1
|
Lamonaca A, De Angelis E, Monaci L, Pilolli R. Promoting the Emerging Role of Pulse By-Products as Valuable Sources of Functional Compounds and Novel Food Ingredients. Foods 2025; 14:424. [PMID: 39942018 PMCID: PMC11816435 DOI: 10.3390/foods14030424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The growth of the human population worldwide has increased food demand, generating the massive production of foods and consequently causing enormous production of waste every year. The indiscriminate exploitation of the already limited natural resources has also generated serious environmental and economic crises. The use, or reuse, of waste or by-products represents a viable solution to constrain the problem by promoting alternative routes of exploitation with multiple food and biotechnological applications. This review focuses on the most recent advances in the valorization of food by-products, with specific reference to legume-derived by-products. The main technological solutions for reintroducing and/or valorizing food waste are reported together with a critical discussion of the main pros and cons of each alternative, supported by practical case studies whenever available. First, the possibility to exploit the by-products as valuable sources of functional compounds is presented by reviewing both conventional and innovative extraction techniques tailored to provide functional extracts with multiple food, pharmaceutical, and biotechnological applications. Second, the possibility to valorize the by-products as novel food ingredients by inclusion in different formulations, either as a whole or as hydrolyzed/fermented derivatives, is also presented and discussed. To the best of our knowledge, several of the technological solutions discussed have found only limited applications for waste or by-products derived from the legume production chain; therefore, great efforts are still required to gain the full advantages of the intrinsic potential of pulse by-products.
Collapse
Affiliation(s)
- Antonella Lamonaca
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
- Department of Soil, Plant and Food Sciences, University Aldo Moro-Bari, 70126 Bari, Italy
| | - Elisabetta De Angelis
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Linda Monaci
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| | - Rosa Pilolli
- Institute of Sciences of Food Production, National Research Council of Italy (CNR-ISPA), 70126 Bari, Italy; (A.L.); (L.M.)
| |
Collapse
|
2
|
Campos-Lozada G, Hernández-Miranda J, del Valle-Mondragón L, Ortiz-Polo A, Betanzos-Cabrera G, Aguirre-Álvarez G. Effects of Hyperbaric (Non-Thermal) Sanitization and the Method of Extracting Pomegranate Juice on Its Antioxidant and Antihypertensive Properties. Antioxidants (Basel) 2024; 13:1009. [PMID: 39199253 PMCID: PMC11352013 DOI: 10.3390/antiox13081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Pomegranate (Punica granatum L.) is considered a functional food due to its polyphenol content that benefits the body. The type of processing the fruit undergoes is important, as this also influences the concentrations of these compounds. The pomegranate juice was extracted by two methods: manual extraction using a manual juicer through heat treatment in a water bath (Man-P), and extraction through mechanical pressing using Good Nature X-1 equipment and hyperbaric sanitization (Mech-Hyp). Bromatological analyses showed significant differences (p ≤ 0.05) between the two treatments. When subjected to hyperbaric sanitization, the juice showed higher concentrations of moisture, soluble solids, protein, and carbohydrates. In an antioxidant analysis, the ABTS radical showed no significant difference in the treatments, with 96.99% inhibition. For the DPPH radical, the sample with the highest inhibition was Man-P with 98.48%. The determination of phenols showed that there was a higher concentration in juice that underwent pasteurization (104.566 mg GAE/mL). However, the Mech-Hyp treatment exhibited a minor concentration of phenols with 85.70 mg GAE/mL. FTIR spectra revealed that the functional groups were mainly associated with carbohydrates. Regarding ACE inhibition, it was observed that the Man-P and Mech-Hyp juices showed greater inhibition of enzyme in hypertensive patients compared to normotensive patients. This activity can be attributed to the mechanisms of action of antioxidant compounds. Both extraction methods manual and mechanical pressing resulted in increased antioxidant and antihypertensive activity. The antioxidant compounds accompanied by adequate sanitation were decisive in an antimicrobial analysis, since no pathogenic microorganisms were observed in the juices.
