1
|
Petracci E, Pasini L, Urbini M, Felip E, Stella F, Davoli F, Salvi M, Beau-Faller M, Tebaldi M, Azzali I, Canale M, Solli P, Lai G, Amat R, Carbonell C, Falcoz PE, Martinez-Marti A, Pencreach E, Delmonte A, Crinò L, Ulivi P. Circulating cell-free and extracellular vesicles-derived microRNA as prognostic biomarkers in patients with early-stage NSCLC: results from RESTING study. J Exp Clin Cancer Res 2024; 43:241. [PMID: 39169404 PMCID: PMC11340091 DOI: 10.1186/s13046-024-03156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Factors to accurately stratify patients with early-stage non-small cell lung cancer (NSCLC) in different prognostic groups are still needed. This study aims to investigate 1) the prognostic potential of circulating cell-free (CF) and extracellular vesicles (EVs)-derived microRNA (miRNAs), and 2) their added value with respect to known prognostic factors (PFs). METHODS The RESTING study is a multicentre prospective observational cohort study on resected stage IA-IIIA patients with NSCLC. The primary end-point was disease-free survival (DFS), and the main analyses were carried out separately for CF- and EV-miRNAs. CF- and EV-miRNAs were isolated from plasma, and miRNA-specific libraries were prepared and sequenced. To reach the study aims, three statistical models were specified: one using the miRNA data only (Model 1); one using both miRNAs and known PFs (age, gender, and pathological stage) (Model 2), and one using the PFs alone (Model 3). Five-fold cross-validation (CV) was used to assess the predictive performance of each. Standard Cox regression and elastic net regularized Cox regression were used. RESULTS A total of 222 patients were enrolled. The median follow-up time was 26.3 (95% CI 25.4-27.6) months. From Model 1, three CF-miRNAs and 21 EV-miRNAs were associated with DFS. In Model 2, two CF-miRNAs (miR-29c-3p and miR-877-3p) and five EV-miRNAs (miR-181a-2-3p, miR-182-5p, miR-192-5p, miR-532-3p and miR-589-5p) remained associated with DFS. From pathway enrichment analysis, TGF-beta and NOTCH were the most involved pathways. CONCLUSION This study identified promising prognostic CF- and EV-miRNAs that could be used as a non-invasive, cost-effective tool to aid clinical decision-making. However, further evaluation of the obtained miRNAs in an external cohort of patients is warranted.
Collapse
Affiliation(s)
- Elisabetta Petracci
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Luigi Pasini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Milena Urbini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - Enriqueta Felip
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Franco Stella
- Thoracic Surgery Department AUSL Romagna, Forlì, Italy
| | - Fabio Davoli
- Thoracic Surgery Department AUSL Romagna, Ravenna, Italy
| | - Maurizio Salvi
- Thoracic Surgery Department AUSL Romagna, Riccione, Italy
| | - Michele Beau-Faller
- Molecular Laboratory, University Hospital, Strasbourg University, Strasburg, France
| | - Michela Tebaldi
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Irene Azzali
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Matteo Canale
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Piergiorgio Solli
- Unit of Thoracic Surgery and Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Lai
- Unit of Thoracic Surgery and Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Ramon Amat
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Pierre-Emmanuel Falcoz
- Thoracic Surgery Department, Nouvel Hôpital Civil', University Hospital, Strasburg, France
| | | | - Erwan Pencreach
- Molecular Laboratory, University Hospital, Strasbourg University, Strasburg, France
| | - Angelo Delmonte
- Oncology Department, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Lucio Crinò
- Oncology Department, Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" (IRST) IRCCS, Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| |
Collapse
|
2
|
