1
|
Sato J, Nakano K, Miyazaki H. Decreased intracellular chloride enhances cell migration and invasion via activation of the ERK1/2 signaling pathway in DU145 human prostate carcinoma cells. Biochem Biophys Res Commun 2023; 685:149170. [PMID: 37924777 DOI: 10.1016/j.bbrc.2023.149170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Our previous study revealed that changes of the intracellular Cl- concentration ([Cl-]i) affected cell proliferation in cancer cells. However, the role of Cl- on cell migration and invasion in cancer cells remains unanalyzed. Therefore, the aim of the present study is to investigate whether changes of [Cl-]i affects cell migration and invasion of cancer cells. In human prostate cancer DU145 cells, cell migration and invasion were enhanced by culturing in the low Cl- medium (replacement of Cl- by NO3-). We also found that DU145 cells in the low Cl- condition caused significant transient ERK1/2 activation followed by an increase of MMP-1 mRNA levels. Inhibition of ERK1/2 activation in the low Cl- condition reduced enhancement of MMP-1 mRNA levels and decreased cell migration and invasion. These observations indicate that [Cl-]i plays important roles in metastatic function by regulating the ERK1/2 signaling pathway in human prostate cancer cells, and intracellular Cl- would be one of the key targets for anti-cancer therapy.
Collapse
Affiliation(s)
- Junichi Sato
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Koya Nakano
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan
| | - Hiroaki Miyazaki
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, Japan.
| |
Collapse
|
2
|
Sun H, Zhang H, Jing L, Zhao H, Chen B, Song W. FBP1 is a potential prognostic biomarker and correlated with tumor immunosuppressive microenvironment in glioblastoma. Neurosurg Rev 2023; 46:187. [PMID: 37507483 DOI: 10.1007/s10143-023-02097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023]
Abstract
Hypoxia has been shown to contribute to tumor immunosuppressive microenvironment and is an effective prognostic indicator. This study aimed to screen prognostic hypoxia-related genes (HRGs) in glioblastoma and investigate the association between HRGs and tumor immunosuppressive microenvironment. The glioblastoma-related mRNA data were collected from TCGA, GEO, and CGGA databases. Totally 200 HRGs were obtained from the GSEA website. The prognostic HRGs were screened by univariate Cox regression analysis. Somatic mutation data of glioblastoma from TCGA was visualized using the "maftools" of R package. Immune cell infiltration proportions were calculated by CIBERSORT. The TISIDB online tool was applied to analyze the relationship between HRGs and immunoinhibitors as well as the HRG expression in different glioblastoma immune and molecular subtypes. Hub gene's mRNA and protein levels in cell lines were determined by qRT-PCR and western blot, respectively. The effects of hub gene knockdown on cell viability and migration ability were evaluated employing CCK8 and wound healing assays. The univariate Cox regression showed that high level of FBP1 (fructose-1,6-bisphosphatase 1) was a poor prognostic biomarker, and FBP1 was mainly expressed in lymphocyte depleted immune subtype of glioblastoma. High FBP1 mRNA and protein levels have been successfully validated in vitro. The somatic mutation analysis suggested that TP53 mutation rate was the highest in the high FBP1 glioblastoma group, while EGFR mutation rate was the highest in the low FBP1 glioblastoma group. In the high FBP1 group, the infiltration proportions and types of immune cells were less, dominated by macrophages M2, and the expression of CTLA4, LAG3, TIGIT, PDL1, and PDL2 was significantly upregulated. The expression of FBP1 was positively correlated with several immunoinhibitors, such as IL-10 and TGFβ-1. In conclusion, we demonstrated that FBP1 could serve as a prognostic biomarker for glioblastoma. The immune microenvironment in the high FBP1 group might be suppressed by up-regulating immune checkpoints and immunoinhibitors.
Collapse
Affiliation(s)
- Hu Sun
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Hui Zhang
- Department of Cardiology, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Lijie Jing
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Hao Zhao
- Department of Neurosurgery, Zibo Central Hospital, 255000 Zibo, Shandong, China
| | - Bing Chen
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 1677 Wutaishan Road, Huangdao District, Qingdao, 266000, Shandong, China.
