1
|
Zhang J, Zhang D, Zhao J, Zheng W. MiR-33a-5p in stored red blood cells regulates genes of innate immune response and promotes inflammation. Aging (Albany NY) 2024; 16:10239-10251. [PMID: 38942609 PMCID: PMC11236310 DOI: 10.18632/aging.205925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/09/2024] [Indexed: 06/30/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood transfusion is a common therapeutic procedure in hospitalized patients. Red blood cell (RBC) units undergo various biochemical and morphological changes during storage (storage lesion). miRNAs have been studied intensively regarding cellular metabolic processes, but the effect of miRNAs on blood storage is not well defined. MATERIALS AND METHODS We performed bioinformatics analysis on the public data set of miRNA expression of RBC based on R language, and performed the Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis on the target genes of differentially expressed miRNA. The expression of miRNA differential genes in blood samples stored at different times was verified by qRT-PCR. Next, we used ELISA and qRT-PCR to verify the expression of IL-1β, IL-6, IL-12 and TNF-α in blood at day 1 and day 42. In addition, in vitro, we transfected macrophages with overexpressed miRNA, and the effects of overexpressed miRNA on macrophage polarization and the release of inflammatory factors were verified by flow cytometry and qRT-PCR and ELISA. RESULTS This study combined bioinformatics analysis and experiments to discover the differentially expressed miRNAs in long-term stored blood. The results showed that compared to fresh blood samples, the inflammatory factors were significantly doubled by ELISA, as well as the higher mRNA expression at 42 day. Experimentally verified that miR-33a-5p promoted the M1 type macrophage polarization and increased the release of related inflammatory factors through PPARα/ACC2/AMPK/CPT-1a axis regulation. CONCLUSIONS This study elucidates a potential mechanism of inflammatory factor accumulation in long-term stored blood, providing a theoretical basis and a potential target to prevent transfusion-related adverse reactions.
Collapse
Affiliation(s)
- Jingrui Zhang
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Dan Zhang
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Jing Zhao
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| | - Wei Zheng
- Department of Transfusion Medicine, General Hospital of Northern Theater Command, Shenyang 110000, China
| |
Collapse
|
2
|
Ou H, Qian Y, Ma L. MCF2L-AS1 promotes the biological behaviors of hepatocellular carcinoma cells by regulating the miR-33a-5p/FGF2 axis. Aging (Albany NY) 2023; 15:6100-6116. [PMID: 37432067 PMCID: PMC10373981 DOI: 10.18632/aging.204795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/10/2023] [Indexed: 07/12/2023]
Abstract
Long noncoding RNA MCF2L-AS1 functions in the development of cancers like lung cancer, ovarian cancer, and colorectal cancer. Notwithstanding, its function in hepatocellular carcinoma (HCC) stays obscure. Our research probes its role in MHCC97H and HCCLM3 cell proliferation, migration, and invasion. qRT-PCR gauged MCF2L-AS1 and miR-33a-5p expressions in HCC tissues. CCK8, colony formation, Transwell, and EdU assays detected HCC cell proliferation, invasion, and migration, respectively. The xenograft tumor model was built to confirm the MCF2L-AS1-mediated role in HCC cell growth. Western blot and immunohistochemistry detected FGF2 expression in HCC tissues. Bioinformatics analysis predicted the targeted relationships between MCF2L-AS1 or FGF2 and miR-33a-5p, which were further examined through dual-luciferase reporter gene and pull-down assays. MCF2L-AS1 was expressed highly in HCC tissues and cells. MCF2L-AS1 upregulation enhanced HCC cells' proliferation, growth, migration, and invasion and reduced apoptosis. miR-33a-5p was demonstrated as an underlying target of MCF2L-AS1. miR-33a-5p impeded HCC cells' malignant behaviors. MCF2L-AS1 overexpression reversed miR-33a-5p-mediated effects. MCF2L-AS1 knockdown enhanced miR-33a-5p and negatively regulated FGF2 protein. miR-33a-5p targeted and inhibited FGF2. miR-33a-5p overexpression or FGF2 knockdown inhibited MCF2L-AS1-mediated oncologic effects in MHCC97H. By modulating miR-33a-5p/FGF2, MCF2L-AS1 exerts a tumor-promotive function in HCC. The MCF2L-AS1-miR-33a-5p-FGF2 axis may provide new therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Hongliang Ou
- Department of Liver Diseases, Ningbo No.2 Hospital, University of Chinse Academy of Sciences, Ningbo 315000, Zhejiang, P.R. China
| | - Yunsong Qian