Yang S, Pei L, Huang Z, Zhong Y, Li J, Hong Y, Long H, Chen X, Zhou C, Zheng G, Zeng C, Wu H, Wang T. Inhibition of tartrate-resistant acid phosphatase 5 can prevent cardiac fibrosis after myocardial infarction. Mol Med 2024; 30:89. [PMID: 38879488 PMCID: PMC11179352 DOI: 10.1186/s10020-024-00856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/08/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI) leads to enhanced activity of cardiac fibroblasts (CFs) and abnormal deposition of extracellular matrix proteins, resulting in cardiac fibrosis. Tartrate-resistant acid phosphatase 5 (ACP5) has been shown to promote cell proliferation and phenotypic transition. However, it remains unclear whether ACP5 is involved in the development of cardiac fibrosis after MI. The present study aimed to investigate the role of ACP5 in post-MI fibrosis and its potential underlying mechanisms. METHODS Clinical blood samples were collected to detect ACP5 concentration. Myocardial fibrosis was induced by ligation of the left anterior descending coronary artery. The ACP5 inhibitor, AubipyOMe, was administered by intraperitoneal injection. Cardiac function and morphological changes were observed on Day 28 after injury. Cardiac CFs from neonatal mice were extracted to elucidate the underlying mechanism in vitro. The expression of ACP5 was silenced by small interfering RNA (siRNA) and overexpressed by adeno-associated viruses to evaluate its effect on CF activation. RESULTS The expression of ACP5 was increased in patients with MI, mice with MI, and mice with Ang II-induced fibrosis in vitro. AubipyOMe inhibited cardiac fibrosis and improved cardiac function in mice after MI. ACP5 inhibition reduced cell proliferation, migration, and phenotypic changes in CFs in vitro, while adenovirus-mediated ACP5 overexpression had the opposite effect. Mechanistically, the classical profibrotic pathway of glycogen synthase kinase-3β (GSK3β)/β-catenin was changed with ACP5 modulation, which indicated that ACP5 had a positive regulatory effect. Furthermore, the inhibitory effect of ACP5 deficiency on the GSK3β/β-catenin pathway was counteracted by an ERK activator, which indicated that ACP5 regulated GSK3β activity through ERK-mediated phosphorylation, thereby affecting β-catenin degradation. CONCLUSION ACP5 may influence the proliferation, migration, and phenotypic transition of CFs, leading to the development of myocardial fibrosis after MI through modulating the ERK/GSK3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shujun Yang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Liying Pei
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Zijie Huang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Yinsheng Zhong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Jun Li
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Yinghui Hong
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Huibao Long
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Xuxiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Changqing Zhou
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Guanghui Zheng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, P. R. China
| | - Chaotao Zeng
- Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, Guangdong, P. R. China
| | - Haidong Wu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China
| | - Tong Wang
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518003, Guangdong, P. R. China.
| |
Collapse
|
3
|
Rafat M, Kohsarian M, Bahiraei M, Nikpoor AR. A Comprehensive Study on Signal Transduction and Therapeutic Role of miR-877 in Human Cancers. Adv Biomed Res 2023; 12:118. [PMID: 37434921 PMCID: PMC10331537 DOI: 10.4103/abr.abr_412_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 07/13/2023] Open
Abstract
MicroRNAs are a group of short non-coding RNAs (miRNAs), which are epigenetically involved in gene expression and other cellular biological processes and can be considered as potential biomarkers for cancer detection and support for treatment management. This review aims to amass the evidence in order to reach the molecular mechanism and clinical significance of miR-877 in different types of cancer. Dysregulation of miR-877 level in various types of malignancies as bladder cancer, cervical cancer, cholangiocarcinoma, colorectal cancer (CRC), gastric cancer, glioblastoma, head and neck squamous cell carcinoma (HNSCC), hepatocellular carcinoma, laryngeal squamous cell carcinoma, melanoma, non-small cell lung cancer (NSCLC), oral squamous cell carcinoma, ovarian cancer (OC), pancreatic ductal adenocarcinoma, and renal cell carcinoma (RCC) have reported, significantly increase or decrease in its level, which can be indicated to its function as oncogene or tumor suppressor. MiR-877 is involved in cell proliferation, migration, and invasion through cell cycle pathways in cancer. MiR-877 could be potential a candidate as a valuable biomarker for prognosis in various cancers. Through this study, we proposed that miR-877 can potentially be a candidate as a prognostic marker for early detection of tumor development, progression, as well as metastasis.