| | - Wei Song
- Department of Breast and Thyroid Surgery, Zibo Central Hospital, No. 54 Gongqingtuan West Road, 255000 Zibo, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Yang S, Gao W, Wang H, Zhang X, Mi Y, Ding Y, Geng C, Zhang J, Cheng M, Li S. Role of PAX2 in breast cancer verified by bioinformatics analysis and in vitro validation. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:58. [PMID: 36819548 PMCID: PMC9929765 DOI: 10.21037/atm-22-6360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/06/2023] [Indexed: 01/30/2023]
Abstract
Background Breast cancer (BC) is the most frequently diagnosed cancer in women and the second most common cancer among newly diagnosed cancers worldwide. Studies have shown that paired box 2 (PAX2) participates in the tumorigenesis of some cancer cells, but its role in BC is still unclear. Methods Transcriptome expression profiles and clinicopathological information of BC were downloaded from The Cancer Genome Atlas (TCGA) database to explore the expression level and prognostic value of PAX2. Gene set enrichment analysis (GSEA) and functional enrichment analysis were performed to investigate the functions and pathways of PAX2. Moreover, real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) was used to determine the expression of PAX2 in BC tissues, and the predictive value of PAX2 in clinical samples was assessed. Cell Counting Kit-8 (CCK-8) assay was used to evaluate cell growth. The migration and invasive capacities of cells were assessed by wound healing assay and Transwell assay. Results PAX2 was upregulated in the TCGA-BC datasets. GSEA suggested that PAX2 may be involved in the regulation of signaling pathways such as MAPK. Moreover, PAX2 was overexpressed in BC tissues, and PAX2 expression was associated with tumor size and lymph node metastasis. PAX2 deficiency could promote the growth, migration, and invasion of BC cells. Conclusions Upregulation of PAX2 inhibited BC cell growth, migration, and invasion, making PAX2 a potential therapeutic target for BC.
Collapse
Affiliation(s)
- Shan Yang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Gao
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haoqi Wang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi Zhang
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunzhe Mi
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yawen Ding
- Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cuizhi Geng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Zhang
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Cheng
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Sainan Li
- Breast Center Department, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Xu Y, Tran L, Tang J, Nguyen V, Sewell E, Xiao J, Hino C, Wasnik S, Francis-Boyle OL, Zhang KK, Xie L, Zhong JF, Baylink DJ, Chen CS, Reeves ME, Cao H. FBP1-Altered Carbohydrate Metabolism Reduces Leukemic Viability through Activating P53 and Modulating the Mitochondrial Quality Control System In Vitro. Int J Mol Sci 2022; 23:ijms231911387. [PMID: 36232688 PMCID: PMC9570078 DOI: 10.3390/ijms231911387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML)—the most frequent form of adult blood cancer—is characterized by heterogeneous mechanisms and disease progression. Developing an effective therapeutic strategy that targets metabolic homeostasis and energy production in immature leukemic cells (blasts) is essential for overcoming relapse and improving the prognosis of AML patients with different subtypes. With respect to metabolic regulation, fructose-1,6-bisphosphatase 1 (FBP1) is a gluconeogenic enzyme that is vital to carbohydrate metabolism, since gluconeogenesis is the central pathway for the production of important metabolites and energy necessary to maintain normal cellular activities. Beyond its catalytic activity, FBP1 inhibits aerobic glycolysis—known as the “Warburg effect”—in cancer cells. Importantly, while downregulation of FBP1 is associated with carcinogenesis in major human organs, restoration of FBP1 in cancer cells promotes apoptosis and prevents disease progression in solid tumors. Recently, our large-scale sequencing analyses revealed FBP1 as a novel inducible therapeutic target among 17,757 vitamin-D-responsive genes in MV4-11 or MOLM-14 blasts in vitro, both of which were derived from AML patients with FLT3 mutations. To investigate FBP1′s anti-leukemic function in this study, we generated a new AML cell line through lentiviral overexpression of an FBP1 transgene in vitro (named FBP1-MV4-11). Results showed that FBP1-MV4-11 blasts are more prone to apoptosis than MV4-11 blasts. Mechanistically, FBP1-MV4-11 blasts have significantly increased gene and protein expression of P53, as confirmed by the P53 promoter assay in vitro. However, enhanced cell death and reduced proliferation of FBP1-MV4-11 blasts could be reversed by supplementation with post-glycolytic metabolites in vitro. Additionally, FBP1-MV4-11 blasts were found to have impaired mitochondrial homeostasis through reduced cytochrome c oxidase subunit 2 (COX2 or MT-CO2) and upregulated PTEN-induced kinase (PINK1) expressions. In summary, this is the first in vitro evidence that FBP1-altered carbohydrate metabolism and FBP1-activated P53 can initiate leukemic death by activating mitochondrial reprogramming in AML blasts, supporting the clinical potential of FBP1-based therapies for AML-like cancers.