Collapse
Affiliation(s)
- Gieraldin Campos-Lozada
- Institute of Agricultural Sciences, University Autonomous of Hidalgo State, Av. Universidad No. 133, Col. San Miguel Huatengo, Santiago Tulantepec C.P. 43775, Hidalgo, Mexico;
| | - Jonathan Hernández-Miranda
- Elviruch S.A. de C.V. Parque Industrial, Avenida Coatepec 520 ISB, Bodega 35C, San Bartolomé Coatepec, Huixquilucan de Degollado C.P. 52770, Mexico;
| | - Leonardo del Valle-Mondragón
- Departamento de Farmacología, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No. 1 Col. Sección 16, Tlalpan, Ciudad de México C.P. 14080, Mexico;
| | - Araceli Ortiz-Polo
- Instituto de Ciencias de la Salud, Área de Nutrición, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla, Tilcuautla C.P. 42060, Hidalgo, Mexico; (A.O.-P.); (G.B.-C.)
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Área de Nutrición, Universidad Autónoma del Estado de Hidalgo, Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla, Tilcuautla C.P. 42060, Hidalgo, Mexico; (A.O.-P.); (G.B.-C.)
| | - Gabriel Aguirre-Álvarez
- Institute of Agricultural Sciences, University Autonomous of Hidalgo State, Av. Universidad No. 133, Col. San Miguel Huatengo, Santiago Tulantepec C.P. 43775, Hidalgo, Mexico;
- Uni-Collagen S.A. de C.V., Arnulfo González No. 203, El Paraíso, Tulancingo C.P. 43684, Hidalgo, Mexico
| |
Collapse
|
3
|
Guo W, Mehrparvar S, Hou W, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Unveiling the impact of high-pressure processing on anthocyanin-protein/polysaccharide interactions: A comprehensive review. Int J Biol Macromol 2024; 270:132042. [PMID: 38710248 DOI: 10.1016/j.ijbiomac.2024.132042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.
Collapse
Affiliation(s)
- Wenjuan Guo
- School of Pharmaceutical Sciences, Tiangong University, Tianjin 300087, China
| | - Sheida Mehrparvar
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Weizhao Hou
- School of Chemical Engineering and Technology, Tiangong University, Tianjin 300087, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
4
|
Adhikari J, Araghi LR, Singh R, Adhikari K, Patil BS. Continuous-Flow High-Pressure Homogenization of Blueberry Juice Enhances Anthocyanin and Ascorbic Acid Stability during Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11629-11639. [PMID: 38739462 PMCID: PMC11117402 DOI: 10.1021/acs.jafc.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/16/2024]
Abstract
Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.
Collapse
Affiliation(s)
- Jayashan Adhikari
- Vegetable
and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
- Department
of Food Science and Technology, Texas A&M
University, 1500 Research
Parkway, Suite A120, College Station, Texas 77845-2119, United States
| | - Lida Rahimi Araghi
- Department
of Food Science and Technology, University
of Georgia, 100 Cedar Street, Athens, Georgia 30602, United States
| | - Rakesh Singh
- Department
of Food Science and Technology, University
of Georgia, 100 Cedar Street, Athens, Georgia 30602, United States
| | - Koushik Adhikari
- Department
of Food Science and Technology, University
of Georgia, 1109 Experiment Street, Griffin, Georgia 30223, United States
| | - Bhimanagouda S. Patil
- Vegetable
and Fruit Improvement Center, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, Suite A120, College Station, Texas 77845-2119, United States
- Department
of Food Science and Technology, Texas A&M
University, 1500 Research
Parkway, Suite A120, College Station, Texas 77845-2119, United States
| |
Collapse
|
5
|
Bai C, Chen R, Chen Y, Bai H, Sun H, Li D, Wu W, Wang Y, Gong M. Plant polysaccharides extracted by high pressure: A review on yields, physicochemical, structure properties, and bioactivities. Int J Biol Macromol 2024; 263:129939. [PMID: 38423909 DOI: 10.1016/j.ijbiomac.2024.129939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Polysaccharides are biologically essential macromolecules, widely exist in plants, which are used in food, medicine, bioactives' encapsulation, targeted delivery and other fields. Suitable extraction technology can not only improve the yield, but also regulate the physicochemical, improve the functional property, and is the basis for the research and application of polysaccharide. High pressure (HP) extraction (HPE) induces the breakage of raw material cells and tissues through rapid changes in pressure, increases extraction yield, reduces extraction time, and modifies structure of polysaccharides. However, thus far, literature review on the mechanism of extraction, improved yield and modified structure of HPE polysaccharide is lacking. Therefore, the present work reviews the mechanism of HPE polysaccharide, increasing extraction yield, regulating physicochemical and functional properties, modifying structure and improving activity. This review contributes to a full understanding of the HPE or development of polysaccharide production and modification methods and promotes the application of HP technology in polysaccharide production.
