A. Wilski
- Department of Microbiology and Immunology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Madalina Tuluc
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Joseph Curry
- Department of Otolaryngology–Head and Neck Surgery, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Christopher M. Snyder
- Department of Microbiology and Immunology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ubaldo E. Martinez-Outschoorn
- Department of Medical Oncology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy J. Philp
- Department of Pathology, Anatomy and Cell Biology, Sydney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
30
|
Salvianolic acid B inhibits glycolysis in oral squamous cell carcinoma via targeting PI3K/AKT/HIF-1α signaling pathway. Cell Death Dis 2018; 9:599. [PMID: 29789538 PMCID: PMC5964095 DOI: 10.1038/s41419-018-0623-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022]
Abstract
Our previous study demonstrated a progressive glycolytic perturbation during the course of DMBA-induced hamster oral carcinogenesis, which was attenuated by salvianolic acid B (Sal-B) treatment along with decreased incidences of oral squamous cell carcinoma (OSCC) formation. It was proposed that metabolic modulation should be an additional mode of action attributable to Sal-B’s anti-carcinogenic activity. However, the molecular mechanisms underlying Sal-B-induced metabolic modulation function remained elusive. In the present study, we performed next-generation sequencing (NGS) profiling in the same animal model and found Sal-B treatment evoked a general downregulation of the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and hypoxia inducible factor 1α subunit (HIF-1α) signaling pathways, which might contribute to Sal-B’s metabolic modulation activity. The inhibitory effects of Sal-B on aerobic glycolysis, as well as PI3K/AKT and HIF-1α signaling pathways, were validated in two well-characterized OSCC cell lines (Cal27 and HN4), and premalignant oral Leuk1 cells and Sal-B treatment led to elevation of the loss of mitochondrial membrane potential (MMP), increased cell apoptosis, and reduced abilities of colony formation. Rescue assays suggested that compared with Sal-B treatment group, Akt or hif-1a overexpression attenuated the inhibitory effect of Sal-B on glucose uptake and intracellular lactate level. Taken together, our results suggested that Sal-B modulated aberrant glucose metabolism via the PI3K/AKT/HIF-1α signaling pathways, which might contribute to the anti-carcinogenic activity of Sal-B.
Collapse
|
31
|
Silva ECA, Cárcano FM, Bonatelli M, Zaia MG, Morais-Santos F, Baltazar F, Lopes LF, Scapulatempo-Neto C, Pinheiro C. The clinicopathological significance of monocarboxylate transporters in testicular germ cell tumors. Oncotarget 2018; 9:20386-20398. [PMID: 29755659 PMCID: PMC5945514 DOI: 10.18632/oncotarget.24910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Metabolic reprogramming is one of the hallmarks of cancer. The hyperglycolytic phenotype is often associated with the overexpression of metabolism-associated proteins, such as monocarboxylate transporters (MCTs). MCTs are little explored in germ cell tumors (GCTs), thus, the opportunity to understand the relevance of these metabolic markers and their chaperone CD147 in this type of tumor arises. The main aim of this study was to evaluate the expression of MCT1, MCT2, MCT4 and CD147 in testicular GCT samples and the clinicopathological significance of these metabolism related proteins. Results MCT1, MCT4 and CD147 were associated with higher stages, higher M and N stages and histological type, while MCT4 was also associated with higher risk stratification, presence of vascular invasion, and lower overall and event free survival. MCT4 silencing in JEG-3 had no significant effect in cell viability, proliferation and death, as well as extracellular levels of glucose and lactate. However, MCT4-silenced cells showed an increase in migration and invasion. Conclusion The proteins herein studied, with the exception of MCT2, were associated with characteristics of worse prognosis, lower global and event free survival of patients with GCTs. Also, in vitro MCT4 silencing stimulated cell migration and invasion. Materials and Methods Immunohistochemical expression was evaluated on samples from 149 adult patients with testicular GCT, arranged in Tissue Microarrays (TMAs), and associated with the clinicopathological data. Also, MCT4 silencing studies using siRNA were performed in JEG-3 cells.