Collapse
Affiliation(s)
- Yi Xu
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Correspondence: ; Tel.: +1-909-651-5887
| | - Lily Tran
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Janet Tang
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Vinh Nguyen
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Elisabeth Sewell
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Jeffrey Xiao
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Christopher Hino
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Samiksha Wasnik
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Olivia L. Francis-Boyle
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Pathology & Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ke K. Zhang
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
- Center for Epigenetics & Disease Prevention, Institute of Biosciences & Technology, College of Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77030, USA
| | - Jiang F. Zhong
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Basic Science, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - David J. Baylink
- Division of Regenerative Medicine, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
| | - Chien-Shing Chen
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Mark E. Reeves
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| | - Huynh Cao
- Division of Hematology and Oncology, Department of Medicine, Loma Linda University, Loma Linda, CA 92354, USA
- Cancer Center, Loma Linda University, Loma Linda, CA 92354, USA
| |
Collapse
|
5
|
Feng D, Zhu W, You J, Shi X, Han P, Wei W, Wei Q, Yang L. Mitochondrial Aldehyde Dehydrogenase 2 Represents a Potential Biomarker of Biochemical Recurrence in Prostate Cancer Patients. Molecules 2022; 27:6000. [PMID: 36144737 PMCID: PMC9500792 DOI: 10.3390/molecules27186000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We aimed to explore the role of mitochondrial aldehyde dehydrogenase 2 (ALDH2) in prostate cancer (PCa) patients and provide insights into the tumor immune microenvironment (TME) for those patients undergoing radical radiotherapy. METHODS We performed all analyses using R version 3.6.3 and its suitable packages. Cytoscape 3.8.2 was used to establish network of competing endogenous RNAs (ceRNAs). RESULTS Downregulation of ADLH2 was significantly associated with higher risk of BCR-free survival (HR: 0.40, 95%CI: 0.24-0.68, p = 0.001) and metastasis-free survival (HR: 0.21, 95%CI: 0.09-0.49, p = 0.002). Additionally, ALDH2 repression contributed to significantly shorter BCR-free survival in the TCGA database (HR: 0.55, 95%CI: 0.33-0.93, p = 0.027). For immune checkpoints, patients that expressed a higher level of CD96 had a higher risk of BCR than their counterparts (HR: 1.79, 95%CI: 1.06-3.03, p = 0.032), as well as NRP1 (HR: 2.18, 95%CI: 1.29-3.69, p = 0.005). In terms of the TME parameters, the spearman analysis showed that ALDH was positively associated with B cells (r: 0.13), CD8+ T cells (r: 0.19), neutrophils (r: 0.13), and macrophages (r: 0.17). Patients with higher score of neutrophils (HR: 1.75, 95%CI: 1.03-2.95, p = 0.038), immune score (HR: 1.92, 95%CI: 1.14-3.25, p = 0.017), stromal score (HR: 2.52, 95%CI: 1.49-4.26, p = 0.001), and estimate score (HR: 1.81, 95%CI: 1.07-3.06, p = 0.028) had higher risk of BCR than their counterparts. Our ceRNA network found that PART1 might regulate the expression of ALDH via has-miR-578 and has-miR-6833-3p. Besides, PHA-793887, PI-103, and piperlongumine had better correlations with ALDH2. CONCLUSIONS We found that ALDH2 might serve as a potential biomarker predicting biochemical recurrence for PCa patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Essential role of aerobic glycolysis in epithelial-to-mesenchymal transition during carcinogenesis. Clin Transl Oncol 2022; 24:1844-1855. [PMID: 35751743 DOI: 10.1007/s12094-022-02851-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 10/17/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) confers the most lethal characteristics to cancer cells i.e., metastasis and resistance to chemo-and-radio-therapy, and therefore exhibit an appealing target in the field of oncology. Research in the past decade has demonstrated the crucial role of aerobic glycolysis in EMT, which is generally credited as the glucose metabolism for the creation of biomass such as fatty acids, amino acids, and nucleotides thereby providing building blocks for limitless proliferation. In the present review, apart from discussing EMT's evident role in the metastatic process and cancer stemness, we also talked about the vital role of glycolytic enzymes viz. GLUTs, HKs, PGI, PFK-1, aldolase, enolase, PK, LDHA, etc. in the induction of the EMT process in cancerous cells.