Collapse
Affiliation(s)
- Chunlong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Ruizhan Chen
- College of Chemistry, Changchun Normal University, Changchun 130032, China.
| | - Yubo Chen
- FAW-Volkswagen Automotive Co., Ltd., Powertrain Division T-D Planning Powertrain T-D-1, Changchun 130011, China
| | - Helong Bai
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Hui Sun
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Dongxue Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Wenjing Wu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yongtang Wang
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Mingze Gong
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| |
Collapse
|
6
|
Rivero-Ramos P, Unthank MG, Sanz T, Rodrigo MD, Benlloch-Tinoco M. Synergistic depolymerisation of alginate and chitosan by high hydrostatic pressure (HHP) and pulsed electric fields (PEF) treatment in the presence of H 2O 2. Carbohydr Polym 2023; 316:120999. [PMID: 37321720 DOI: 10.1016/j.carbpol.2023.120999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Physically-induced depolymerisation procedures are often preferred for obtaining alginate and chitosan oligosaccharides as they either do not use or make minimal use of additional chemicals; therefore, separation of the final products is facile. In this work, solutions of three types of alginate with different mannuronic and guluronic acid residues ratio (M/G ratio) and molecular weights (Mw) and one type of chitosan were non-thermally processed by applying high hydrostatic pressures (HHP) up to 500 MPa (20 min) or pulsed electric fields (PEF) up to 25 kV cm-1 (4000 μm) in the absence or presence of 3 % hydrogen peroxide (H2O2). The impact on the physicochemical properties of alginate and chitosan was investigated by rheology, GPC, XRD, FTIR, and 1H NMR. In the rheological investigations, the apparent viscosities of all samples decreased with increasing shear rate, indicating a non-Newtonian shear-thinning behaviour. GPC results reported Mw reductions that ranged between 8 and 96 % for all treatments. NMR results revealed that HHP and PEF treatment predominantly reduced the M/G ratio of alginate and the degree of deacetylation (DDA) of chitosan, whilst H2O2 promoted an increase in the M/G ratio in alginate and DDA of chitosan. Overall, the present investigation has demonstrated the feasibility of HHP and PEF for rapidly producing alginate and chitosan oligosaccharides.
Collapse
Affiliation(s)
- Pedro Rivero-Ramos
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Matthew G Unthank
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| | - Teresa Sanz
- Department of Food Safety and Preservation, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Maria Dolores Rodrigo
- Department of Food Safety and Preservation, Institute of Agrochemistry and Food Technology (IATA-CSIC), Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain.
| | - Maria Benlloch-Tinoco
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom.
| |
Collapse
|
7
|
Morata A, del Fresno JM, Gavahian M, Guamis B, Palomero F, López C. Effect of HHP and UHPH High-Pressure Techniques on the Extraction and Stability of Grape and Other Fruit Anthocyanins. Antioxidants (Basel) 2023; 12:1746. [PMID: 37760049 PMCID: PMC10526052 DOI: 10.3390/antiox12091746] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
The use of high-pressure technologies is a hot topic in food science because of the potential for a gentle process in which spoilage and pathogenic microorganisms can be eliminated; these technologies also have effects on the extraction, preservation, and modification of some constituents. Whole grapes or bunches can be processed by High Hydrostatic Pressure (HHP), which causes poration of the skin cell walls and rapid diffusion of the anthocyanins into the pulp and seeds in a short treatment time (2-10 min), improving maceration. Grape juice with colloidal skin particles of less than 500 µm processed by Ultra-High Pressure Homogenization (UHPH) is nano-fragmented with high anthocyanin release. Anthocyanins can be rapidly extracted from skins using HHP and cell fragments using UHPH, releasing them and facilitating their diffusion into the liquid quickly. HHP and UHPH techniques are gentle and protective of sensitive molecules such as phenols, terpenes, and vitamins. Both techniques are non-thermal technologies with mild temperatures and residence times. Moreover, UHPH produces an intense inactivation of oxidative enzymes (PPOs), thus preserving the antioxidant activity of grape juices. Both technologies can be applied to juices or concentrates; in addition, HHP can be applied to grapes or bunches. This review provides detailed information on the main features of these novel techniques, their current status in anthocyanin extraction, and their effects on stability and process sustainability.