- Department of Liver Diseases, Ningbo No.2 Hospital, University of Chinse Academy of Sciences, Ningbo 315000, Zhejiang, P.R. China
| | - Li Ma
- Department of Liver Diseases, Ningbo No.2 Hospital, University of Chinse Academy of Sciences, Ningbo 315000, Zhejiang, P.R. China
| |
Collapse
|
3
|
Chen G, Hong X, He W, Ou L, Chen B, Zhong W, Lin Y, Luo X. The construction and analysis of tricarboxylic acid cycle related prognostic model for cervical cancer. Front Genet 2023; 14:1092276. [PMID: 36968582 PMCID: PMC10033772 DOI: 10.3389/fgene.2023.1092276] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Cervical cancer (CC) is the fourth most common malignant tumor in term of in incidence and mortality among women worldwide. The tricarboxylic acid (TCA) cycle is an important hub of energy metabolism, networking one-carbon metabolism, fatty acyl metabolism and glycolysis. It can be seen that the reprogramming of cell metabolism including TCA cycle plays an indispensable role in tumorigenesis and development. We aimed to identify genes related to the TCA cycle as prognostic markers in CC. Methods: Firstly, we performed the differential expressed analysis the gene expression profiles associated with TCA cycle obtained from The Cancer Genome Atlas (TCGA) database. Differential gene list was generated and cluster analysis was performed using genes with detected fold changes >1.5. Based on the subclusters of CC, we analysed the relationship between different clusters and clinical information. Next, Cox univariate and multivariate regression analysis were used to screen genes with prognostic characteristics, and risk scores were calculated according to the genes with prognostic characteristics. Additionally, we analyzed the correlation between the predictive signature and the treatment response of CC patients. Finally, we detected the expression of ench prognostic gene in clinical CC samples by quantitative polymerase chain reaction (RT-qPCR). Results: We constructed a prognostic model consist of seven TCA cycle associated gene (ACSL1, ALDOA, FOXK2, GPI, MDH1B, MDH2, and MTHFD1). Patients with CC were separated into two groups according to median risk score, and high-risk group had a worse prognosis compared to the low-risk group. High risk group had lower level of sensitivity to the conventional chemotherapy drugs including cisplatin, paclitaxel, sunitinib and docetaxel. The expression of ench prognostic signature in clinical CC samples was verified by qRT-PCR. Conclusion: There are several differentially expressed genes (DEGs) related to TCA cycle in CC. The risk score model based on these genes can effectively predict the prognosis of patients and provide tumor markers for predicting the prognosis of CC.
Collapse
Affiliation(s)
- Guanqiao Chen
- Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Women and Children Medical Hospital, Guangzhou, China
| | - Xiaoshan Hong
- Department of Gynecology, Guangdong Women and Children Medical Hospital, Guangzhou, China
| | - Wanshan He
- Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Women and Children Medical Hospital, Guangzhou, China
| | - Lingling Ou
- Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Women and Children Medical Hospital, Guangzhou, China
| | - Bin Chen
- Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Women and Children Medical Hospital, Guangzhou, China
| | - Weitao Zhong
- Department of Surgical Neonatal Intensive Care Unit, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Yu Lin
- Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yu Lin, ; Xiping Luo,
| | - Xiping Luo
- Guangzhou Medical University, Guangzhou, China
- Department of Gynecology, Guangdong Women and Children Medical Hospital, Guangzhou, China
- *Correspondence: Yu Lin, ; Xiping Luo,
| |
Collapse
|
4
|
Cheng Y, Huang N, Yin Q, Cheng C, Chen D, Gong C, Xiong H, Zhao J, Wang J, Li X, Zhang J, Mao S, Qin K. LncRNA TP53TG1 plays an anti-oncogenic role in cervical cancer by synthetically regulating transcriptome profile in HeLa cells. Front Genet 2022; 13:981030. [PMID: 36267418 PMCID: PMC9576931 DOI: 10.3389/fgene.2022.981030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been extensively studied as important regulators of tumor development in various cancers. Tumor protein 53 target gene 1 (TP53TG1) is a newly identified lncRNA in recent years, and several studies have shown that TP53TG1 may play oncogenic or anti-oncogenic roles in different cancers. Nevertheless, the role of TP53TG1 in the development of cervical cancer is unclear. In our study, pan-cancer analysis showed that high expression of TP53TG1 was significantly associated with a better prognosis. We then constructed a TP53TG1 overexpression model in