1
|
Fischer M, Sammons MA. Determinants of p53 DNA binding, gene regulation, and cell fate decisions. Cell Death Differ 2024; 31:836-843. [PMID: 38951700 PMCID: PMC11239874 DOI: 10.1038/s41418-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024] Open
Abstract
The extent to which transcription factors read and respond to specific information content within short DNA sequences remains an important question that the tumor suppressor p53 is helping us answer. We discuss recent insights into how local information content at p53 binding sites might control modes of p53 target gene activation and cell fate decisions. Significant prior work has yielded data supporting two potential models of how p53 determines cell fate through its target genes: a selective target gene binding and activation model and a p53 level threshold model. Both of these models largely revolve around an analogy of whether p53 is acting in a "smart" or "dumb" manner. Here, we synthesize recent and past studies on p53 decoding of DNA sequence, chromatin context, and cellular signaling cascades to elicit variable cell fates critical in human development, homeostasis, and disease.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745, Jena, Germany.
| | - Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, The State University of New York at Albany, 1400 Washington Avenue, Albany, NY, 12222, USA.
| |
Collapse
|
2
|
Abukwaik R, Vera-Siguenza E, Tennant DA, Spill F. Interplay of p53 and XIAP protein dynamics orchestrates cell fate in response to chemotherapy. J Theor Biol 2023; 572:111562. [PMID: 37348784 DOI: 10.1016/j.jtbi.2023.111562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Chemotherapeutic drugs are used to treat almost all types of cancer, but the intended response, i.e., elimination, is often incomplete, with a subset of cancer cells resisting treatment. Two critical factors play a role in chemoresistance: the p53 tumour suppressor gene and the X-linked inhibitor of apoptosis (XIAP). These proteins have been shown to act synergistically to elicit cellular responses upon DNA damage induced by chemotherapy, yet, the mechanism is poorly understood. This study introduces a mathematical model characterising the apoptosis pathway activation by p53 before and after mitochondrial outer membrane permeabilisation upon treatment with the chemotherapy Doxorubicin (Dox). "In-silico" simulations show that the p53 dynamics change dose-dependently. Under medium to high doses of Dox, p53 concentration ultimately stabilises to a high level regardless of XIAP concentrations. However, caspase-3 activation may be triggered or not depending on the XIAP induction rate, ultimately determining whether the cell will perish or resist. Consequently, the model predicts that failure to activate apoptosis in some cancer cells expressing wild-type p53 might be due to heterogeneity between cells in upregulating the XIAP protein, rather than due to the p53 protein concentration. Our model suggests that the interplay of the p53 dynamics and the XIAP induction rate is critical to determine the cancer cells' therapeutic response.
Collapse
Affiliation(s)
- Roba Abukwaik
- Mathematics Department, Faculty of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia; School of Mathematics, University of Birmingham, B15 2TS, United Kingdom.
| | - Elias Vera-Siguenza
- School of Mathematics, University of Birmingham, B15 2TS, United Kingdom; Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom.
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Fabian Spill
- School of Mathematics, University of Birmingham, B15 2TS, United Kingdom.
| |
Collapse
|
3
|
Longhitano L, Vicario N, Forte S, Giallongo C, Broggi G, Caltabiano R, Barbagallo GMV, Altieri R, Raciti G, Di Rosa M, Caruso M, Parenti R, Liso A, Busi F, Lolicato M, Mione MC, Li Volti G, Tibullo D. Lactate modulates microglia polarization via IGFBP6 expression and remodels tumor microenvironment in glioblastoma. Cancer Immunol Immunother 2023; 72:1-20. [PMID: 35654889 PMCID: PMC9813126 DOI: 10.1007/s00262-022-03215-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023]
Abstract
Lactic acidosis has been reported in solid tumor microenvironment (TME) including glioblastoma (GBM). In TME, several signaling molecules, growth factors and metabolites have been identified to induce resistance to chemotherapy and to sustain immune escape. In the early phases of the disease, microglia infiltrates TME, contributing to tumorigenesis rather than counteracting its growth. Insulin-like Growth Factor Binding Protein 6 (IGFBP6) is expressed during tumor development, and it is involved in migration, immune-escape and inflammation, thus providing an attractive target for GBM therapy. Here, we aimed at investigating the crosstalk between lactate metabolism and IGFBP6 in TME and GBM progression. Our results show that microglia exposed to lactate or IGFBP6 significantly increased the Monocarboxylate transporter 1 (MCT1) expression together with genes involved in mitochondrial metabolism. We, also, observed an increase in the M2 markers and a reduction of inducible nitric oxide synthase (iNOS) levels, suggesting a role of lactate/IGFBP6 metabolism in immune-escape activation. GBM cells exposed to lactate also showed increased levels of IGFBP6 and vice-versa. Such a phenomenon was coupled with a IGFBP6-mediated sonic hedgehog (SHH) ignaling increase. We, finally, tested our hypothesis in a GBM zebrafish animal model, where we observed an increase in microglia cells and igfbp6 gene expression after lactate exposure. Our results were confirmed by the analysis of human transcriptomes datasets and immunohistochemical assay from human GBM biopsies, suggesting the existence of a lactate/IGFBP6 crosstalk in microglial cells, so that IGFBP6 expression is regulated by lactate production in GBM cells and in turn modulates microglia polarization.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Forte
