1
|
Paulsen B, Piechota S, Barrachina F, Giovannini A, Kats S, Potts KS, Rockwell G, Marchante M, Estevez SL, Noblett AD, Figueroa AB, Aschenberger C, Kelk DA, Forti M, Marcinyshyn S, Wiemer K, Sanchez M, Belchin P, Lee JA, Buyuk E, Slifkin RE, Smela MP, Fortuna PRJ, Chatterjee P, McCulloh DH, Copperman AB, Ordonez-Perez D, Klein JU, Kramme CC. Rescue in vitro maturation using ovarian support cells of human oocytes from conventional stimulation cycles yields oocytes with improved nuclear maturation and transcriptomic resemblance to in vivo matured oocytes. J Assist Reprod Genet 2024; 41:2021-2036. [PMID: 38814543 PMCID: PMC11339229 DOI: 10.1007/s10815-024-03143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE Determine if the gene expression profiles of ovarian support cells (OSCs) and cumulus-free oocytes are bidirectionally influenced by co-culture during in vitro maturation (IVM). METHODS Fertility patients aged 25 to 45 years old undergoing conventional ovarian stimulation donated denuded immature oocytes for research. Oocytes were randomly allocated to either OSC-IVM culture (intervention) or Media-IVM culture (control) for 24-28 h. The OSC-IVM culture condition was composed of 100,000 OSCs in suspension culture with human chorionic gonadotropin (hCG), recombinant follicle stimulating hormone (rFSH), androstenedione, and doxycycline supplementation. The Media-IVM control lacked OSCs and contained the same supplementation. A limited set of in vivo matured MII oocytes were donated for comparative evaluation. Endpoints consisted of MII formation rate, morphological and spindle quality assessment, and gene expression analysis compared to in vitro and in vivo controls. RESULTS OSC-IVM resulted in a statistically significant improvement in MII formation rate compared to the Media-IVM control, with no apparent effect on morphology or spindle assembly. OSC-IVM MII oocytes displayed a closer transcriptomic maturity signature to IVF-MII controls than Media-IVM control MII oocytes. The gene expression profile of OSCs was modulated in the presence of oocytes, displaying culture- and time-dependent differential gene expression during IVM. CONCLUSION The OSC-IVM platform is a novel tool for rescue maturation of human oocytes, yielding oocytes with improved nuclear maturation and a closer transcriptomic resemblance to in vivo matured oocytes, indicating a potential enhancement in oocyte cytoplasmic maturation. These improvements on oocyte quality after OSC-IVM are possibly occurring through bidirectional crosstalk of cumulus-free oocytes and ovarian support cells.
Collapse
Affiliation(s)
- Bruna Paulsen
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Simone Kats
- Gameto Inc., 430 E. 29th St Fl 14, New York, NY, 10016, USA
| | | | | | | | - Samantha L Estevez
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | | | | | | | | | - Marta Sanchez
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Pedro Belchin
- Ruber Juan Bravo University Hospital, Eugin Group, Madrid, Spain
| | - Joseph A Lee
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Erkan Buyuk
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Rick E Slifkin
- Reproductive Medicine Associates of New York, New York, NY, USA
| | - Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | | | - Alan B Copperman
- Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Reproductive Medicine Associates of New York, New York, NY, USA
| | | | | | | |
Collapse
|
2
|
Bai L, Xiang Y, Tang M, Liu S, Chen Q, Chen Q, Zhang M, Wan S, Sang Y, Li Q, Wang S, Li Z, Song Y, Hu X, Mao L, Feng G, Cui L, Ye Y, Zhu Y. ALKBH5 controls the meiosis-coupled mRNA clearance in oocytes by removing the N 6-methyladenosine methylation. Nat Commun 2023; 14:6532. [PMID: 37848452 PMCID: PMC10582257 DOI: 10.1038/s41467-023-42302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
N6-methyladenosine (m6A) maintains maternal RNA stability in oocytes. One regulator of m6A, ALKBH5, reverses m6A deposition and is essential in RNA metabolism. However, the specific role of ALKBH5 in oocyte maturation remains elusive. Here, we show that Alkbh5 depletion causes a wide range of defects in oocyte meiosis and results in female infertility. Temporal profiling of the maternal transcriptomes revealed striking RNA accumulation in Alkbh5-/- oocytes during meiotic maturation. Analysis of m6A dynamics demonstrated that ALKBH5-mediated m6A demethylation ensures the timely degradation of maternal RNAs, which is severely disrupted following Alkbh5-/- depletion. A distinct subset of transcripts with persistent m6A peaks are recognized by the m6A reader IGF2BP2 and thus remain stabilized, resulting in impaired RNA clearance. Additionally, reducing IGF2BP2 in Alkbh5-depleted oocytes partially rescued these defects. Overall, this work identifies ALKBH5 as a key determinant of oocyte quality and unveil the facilitating role of ALKBH5-mediated m6A removal in maternal RNA decay.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| | - Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Minyue Tang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Shuangying Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qingqing Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qichao Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Min Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Shan Wan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yimiao Sang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qingfang Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Sisi Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zhekun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yang Song