Collapse
|
7
|
Li CH, Chan MH, Chang YC. The role of fructose 1,6-bisphosphate-mediated glycolysis/gluconeogenesis genes in cancer prognosis. Aging (Albany NY) 2022; 14:3233-3258. [PMID: 35404841 PMCID: PMC9037270 DOI: 10.18632/aging.204010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022]
Abstract
Metabolic reprogramming and elevated glycolysis levels are associated with tumor progression. However, despite cancer cells selectively inhibiting or expressing certain metabolic enzymes, it is unclear whether differences in gene profiles influence patient outcomes. Therefore, identifying the differences in enzyme action may facilitate discovery of gene ontology variations to characterize tumors. Fructose-1,6-bisphosphate (F-1,6-BP) is an important intermediate in glucose metabolism, particularly in cancer. Gluconeogenesis and glycolysis require fructose-1,6-bisphosphonates 1 (FBP1) and fructose-bisphosphate aldolase A (ALDOA), which participate in F-1,6-BP conversion. Increased expression of ALDOA and decreased expression of FBP1 are associated with the progression of various forms of cancer in humans. However, the exact molecular mechanism by which ALDOA and FBP1 are involved in the switching of F-1,6-BP is not yet known. As a result of their pancancer pattern, the relationship between ALDOA and FBP1 in patient prognosis is reversed, particularly in lung adenocarcinoma (LUAD) and liver hepatocellular carcinoma (LIHC). Using The Cancer Genome Atlas (TCGA), we observed that FBP1 expression was low in patients with LUAD and LIHC tumors, which was distinct from ALDOA. A similar trend was observed in the analysis of Cancer Cell Line Encyclopedia (CCLE) datasets. By dissecting downstream networks and possible upstream regulators, using ALDOA and FBP1 as the core, we identified common signatures and interaction events regulated by ALDOA and FBP1. Notably, the identified effectors dominated by ALDOA or FBP1 were distributed in opposite patterns and can be considered independent prognostic indicators for patients with LUAD and LIHC. Therefore, uncovering the effectors between ALDOA and FBP1 will lead to novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
8
|
Xu J, Guo Y, Ning W, Wang X, Li S, Chen Y, Ma L, Qu Y, Song Y, Zhang H. Comprehensive Analyses of Glucose Metabolism in Glioma Reveal the Glioma-Promoting Effect of GALM. Front Cell Dev Biol 2022; 9:717182. [PMID: 35127693 PMCID: PMC8811465 DOI: 10.3389/fcell.2021.717182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 12/14/2021] [Indexed: 01/17/2023] Open
Abstract
Glioma is the most common tumor with the worst prognosis in the central nervous system. Current studies showed that glucose metabolism could affect the malignant progression of tumors. However, the study on the dysregulation of glucose metabolism in glioma is still limited. Herein, we firstly screened 48 differentially expressed glucose metabolism-related genes (DE-GMGs) by comparing glioblastomas to low-grade gliomas. Then a glucose metabolism-related gene (GMG)-based model (PC, lactate dehydrogenase A (LDHA), glucuronidase beta (GUSB), galactosidase beta 1 (GLB1), galactose mutarotase (GALM), or fructose-bisphosphatase 1 (FBP1)) was constructed by a protein-protein interaction (PPI) network and Lasso regression. Thereinto, the high-risk group encountered a worse prognosis than the low-risk group, and the M2 macrophage was positively relevant to the risk score. Various classical tumor-related functions were enriched by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Since protein GALM was rarely studied in glioma, we detected high expression of GALM by western blot and immunohistochemistry in glioma tissues. And experiments in vitro showed that GALM could promote the epithelial-to-mesenchymal transition (EMT) process of glioma cells and could be regulated by TNFAIP3 in glioma cells. Overall, our study revealed the critical role of glucose metabolism in the prognosis of patients with glioma. Furthermore, we demonstrated that GALM was significantly related to the malignancy of glioma and could promote glioma cells' EMT process.