Collapse
Affiliation(s)
- Eduardo C A Silva
- Pathology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Flavio M Cárcano
- Medical Oncology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Maurício G Zaia
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Filipa Morais-Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luiz F Lopes
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil.,Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Pathology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Céline Pinheiro
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| |
Collapse
|
32
|
Latif A, Chadwick AL, Kitson SJ, Gregson HJ, Sivalingam VN, Bolton J, McVey RJ, Roberts SA, Marshall KM, Williams KJ, Stratford IJ, Crosbie EJ. Monocarboxylate Transporter 1 (MCT1) is an independent prognostic biomarker in endometrial cancer. BMC Clin Pathol 2017; 17:27. [PMID: 29299023 PMCID: PMC5745908 DOI: 10.1186/s12907-017-0067-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/15/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is a major health concern due to its rising incidence. Whilst early stage disease is generally cured by surgery, advanced EC has a poor prognosis with limited treatment options. Altered energy metabolism is a hallmark of malignancy. Cancer cells drive tumour growth through aerobic glycolysis and must export lactate to maintain intracellular pH. The aim of this study was to evaluate the expression of the lactate/proton monocarboxylate transporters MCT1 and MCT4 and their chaperone CD147 in EC, with the ultimate aim of directing future drug development. METHODS MCT1, MCT4 and CD147 expression was examined using immunohistochemical analysis in 90 endometrial tumours and correlated with clinico-pathological characteristics and survival outcomes. RESULTS MCT1 and MCT4 expression was observed in the cytoplasm, the plasma membrane or both locations. CD147 was detected in the plasma membrane and associated with MCT1 (p = 0.003) but not with MCT4 (p = 0.207) expression. High MCT1 expression was associated with reduced overall survival (p = 0.029) and remained statistically significant after adjustment for survival covariates (p = 0.017). CONCLUSION Our data suggest that MCT1 expression is an important marker of poor prognosis in EC. MCT1 inhibition may have potential as a treatment for advanced or recurrent EC.
Collapse
Affiliation(s)
- Ayşe Latif
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Amy L. Chadwick
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Gynaecological Oncology Research Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Level 5 – Research, St Mary’s Hospital, Oxford Road, Manchester, M13 9WL UK
| | - Sarah J. Kitson
- Gynaecological Oncology Research Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Level 5 – Research, St Mary’s Hospital, Oxford Road, Manchester, M13 9WL UK
| | - Hannah J. Gregson
- Gynaecological Oncology Research Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Level 5 – Research, St Mary’s Hospital, Oxford Road, Manchester, M13 9WL UK
| | - Vanitha N. Sivalingam
- Gynaecological Oncology Research Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Level 5 – Research, St Mary’s Hospital, Oxford Road, Manchester, M13 9WL UK
| | - James Bolton
- Department of Histopathology, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rhona J. McVey
- Department of Histopathology, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Stephen A. Roberts
- Division of Population Health, Health Services Research and Primary Care, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kay M. Marshall
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kaye J. Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ian J. Stratford
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emma J. Crosbie
- Gynaecological Oncology Research Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Level 5 – Research, St Mary’s Hospital, Oxford Road, Manchester, M13 9WL UK
- Department of Obstetrics and Gynaecology, St Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
33
|
Tassone P, Domingo-Vidal M, Whitaker-Menezes D, Lin Z, Roche M, Tuluc M, Martinez-Outschoorn U, Curry J. Metformin Effects on Metabolic Coupling and Tumor Growth in Oral Cavity Squamous Cell Carcinoma Coinjection Xenografts. Otolaryngol Head Neck Surg 2017; 158:867-877. [PMID: 29232177 DOI: 10.1177/0194599817746934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objective Many aggressive head and neck cancers contain 2 metabolically coupled tumor compartments: a glycolytic stromal compartment with low caveolin-1 (CAV1) and high monocarboxylate transporter 4 (MCT4) expression and a highly proliferative carcinoma cell compartment with high MCT1. Metabolites are shuttled by MCTs from stroma to carcinoma to fuel tumor growth. We studied the effect of carcinoma-fibroblast coinjection and metformin administration on a mouse model of head and neck squamous cell carcinoma. Study Design Xenograft head and neck squamous cell carcinoma model. Setting Basic science laboratory. Subjects and Methods Oral cavity carcinoma cells were injected alone or as coinjection with human fibroblasts into nude mice to generate xenograft tumors. Tumors were excised and stained with immunohistochemistry for markers of metabolic coupling and apoptosis, including MCT1, MCT4, CAV1, and TUNEL assay (terminal deoxynucleotidyl transferase nick end labeling). Strength of staining was assessed by a pathologist or computer-assisted pathology software. Metformin was administered orally to mice to test effects on immunohistochemical markers in xenografts. Results Coinjection tumors were 2.8-fold larger ( P = .048) and had 1.4-fold stronger MCT1 staining ( P = .016) than tumors from homotypic carcinoma cell injection. Metformin decreased the size of coinjection xenograft tumors by 45% ( P = .025). Metformin reduced MCT1 staining by 28% ( P = .05) and increased carcinoma cell apoptosis 1.8-fold as marked by TUNEL assay ( P = .005). Metformin did not have a significant effect on tumor size when CAV1 knockdown fibroblasts were used in coinjection. Conclusion Coinjection with fibroblasts increases tumor growth and metabolic coupling in oral cavity cancer xenografts. Fibroblast CAV1 expression is required for metformin to disrupt metabolic coupling and decrease xenograft size.