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiaoling Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Guofang Feng
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
3
|
E Z, Zhao Y, Sun J, Zhang X, Jin Q, Gao Q. Glyphosate decreases bovine oocyte quality by inducing oxidative stress and apoptosis. ZYGOTE 2022; 30:704-711. [PMID: 35677960 DOI: 10.1017/s0967199422000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Glyphosate is a universal herbicide with genital toxicity, but the effect of glyphosate on oocytes has not been reported. This study aimed to evaluate the effect of glyphosate (0, 10, 20, 50 and 100 mM) on bovine oocyte in vitro maturation. We showed that 50 mM glyphosate adversely affects the development of bovine oocytes. Exposure of oocytes to 50 mM glyphosate caused an abnormal reduction in oxidative (redox) levels compared with that in the control group, with a significantly higher reactive oxide species level (P < 0.05) and significantly lower glutathione (GSH) expression (P < 0.05). Additionally, the mRNA levels of antioxidant genes (SOD1, SOD2, SIRT2, SIRT3) and the mitochondrial membrane potential (MMP) were significantly reduced (P < 0.05). Furthermore, treatment with 50 mM glyphosate-induced apoptosis, and the mRNA levels of the apoptotic genes Caspase-3 and Caspase-4 were significantly higher than those in the control group (P < 0.05); however, the mRNA level of BAX was significantly higher than that in the control group (P < 0.01). Additionally, the mRNA levels of the anti-apoptotic genes Survivin and BCL-XL were significantly lower than those in the control group (P < 0.05), and oocyte quality was adversely affected. Together, our results confirmed that glyphosate impairs the quality of oocytes by promoting abnormal oocyte redox levels and apoptosis.
Collapse
Affiliation(s)
- Zhiqiang E
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
- College of Agriculture, Yanbian University, China
- Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China
| | - Yuhan Zhao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
- College of Agriculture, Yanbian University, China
- Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China
| | - Jingyu Sun
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
- College of Agriculture, Yanbian University, China
- Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China
| | - Xiaomeng Zhang
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
- College of Agriculture, Yanbian University, China
- Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China
| | - Qingguo Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
- College of Agriculture, Yanbian University, China
- Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China
| | - Qingshan Gao
- Engineering Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Ministry of Education, Yanbian University, Yanji, 133002, China
- College of Agriculture, Yanbian University, China
- Jilin Engineering Research Center of Yanbian Yellow Cattle Resources Reservation, China
| |
Collapse
|
7
|
Yang M, Jin Y, Fan S, Liang X, Jia J, Tan Z, Huang T, Li Y, Ma T, Li M. Inhibition of neddylation causes meiotic arrest in mouse oocyte. Cell Cycle 2019; 18:1254-1267. [PMID: 31111756 DOI: 10.1080/15384101.2019.1617453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mammalian oocyte meiosis is a special form of cell division that provides haploid gametes for fertilization. Unlike in mitosis, post-translational modifications (PTMs) are more crucial during meiosis because of the absence of de novo mRNA transcription. As a classic PTM, protein neddylation is a biological process that mediates protein degradation by modifying cullin proteins and activating the Cullin-Ring E3 ligases. This process plays important roles in various biological processes such as autophagy and tumorigenesis. However, the function of neddylation in germ cells is unknown. In this study, we observed that the inhibition of neddylation by its specific inhibitor MLN4924 significantly arrests mouse oocyte at the stage of metaphase during meiosis. The arrested oocytes display impaired spindles with over-activation of spindle assembly checkpoint (SAC). Accordingly, we identified early mitosis inhibitor 1 (Emi1), a key inhibitor of anaphase-promoting complex/cyclosome (APC/CFzr1), as a substrate of neddylation-mediated protein degradation. Thus, our study uncovered an unknown role of neddylation in female germ cells and suggests that proper neddylation is essential for oocyte maturation.
Collapse
Affiliation(s)
- Mo Yang
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| | - Yimei Jin
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| | - Siying Fan
- c The Affiliated High School of Peking University , Beijing , China
| | - Xiaoling Liang
- d Department of Obstetrics and Gynecology , Peking University Shenzhen Hospital , Shenzhen , China
| | - Jialin Jia
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| | - Zhongzhou Tan
- e School of Basic Medical Sciences , Peking University , Beijing , China
| | - Tao Huang
- e School of Basic Medical Sciences , Peking University , Beijing , China
| | - Yuan Li
- f Medical Center for Human Reproduction, Beijing Chaoyang Hospital , Capital Medical University , Beijing , China
| | - Teng Ma
- g Department of Cellular and Molecular Biology , Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute , Beijing , China.,h Beijing Key Laboratory for Radiobiology, Department of Radiation Toxicology and Oncology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Mo Li
- a Center for Reproductive Medicine, Department of Obstetrics and Gynecology , Peking University Third Hospital , Beijing , China.,b Key Laboratory of Assisted Reproduction , Ministry of Education , Beijing , China
| |
Collapse
|