Collapse
Affiliation(s)
- Jiacheng Xu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuduo Guo
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Weihai Ning
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Xiang Wang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Shenglun Li
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yujia Chen
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Lixin Ma
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yanming Qu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Li H, Qi Z, Niu Y, Yang Y, Li M, Pang Y, Liu M, Cheng X, Xu M, Wang Z. FBP1 regulates proliferation, metastasis, and chemoresistance by participating in C-MYC/STAT3 signaling axis in ovarian cancer. Oncogene 2021; 40:5938-5949. [PMID: 34363022 PMCID: PMC8497274 DOI: 10.1038/s41388-021-01957-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
Fructose-1,6-bisphosphatase (FBP1) is a rate-limiting enzyme in gluconeogenesis and an important tumor suppressor in human malignancies. Here, we aimed to investigate the expression profile of FBP1 in ovarian cancer, the molecular mechanisms that regulate FBP1 expression and to examine how the FBP1 regulatory axis contributes to tumorigenesis and progression in ovarian cancer. We showed that FBP1 expression was significantly decreased in ovarian cancer tissues compared with normal ovarian tissues, and low-FBP1 expression predicted poor prognosis in patients with ovarian cancer. The enhanced expression of FBP1 in ovarian cancer cell lines suppressed proliferation and 2-D/3-D invasion, reduced aerobic glycolysis, and sensitized cancer cells to cisplatin-induced apoptosis. Moreover, DNA methylation and C-MYC binding at the promoter inhibited FBP1 expression. Furthermore, through physical interactions with signal transducer and activator of transcription 3 (STAT3), FBP1 suppressed nuclear translocation of STAT3 and exerted its non-metabolic enzymatic activity to induce the dysfunction of STAT3. Thus, our study suggests that FBP1 may be a valuable prognostic predictor for ovarian cancer. C-MYC-dependent downregulation of FBP1 acted as a tumor suppressor via modulating STAT3, and the C-MYC/FBP1/STAT3 axis could be a therapeutic target.
Collapse
Affiliation(s)
- Haoran Li
- Cancer Institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihao Qi
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yufei Yang
- Cancer Institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Clinical Medicine Transformation Center and Office of Academic Research, Shanghai Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengjiao Li
- Cancer Institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yangyang Pang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai, China
| | - Mingming Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xi Cheng
- Cancer Institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Midie Xu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Department of Pathology and Biobank, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China.
| | - Ziliang Wang
- Cancer Institute and Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Clinical Medicine Transformation Center and Office of Academic Research, Shanghai Hospital of Traditional Chinese Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
Fructose and Mannose in Inborn Errors of Metabolism and Cancer. Metabolites 2021; 11:metabo11080479. [PMID: 34436420 PMCID: PMC8397987 DOI: 10.3390/metabo11080479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 12/19/2022] Open
Abstract
History suggests that tasteful properties of sugar have been domesticated as far back as 8000 BCE. With origins in New Guinea, the cultivation of sugar quickly spread over centuries of conquest and trade. The product, which quickly integrated into common foods and onto kitchen tables, is sucrose, which is made up of glucose and fructose dimers. While sugar is commonly associated with flavor, there is a myriad of biochemical properties that explain how sugars as biological molecules function in physiological contexts. Substantial research and reviews have been done on the role of glucose in disease. This review aims to describe the role of its isomers, fructose and mannose, in the context of inborn errors of metabolism and other metabolic diseases, such as cancer. While structurally similar, fructose and mannose give rise to very differing biochemical properties and understanding these differences will guide the development of more effective therapies for metabolic disease. We will discuss pathophysiology linked to perturbations in fructose and mannose metabolism, diagnostic tools, and treatment options of the diseases.
Collapse
|
11
|
Gao S, Zhu D, Zhu J, Shen L, Zhu M, Ren X. miR-18a-5p Targets FBP1 to Promote Proliferation, Migration, and Invasion of Liver Cancer Cells and Inhibit Cell Apoptosis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3334065. [PMID: 34221105 PMCID: PMC8219440 DOI: 10.1155/2021/3334065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022]
Abstract
Liver cancer is one of the most aggressive malignant tumors. It is significant to understand the molecular mechanism of liver cancer cells to develop new treatment plans. Studies have identified that FBP1 serves as a cancer inhibitor gene. To research the effect mechanism of FBP1 in liver cancer cells, bioinformatics analysis was performed to study its expression in liver cancer tissue. Survival analysis was also performed. Moreover, starBase database was applied to predict upstream regulatory genes of FBP1. Dual-luciferase assay was performed to testify their targeted relationship. The mRNA and protein expression levels of FBP1 in liver cancer cells were detected by qRT-PCR and western blot, respectively. Cell viability was analyzed by CCK-8 assay. The migratory and invasive abilities of cells were analyzed by Transwell assay. The apoptosis of liver cancer cells was detected by flow cytometry. The results showed that the expression of FBP1 was downregulated in liver cancer tissue and cells. FBP1 low expression was correlated with the poor prognosis of patients. miR-18a-5p could inhibit FBP1 expression. Overexpression of FBP1 could inhibit the progression of liver cancer cells and promote cell apoptosis. Overexpressing miR-18a-5p could promote the progression of liver cancer cells and inhibit cell apoptosis. However, overexpressing FBP1 simultaneously could reverse the effect. miR-18a-5p and FBP1 are expected to be candidates for liver cancer treatment.