Collapse
Affiliation(s)
- Milad Rafat
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahdis Kohsarian
- Department of Biology, Faculty of Science, Guilan University, Rasht, Iran
| | - Mohamad Bahiraei
- Department of Radiology, Besat Hospital, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Amin R. Nikpoor
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
4
|
Li N, Chen XJ, Zeng YH, Zeng LP, Hu K, Chen LJ. Silencing of lncRNA CRNDE attenuates nonsmall-cell lung cancer progression by mediating the miR-455-3p/HDAC2 axis. Kaohsiung J Med Sci 2022; 38:749-760. [PMID: 35611803 DOI: 10.1002/kjm2.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 03/23/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
Nonsmall-cell lung carcinoma (NSCLC) is one of the deadliest malignancies in the world. LncRNAs are confirmed to be involved in the progression of NSCLC. Meanwhile, lncRNA CRNDE is known to be upregulated in NSCLC; however, the mechanism by which CRNDE regulates the tumourigenesis of NSCLC remains unclear. To test the function of CRNDE in NSCLC, cell proliferation, invasion, and migration were investigated by colony formation and Transwell assays, respectively. qPCR and Western blotting were applied to test gene and protein levels. In addition, the relationship among CRNDE, miR-455-3p, and HDAC2 was explored by dual-luciferase and RIP assays. The data revealed that the expression of CRNDE was upregulated in NSCLC tissues, while miR-455-3p was downregulated. CRNDE knockdown inhibited the viability, migration and invasion of NSCLC cells or epidermal growth factor receptor gene (EGFR)-mutant NSCLC cells. Moreover, inhibition of miR-455-3p exhibited the opposite effect. CRNDE bound with miR-455-3p, and HDAC2 was found to be targeted by miR-455-3p. Meanwhile, miR-455-3p downregulation reversed the effect of CRNDE knockdown on NSCLC cell function. Furthermore, miR-455-3p notably inhibited the growth and invasion of NSCLC cells via downregulation of HDAC2. Knockdown of CRNDE attenuated NSCLC progression via modulation of the miR-455-3p/HDAC2 axis. Thus, those findings might provide a novel strategy against NSCLC.
Collapse
Affiliation(s)
- Na Li
- Department of Pathology, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China.,Medical College, Hunan University of Medicine, Huaihua, Hunan Province, China.,Department of Pathology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Xiao-Juan Chen
- Department of Clinical Laboratory, Hunan Maternal and Child Care Hospital, Changsha, Hunan Province, China
| | - Yun-Hui Zeng
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Li-Ping Zeng
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Ke Hu
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Li-Jun Chen
- Medical College, Hunan University of Medicine, Huaihua, Hunan Province, China
| |
Collapse
|
5
|
Wang J, Luo X, Lu J, Wang X, Miao Y, Li Q, Wang L. Rab22a promotes the proliferation, migration, and invasion of lung adenocarcinoma via up-regulating PI3K/Akt/mTOR signaling pathway. Exp Cell Res 2022; 416:113179. [PMID: 35487271 DOI: 10.1016/j.yexcr.2022.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/16/2022] [Accepted: 04/23/2022] [Indexed: 11/04/2022]
Abstract
Rab22a, a member of the proto-oncogene RAS family, belongs to the Rab5 subfamily. It participates in early endosome formation and regulates vesicle trafficking. The relationship between Rab22a and tumorigenesis remains elusive. In non-small cell lung cancer specimens, immunohistochemical staining showed consistently high expression of Rab22a in lung adenocarcinoma, but not in squamous cell carcinoma. In lung adenocarcinoma cell lines, A549 and H1299, transfection with Rab22a significantly promoted cell proliferation, migration, and invasion, whereas interference with Rab22a specific siRNA significantly inhibited the above capacities. Transfection with Rab22a also up-regulated the phosphorylation levels of core effector proteins on the PI3K/Akt/mTOR pathway. The Co-IP assay further confirmed the interaction between Rab22a and PI3Kp85α, the core regulatory subunit of PI3K. Application of rapamycin, the mTOR inhibitor, significantly reduced the upregulation of the proliferation, migration, and invasion abilities of lung adenocarcinoma cells transfected with Rab22a. These results suggest that Rab22a can promote the malignant phenotype of lung adenocarcinoma by upregulating the PI3K/Akt/mTOR signaling pathway, and may function as a potential anti-tumor therapeutic target.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xue Luo
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Jinxi Lu
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Xi Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Liang Wang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Splice and Dice: Intronic microRNAs, Splicing and Cancer. Biomedicines 2021; 9:biomedicines9091268. [PMID: 34572454 PMCID: PMC8465124 DOI: 10.3390/biomedicines9091268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Introns span only a quarter of the human genome, yet they host around 60% of all known microRNAs. Emerging evidence indicates the adaptive advantage of microRNAs residing within introns is attributed to their complex co-regulation with transcription and alternative splicing of their host genes. Intronic microRNAs are often co-expressed with their host genes, thereby providing functional synergism or antagonism that is exploited or decoupled in cancer. Additionally, intronic microRNA biogenesis and the alternative splicing of host transcript are co-regulated and intertwined. The importance of intronic microRNAs is under-recognized in relation to the pathogenesis of cancer.
Collapse
|