- IOM Ricerca, 95029 Viagrande, CT Italy ,Department of Medical and Surgical Sciences and Advanced Technologies, F. Ingrassia, Anatomic Pathology, University of Catania, Catania, Italy
| | | | - Giuseppe Broggi
- Department of Drug Sciences, University of Catania, Catania, Italy
| | | | | | - Roberto Altieri
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Giuseppina Raciti
- Department of Medical and Surgical Sciences, University of Foggia, 71100 Foggia, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Massimo Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Arcangelo Liso
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Federica Busi
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maria Caterina Mione
- Department of Cellular, Computational and Integrative Biology Cibio, University of Trento, 38123 Trento, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
4
|
Erman B. Gaussian network model revisited: Effects of mutation and ligand binding on protein behavior. Phys Biol 2022; 19. [PMID: 35105836 DOI: 10.1088/1478-3975/ac50ba] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/01/2022] [Indexed: 11/12/2022]
Abstract
The coarse-grained Gaussian Network model, GNM, considers only the alpha carbons of the folded protein. Therefore it is not directly applicable to the study of mutation or ligand binding problems where atomic detail is required. This shortcoming is improved by including all atom pairs within the coordination shell of each other into the Kirchoff Adjacency Matrix. Counting all contacts rather than only alpha carbon contacts diminishes the magnitude of fluctuations in the system. But more importantly, it changes the graph-like connectivity structure, i.e., the Kirchoff Adjacency Matrix of the protein. This change depends on amino acid type which introduces amino acid specific and position specific information into the classical coarse-grained GNM which was originally modelled in analogy with the phantom network model of rubber elasticity. With this modification, it is now possible to explain the consequences of mutation and ligand binding on residue fluctuations, their pair-correlations and mutual information (MI) shared by each pair. We refer to the new model as 'all-atom GNM'. Using examples from published data we show that the all-atom GNM gives B-factors that are in better agreement with experiment, can explain effects of mutation on long range communication in PDZ domains and can predict effects of GDP and GTP binding on the dimerization of KRAS.
Collapse
Affiliation(s)
- Burak Erman
- Department of Chemical and Biological Engineering, Koc University, Rumeifeneri Yolu, Istanbul, Istanbul, 34450, TURKEY
| |
Collapse
|
5
|
Lanna C, Mancini M, Gaziano R, Cannizzaro MV, Galluzzo M, Talamonti M, Rovella V, Annicchiarico-Petruzzelli M, Melino G, Wang Y, Shi Y, Campione E, Bianchi L. Skin immunity and its dysregulation in psoriasis. Cell Cycle 2019; 18:2581-2589. [PMID: 31416396 DOI: 10.1080/15384101.2019.1653099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The skin is a peripheral lymphoid organ, being the first immunological defense against infections as the initial interface between the organism and the external background. The maintenance of the skin immune homeostasis depends on a finely equilibrium of well-regulated relations between different cells and exogenous pathogens. Inflammatory skin diseases are directly linked to the dysregulation of this equilibrium. The present review discusses the role of the immune system, of T cells, in the etiopathogenesis of psoriasis, illustrating a potential rationale for innovative therapeutic intervention.
Collapse
Affiliation(s)
- Caterina Lanna
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Mara Mancini
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS) , Rome , Italy
| | - Roberta Gaziano
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata , Rome , Italy
| | - Maria Vittoria Cannizzaro
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Marco Galluzzo
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Marina Talamonti
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Valentina Rovella
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS) , Rome , Italy
| | | | - Gerry Melino
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS) , Rome , Italy.,Department of Experimental Medicine, TOR, University of Rome Tor Vergata , Rome , Italy
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai , China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences/Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Chinese Academy of Sciences , Shanghai , China.,The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University Medical College , Suzhou , Jiangsu , 215123 , China
| | - Elena Campione
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| | - Luca Bianchi
- Unit of Dermatology, Department of Systems Medicine, University of Rome 'Tor Vergata' , Rome , Italy
| |
Collapse
|