Collapse
Affiliation(s)
- Shan Gao
- Department of General Surgery, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, China
| | - Dongjie Zhu
- Department of General Surgery, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, China
| | - Jian Zhu
- Department of General Surgery, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, China
| | - Lianqiang Shen
- Department of General Surgery, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, China
| | - Ming Zhu
- Department of General Surgery, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, China
| | - Xuefeng Ren
- Department of General Surgery, The First People's Hospital of Yuhang District, Hangzhou, Zhejiang 311100, China
| |
Collapse
|
12
|
Hu J, Wang J, Li C, Shang Y. Fructose-1,6-bisphosphatase aggravates oxidative stress-induced apoptosis in asthma by suppressing the Nrf2 pathway. J Cell Mol Med 2021; 25:5001-5014. [PMID: 33960626 PMCID: PMC8178285 DOI: 10.1111/jcmm.16439] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/28/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
Asthma is a chronic airway disease that causes excessive inflammation, oxidative stress, mucus production and bronchial epithelial cell apoptosis. Fructose‐1,6‐bisphosphatase (Fbp1) is one of the rate‐limiting enzymes in gluconeogenesis and plays a critical role in several cancers. However, its role in inflammatory diseases, such as asthma, is unclear. Here, we examined the expression, function and mechanism of action of Fbp1 in asthma. Gene Expression Omnibus (GEO) data sets revealed that Fbp1 was overexpressed in a murine model of asthma and in interleukin (IL)‐4‐ or IL‐13‐stimulated bronchial epithelial cells. We confirmed the findings in an animal model as well as Beas‐2B and 16HBE cells. In vitro investigations revealed that silencing of Fbp1 reduced apoptosis and the proportion of cells in the G2/M phase, whereas overexpression led to increases. Fbp1 knock‐down inhibited oxidative stress by activating the nuclear factor erythroid 2‐related factor 2 (Nrf2) pathway, whereas Fbp1 overexpression aggravated oxidative stress by suppressingthe Nrf2 pathway. Moreover, the Nrf2 pathway inhibitor ML385 reversed the changes caused by Fbp1 inhibition in Beas‐2B and 16HBE cells. Collectively, our data indicate that Fbp1 aggravates oxidative stress‐induced apoptosis by suppressing Nrf2 signalling, substantiating its potential as a novel therapeutic target in asthma.
Collapse
Affiliation(s)
- Jiapeng Hu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jia Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunlu Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
13
|
Ma R, Wu Y, Li S, Yu X. Interplay Between Glucose Metabolism and Chromatin Modifications in Cancer. Front Cell Dev Biol 2021; 9:654337. [PMID: 33987181 PMCID: PMC8110832 DOI: 10.3389/fcell.2021.654337] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer cells reprogram glucose metabolism to meet their malignant proliferation needs and survival under a variety of stress conditions. The prominent metabolic reprogram is aerobic glycolysis, which can help cells accumulate precursors for biosynthesis of macromolecules. In addition to glycolysis, recent studies show that gluconeogenesis and TCA cycle play important roles in tumorigenesis. Here, we provide a comprehensive review about the role of glycolysis, gluconeogenesis, and TCA cycle in tumorigenesis with an emphasis on revealing the novel functions of the relevant enzymes and metabolites. These functions include regulation of cell metabolism, gene expression, cell apoptosis and autophagy. We also summarize the effect of glucose metabolism on chromatin modifications and how this relationship leads to cancer development. Understanding the link between cancer cell metabolism and chromatin modifications will help develop more effective cancer treatments.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
14
|
Xing Q, Zeng T, Liu S, Cheng H, Ma L, Wang Y. A novel 10 glycolysis-related genes signature could predict overall survival for clear cell renal cell carcinoma. BMC Cancer 2021; 21:381. [PMID: 33836688 PMCID: PMC8034085 DOI: 10.1186/s12885-021-08111-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/28/2021] [Indexed: 02/07/2023] Open
Abstract