Collapse
Affiliation(s)
- Patrick Tassone
- 1 Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Marina Domingo-Vidal
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Diana Whitaker-Menezes
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Zhao Lin
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Megan Roche
- 2 Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Madalina Tuluc
- 3 Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Joseph Curry
- 1 Department of Otolaryngology-Head and Neck Surgery, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J, Martinez-Outschoorn U. Metabolic coupling and the Reverse Warburg Effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol 2017; 44:198-203. [PMID: 29248131 DOI: 10.1053/j.seminoncol.2017.10.004] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 01/17/2023]
Abstract
Glucose is a key metabolite used by cancer cells to generate ATP, maintain redox state and create biomass. Glucose can be catabolized to lactate in the cytoplasm, which is termed glycolysis, or alternatively can be catabolized to carbon dioxide and water in the mitochondria via oxidative phosphorylation. Metabolic heterogeneity exists in a subset of human tumors, with some cells maintaining a glycolytic phenotype while others predominantly utilize oxidative phosphorylation. Cells within tumors interact metabolically with transfer of catabolites from supporting stromal cells to adjacent cancer cells. The Reverse Warburg Effect describes when glycolysis in the cancer-associated stroma metabolically supports adjacent cancer cells. This catabolite transfer, which induces stromal-cancer metabolic coupling, allows cancer cells to generate ATP, increase proliferation, and reduce cell death. Catabolites implicated in metabolic coupling include the monocarboxylates lactate, pyruvate, and ketone bodies. Monocarboxylate transporters (MCT) are critically necessary for release and uptake of these catabolites. MCT4 is involved in the release of monocarboxylates from cells, is regulated by catabolic transcription factors such as hypoxia inducible factor 1 alpha (HIF1A) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and is highly expressed in cancer-associated fibroblasts. Conversely, MCT1 is predominantly involved in the uptake of these catabolites and is highly expressed in a subgroup of cancer cells. MYC and TIGAR, which are genes involved in cellular proliferation and anabolism, are inducers of MCT1. Profiling human tumors on the basis of an altered redox balance and intra-tumoral metabolic interactions may have important biomarker and therapeutic implications. Alterations in the redox state and mitochondrial function of cells can induce metabolic coupling. Hence, there is interest in redox and metabolic modulators as anticancer agents. Also, markers of metabolic coupling have been associated with poor outcomes in numerous human malignancies and may be useful prognostic and predictive biomarkers.