HeLa cell line to explore its functions and molecular targets. We found that TP53TG1 overexpression significantly inhibited cell proliferation and induced apoptosis, demonstrating that TP53TG1 may be a novel anti-oncogenic factor in cervical cancer. Furthermore, overexpression of TP53TG1 could activate type I interferon signaling pathways and inhibit the expression of genes involved in DNA damage responses. Meanwhile, TP53TG1 could affect alternative splicing of genes involved in cell proliferation or apoptosis by regulating the expression of many RNA-binding protein genes. Competing endogenous RNA (ceRNA) network analysis demonstrated that TP53TG1 could act as the sponge of several miRNAs to regulate the expression level of target genes. In conclusion, our study highlights the essential role of lncRNA TP53TG1 in the development of cervical cancer and suggests the potential regulatory mechanisms.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Nan Huang
- Department of Allergy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qingqing Yin
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Chao Cheng
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, Hubei, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyu Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuangshuang Mao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Qin
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- *Correspondence: Kai Qin,
| |
Collapse
|
5
|
miR-33a-5p Targets RAP2A to Mediate the Sensitivity of Gastric Cancer Cells to 5-FU. DISEASE MARKERS 2022; 2022:9701047. [PMID: 36046374 PMCID: PMC9424005 DOI: 10.1155/2022/9701047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
Abstract
Objective. The objective of this study is to explore the effects of microRNA-33a-5p (miR-33a-5p)-ras-related protein Rap-2a (RAP2A) on biological functions of gastric cancer (GC) and to find the potential functional mechanism. Methods. We measured the miR-33a-5p expression in 30 GC tissues and cellular level and 30 adjacent normal tissues as control. Besides, the expression of miR-33a-5p was checked at cell level as well. To screen the possible targets of miR-33a-5p, prediction software was used and gene RAP2A attracted our attention. Through a series of experiments including real-time polymerase chain reaction (qRT-PCR), luciferase assay, and western blotting (WB), we verified RAP2A as a potential target of miR-33a-5p. The impacts of miR-33a-5p and RAP2A on biological functions of GC cell lines (BGC-823 and MGC-803) were analyzed by subsequent experiments. Cell invasion was tested by invasion assays. Cell proliferation was measured by cell counting kit-8 (CCK-8) assay. Cell clone was measured by clone formation assays. Finally, the expression of RAP2A protein was analyzed by WB assay. Results. We found miR-33a-5p was expressed lowly in GC tissues and cells. Overexpression of miR-33a-5p in BGC-823 and MGC-803 cells greatly inhibited the cell invasion and colony number. Furthermore, compared to sh-control (shControl), RAP2A knockdown (sh-RAP2A/shRAP2A) raised the sensitivity of GC cells to 5-FU significantly, characterized as reducing cell apoptosis. Conclusions. The expression of miR-33a-5p was lower in GC cell lines and tissues obviously, indicating that miR-33a-5p served as the antitumor gene in GC. The expression of RAP2A regulated negatively the sensitivity of GC cells to 5-FU. According to our in vitro experiments, miR-33a-5p/RAP2A was likely to become a new therapeutic target for GC.
Collapse
|
6
|
Knockdown of lncRNA TP53TG1 Enhances the Efficacy of Sorafenib in Human Hepatocellular Carcinoma Cells. Noncoding RNA 2022; 8:ncrna8040061. [PMID: 36005829 PMCID: PMC9414591 DOI: 10.3390/ncrna8040061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The multikinase inhibitor, sorafenib, is a first-line treatment for hepatocellular carcinoma (HCC), but its limited efficacy, drug resistance and toxicity are a concern. In this study, we investigated the role of lncRNA TP53TG1 in the efficacy of sorafenib in HCC cells. We found that treatment with sorafenib increased the expression of TP53TG1 in HCC cells. Knockdown of TP53TG1 sensitized tumor cells to the antiproliferative effects of sorafenib. Furthermore, TP53TG1 knockdown had an additive inhibitory effect on HCC cell proliferation and migration in the presence of sorafenib. The combination of TP53TG1 knockdown and sorafenib drastically inhibited the activation of the ERK pathway. This work demonstrates that TP53TG1 deficiency enhances the efficacy of sorafenib in HCC. Combining TP53TG1 knockdown with sorafenib may be an optimal form of therapy for HCC treatment.
Collapse
|