Background The role of glycolysis in tumorigenesis has received increasing attention and multiple glycolysis-related genes (GRGs) have been proven to be associated with tumor metastasis. Hence, we aimed to construct a prognostic signature based on GRGs for clear cell renal cell carcinoma (ccRCC) and to explore its relationships with immune infiltration. Methods Clinical information and RNA-sequencing data of ccRCC were obtained from The Cancer Genome Atlas (TCGA) and ArrayExpress datasets. Key GRGs were finally selected through univariate COX, LASSO and multivariate COX regression analyses. External and internal verifications were further carried out to verify our established signature. Results Finally, 10 GRGs including ANKZF1, CD44, CHST6, HS6ST2, IDUA, KIF20A, NDST3, PLOD2, VCAN, FBP1 were selected out and utilized to establish a novel signature. Compared with the low-risk group, ccRCC patients in high-risk groups showed a lower overall survival (OS) rate (P = 5.548Ee-13) and its AUCs based on our established signature were all above 0.70. Univariate/multivariate Cox regression analyses further proved that this signature could serve as an independent prognostic factor (all P < 0.05). Moreover, prognostic nomograms were also created to find out the associations between the established signature, clinical factors and OS for ccRCC in both the TCGA and ArrayExpress cohorts. All results remained consistent after external and internal verification. Besides, nine out of 21 tumor-infiltrating immune cells (TIICs) were highly related to high- and low- risk ccRCC patients stratified by our established signature. Conclusions A novel signature based on 10 prognostic GRGs was successfully established and verified externally and internally for predicting OS of ccRCC, helping clinicians better and more intuitively predict patients’ survival. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08111-0.
Collapse
Affiliation(s)
- Qianwei Xing
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, Jiangsu Province, 226001, China
| | - Tengyue Zeng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Shouyong Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, 210029, China
| | - Hong Cheng
- Department of Urology, Zhongda Hospital Affiliated to Southeast University, Nanjing, 210009, China
| | - Limin Ma
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, Jiangsu Province, 226001, China.
| | - Yi Wang
- Department of Urology, Affiliated Hospital of Nantong University, No.20 West Temple Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
15
|
Downregulation of Snail by DUSP1 Impairs Cell Migration and Invasion through the Inactivation of JNK and ERK and Is Useful as a Predictive Factor in the Prognosis of Prostate Cancer. Cancers (Basel) 2021; 13:cancers13051158. [PMID: 33800291 PMCID: PMC7962644 DOI: 10.3390/cancers13051158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 01/06/2023] Open
Abstract
Dual specificity phosphatase 1 (DUSP1) is crucial in prostate cancer (PC), since its expression is downregulated in advanced carcinomas. Here, we investigated DUSP1 effects on the expression of mesenchymal marker Snail, cell migration and invasion, analyzing the underlying mechanisms mediated by mitogen-activated protein kinases (MAPKs) inhibition. To this purpose, we used different PC cells overexpressing or lacking DUSP1 or incubated with MAPKs inhibitors. Moreover, we addressed the correlation of DUSP1 expression with Snail and activated MAPKs levels in samples from patients diagnosed with benign hyperplasia or prostate carcinoma, studying its implication in tumor prognosis and survival. We found that DUSP1 downregulates Snail expression and impairs migration and invasion in PC cells. Similar results were obtained following the inhibition of c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase (ERK). In clinical samples, we evidenced an inverse correlation between DUSP1 expression and Snail levels, which are further associated with JNK and ERK activation. Consequently, the pattern DUSP1high/activated JNKlow/activated ERKlow/Snaillow is associated with an overall extended survival of PC patients. In summary, the ratio between DUSP1 and Snail expression, with additional JNK and ERK activity measurement, may serve as a potential biomarker to predict the clinical outcome of PC patients. Furthermore, DUSP1 induction or inhibition of JNK and ERK pathways could be useful to treat PC.