Collapse
Affiliation(s)
- Lindsay Wilde
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | - Megan Roche
- Department of Medical Oncology Thomas Jefferson University, Philadelphia, PA
| | | | | | - Nancy Philp
- Department of Cell Biology, Anatomy and Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Joseph Curry
- Department of Otolaryngology, Thomas Jefferson University, Philadelphia, PA
| | | |
Collapse
|
35
|
Granja S, Tavares-Valente D, Queirós O, Baltazar F. Value of pH regulators in the diagnosis, prognosis and treatment of cancer. Semin Cancer Biol 2017; 43:17-34. [PMID: 28065864 DOI: 10.1016/j.semcancer.2016.12.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 02/07/2023]
Abstract
Altered metabolism, associated with acidification of the extracellular milieu, is one of the major features of cancer. As pH regulation is crucial for the maintenance of all biological functions, cancer cells rely on the activity of lactate exporters and proton transporters to regulate their intracellular pH. The major players in cancer pH regulation are proton pump ATPases, sodium-proton exchangers (NHEs), monocarboxylate transporters (MCTs), carbonic anhydrases (CAs) and anion exchangers (AEs), which have been shown to be upregulated in several human malignancies. Thanks to the activity of the proton pumps and transporters, tumours acidify their microenvironment, becoming more aggressive and resistant to therapy. Thus, targeting tumour pH may contribute to more effective anticancer strategies for controlling tumour progression and therapeutic resistance. In the present study, we review the role of the main pH regulators expressed in human cancer cells, including their diagnostic and prognostic value, as well as their usefulness as therapeutic targets.
Collapse
Affiliation(s)
- Sara Granja
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Tavares-Valente
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal
| | - Odília Queirós
- IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal; CBMA - Center of Molecular and Environmental Biology/Department of Biology/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS)/School of Medicine/University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
36
|
Li CX, Sun JL, Gong ZC, Lin ZQ, Liu H. Prognostic value of GLUT-1 expression in oral squamous cell carcinoma: A prisma-compliant meta-analysis. Medicine (Baltimore) 2016; 95:e5324. [PMID: 27828852 PMCID: PMC5106058 DOI: 10.1097/md.0000000000005324] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND A variety of studies have evaluated the correlation between glucose transporter-1 (GLUT-1) expression and prognosis of oral squamous cell carcinoma (OSCC); however, the results were inconsistent and inconclusive. A meta-analysis was performed to assess the prognostic significance of GLUT-1 in OSCC. METHODS Electronic databases of PubMed, Embase, and Web of Science were searched for relevant studies. The last search was updated on July 2016. Odds ratio (OR) and 95% confidence interval (CI) were pooled to evaluate the relationship between GLUT-1 and clinical features and hazard ratio (HR) and 95% CI were combined to measure the effect of GLUT-1 on overall survival (OS). P value < 0.05 was considered as statistically significant. RESULTS A total of 13 studies with 1301 subjects were included for meta-analysis. The pooled data showed that high GLUT-1 expression was associated with advanced tumor stages (n = 7, OR = 2.99, 95% CI: 2.01-4.46, P < 0.001), higher tumor grade (n = 5, OR = 3.34, 95%CI: 1.12-9.94, P = 0.031), tumor size (n = 5, OR = 3.36, 95%CI: 2.04-5.51, P < 0.001), lymph node metastasis (n = 5, OR = 3.15, 95%CI: 1.89-5.25, P < 0.001), tobacco use (n = 3, OR = 2.18, 95%CI: 1.18-4.01, P = 0.013), and distant metastasis (n = 2, OR = 3.06, 95%CI: 1.19-7.9, P = 0.02). Furthermore, increased GLUT-1 expression was also correlated with shorter OS (n = 8, HR = 1.88, 95%CI: 1.51-2.33, P < 0.001). No significant publication bias was detected in this meta-analysis. CONCLUSION GLUT-1 overexpression was in connection with aggressive clinical features and worse OS in OSCC. However, further studies are still needed to verify whether GLUT-1 could serve as a prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Chen-Xi Li
- Department of Oral and Maxillofacial Oncology Surgery, Stomatological Medical Center, The First Affiliated Hospital of Xinjiang Medical University
| | - Jia-Lin Sun
- School of Public Health, Xinjiang Medical University
| | - Zhong-Cheng Gong
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Autonomous Region, China
| | - Zhao-Quan Lin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Autonomous Region, China
| | - Hui Liu
- Department of Oral and Maxillofacial Oncology Surgery, Stomatological Medical Center, The First Affiliated Hospital of Xinjiang Medical University
- Correspondence: Hui Liu, Department of Oral and Maxillofacial Oncology Surgery, Stomatological Medical Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, Xinjiang Autonomous Region 830054, P. R. China (e-mail: )
| |
Collapse
|