Collapse
|
16
|
He Y, Hua R, Li B, Gu H, Sun Y, Li Z. Loss of FBP1 promotes proliferation, migration, and invasion by regulating fatty acid metabolism in esophageal squamous cell carcinoma. Aging (Albany NY) 2020; 13:4986-4998. [PMID: 33232284 PMCID: PMC7950246 DOI: 10.18632/aging.103916] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in China. Recent studies have shown fatty acid metabolism is involved in the progression of various cancers through regulating the function of various types of cells. However, the relationship between fatty acid metabolism and tumorigenesis of ESCC remains unclear. Here, in this study, the expression of FBP1 was dramatically decreased in ESCC tissues compared with the adjacent non-ESCC tissues. The cell proliferation, migration, invasion and fatty acid metabolism were evaluated in ESCC cells using transfection of shFBP1 vectors. We found loss of FBP1 promoted ESCC cell proliferation, migration and invasion, which correlated with the activated fatty acid metabolism in vitro. Moreover, the content of phospholipids, triglycerides, neutral lipids and the protein expression levels of fatty acid metabolism related FASN, ACC1 and SREBP1C proteins were significantly increased following down-regulation of FBP1. Furthermore, FBP1 was found to be directly targeted by miR-18b-5p in ESCC cells. In addition, miR-18b-5p inhibitor treatment obviously reversed the increased fatty acid metabolism induced by loss of FBP1 in ESCC cells. These findings explored a detailed molecular mechanism of tumorigenesis and progression of ESCC and might provide a potential novel method to treat ESCC in clinic.
Collapse
Affiliation(s)
- Yi He
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yifeng Sun
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhigang Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Zhang F, Liu B, Deng Q, Sheng D, Xu J, He X, Zhang L, Liu S. UCP1 regulates ALDH-positive breast cancer stem cells through releasing the suppression of Snail on FBP1. Cell Biol Toxicol 2020; 37:277-291. [PMID: 32472219 DOI: 10.1007/s10565-020-09533-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Uncoupling protein 1 (UCP1) has been implicated in ameliorating metabolic related disorders, of which most symptoms are risk factors for breast cancer. Here, we found that UCP1 was obviously downregulated in basal-like breast cancer (BLBC) and was positively correlated with improved survival. However, the underlying regulatory mechanisms remain largely unknown. Our studies showed that UCP1 inhibited tumor progression via suppressing aldehyde dehydrogenase (ALDH)-positive breast cancer stem cell (BCSC) population in BLBC. Furthermore, we found that UCP1 induced the upregulation of fructose bisphosphatase 1 (FBP1) which was previously blocked by Snail overexpression, and UCP1 decreased ALDH-positive BCSCs via FBP1-dependent metabolic rewiring, which could be reversed by Snail overexpression. In addition, breast cancer cells co-cultured with UCP1-deficient adipocytes had increased proportion of ALDH-positive BCSCs, indicating a potential protection role of UCP1 in tumor microenvironment. These results suggested that UCP1 suppressed BCSCs through inhibiting Snail-mediated repression of FBP1, and that upregulation of UCP1 might be a previously undescribed therapeutic strategy for combating breast cancer. Graphical abstract.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Bingjie Liu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Qiaodan Deng
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Dandan Sheng
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Jiahui Xu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Xueyan He
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Lixing Zhang
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China.
| | - Suling Liu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Yang C, Zhu S, Yang H, Fan P, Meng Z, Zhao J, Zhang K, Jin X. FBP1 binds to the bromodomain of BRD4 to inhibit pancreatic cancer progression. Am J Cancer Res 2020; 10:523-535. [PMID: 32195024 PMCID: PMC7061763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive tumour that is characteristically unresponsive to most chemotherapeutic regimens. Bromodomain and extra terminal domain (BET) inhibitors that specifically repress the function of BET family proteins, such as BRD4, are under evaluation in clinical trials for their activity in repressing cancer growth. However, resistance to BET inhibitors has hindered their further clinical application in pancreatic cancer. We previously reported that FBP1 contributes to the resistance to BET inhibitors, but the underlying mechanism of this resistance remains unclear. Herein, we demonstrate that FBP1 is a binding partner of BRD4 in pancreatic cancer cells. We reveal that FBP1 binds to the BD2 domain of BD4 in an acetylation-dependent manner. Moreover, we found that Tip60 and HDAC3 were key to the acetylation and de-acetylation of FBP1 at K110 and K113, which are critical for mediating FBP1-BRD4 binding in pancreatic cancer cells. Furthermore, our data indicate that FBP1 decreases the expression of genes downstream of BRD4 to inhibit pancreatic cancer cell progression. Our results, therefore, provide evidence of the novel anti-tumour effect of FBP1 via its blockade of BRD4 function in pancreatic cancer cells.
Collapse
Affiliation(s)
- Chong Yang
- Organ Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Shikai Zhu
- Organ Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Hongji Yang
- Organ Transplantation Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of ChinaChengdu 610072, Sichuan, China
| | - Ping Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Zibo Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Jingyuan Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Kun Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| | - Xin Jin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022, Hubei, China
| |
Collapse
|