Collapse
Affiliation(s)
- Antonio Morata
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| | - Juan Manuel del Fresno
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Buenaventura Guamis
- Centre d’Innovació, Recerca I Transferència en Tecnologia Dels Aliments (CIRTTA), TECNIO, XaRTA, Departament de Ciència Animal I Dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| | - Felipe Palomero
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| | - Carmen López
- enotecUPM, Department of Chemistry and Food Technology, ETSIAAB, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (J.M.d.F.); (F.P.); (C.L.)
| |
Collapse
|
8
|
Thakur M, Modi VK. Biocolorants in food: Sources, extraction, applications and future prospects. Crit Rev Food Sci Nutr 2022; 64:4674-4713. [PMID: 36503345 DOI: 10.1080/10408398.2022.2144997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Color of a food is one of the major factors influencing its acceptance by consumers. At presently synthetic dyes are the most commonly used food colorant in food industry by providing more esthetically appearance and as a means to quality control. However, the growing concern about health and environmental due to associated toxicity with synthetic food colorants has accelerated the global efforts to replace them with safer and healthy food colorants obtained from natural resources (plants, microorganisms, and animals). Further, many of these biocolorants not only provide myriad of colors to the food but also exert biological properties, thus they can be used as nutraceuticals in foods and beverages. In order to understand the importance of nature-derived pigments as food colorants, this review provides a thorough discussion on the natural origin of food colorants. Following this, different extraction methods for isolating biocolorants from plants and microbes were also discussed. Many of these biocolorants not only provide color, but also have many health promoting properties, for this reason their physicochemical and biological properties were also reviewed. Finally, current trends on the use of biocolorants in foods, and the challenges faced by the biocolorants in their effective utilization by food industry and possible solutions to these challenges were discussed.
Collapse
Affiliation(s)
- Monika Thakur
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| | - V K Modi
- Amity Institute of Food Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, Pandey AK, Tak Y, Rawat M, Thakur J, Rani H. Onion anthocyanins: Extraction, stability, bioavailability, dietary effect, and health implications. Front Nutr 2022; 9:917617. [PMID: 35967791 PMCID: PMC9363841 DOI: 10.3389/fnut.2022.917617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Anthocyanins are high-value compounds, and their use as functional foods and their natural colorant have potential health benefits. Anthocyanins seem to possess antioxidant properties, which help prevent neuronal diseases and thereby exhibit anti-inflammatory, chemotherapeutic, cardioprotective, hepatoprotective, and neuroprotective activities. They also show different therapeutic effects against various chronic diseases. Anthocyanins are present in high concentrations in onion. In recent years, although both conventional and improved methods have been used for extraction of anthocyanins, nowadays, improved methods are of great importance because of their higher yield and stability of anthocyanins. In this review, we compile anthocyanins and their derivatives found in onion and the factors affecting their stability. We also analyze different extraction techniques of anthocyanins. From this point of view, it is very important to be precisely aware of the impact that each parameter has on the stability and subsequently potentiate its bioavailability or beneficial health effects. We present up-to-date information on bioavailability, dietary effects, and health implications of anthocyanins such as antioxidant, antidiabetic, anticancerous, antiobesity, cardioprotective, and hepatoprotective activities.
Collapse
Affiliation(s)
- Mahesh Kumar Samota
- Horticulture Crop Processing (HCP) Division, ICAR-Central Institute of Post-Harvest Engineering & Technology (CIPHET), Punjab, India
| | - Madhvi Sharma
- Post Graduate Department of Biotechnology, Khalsa College, Amritsar, Punjab, India
| | - Kulwinder Kaur
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sarita
- College of Agriculture, Agriculture University, Jodhpur, Rajasthan, India
| | - Dinesh Kumar Yadav
- Division of Environmental Soil Science, ICAR-Indian Institute of Soil Science (IISS), Bhopal, MP, India
| | - Abhay K Pandey
- Department of Mycology and Microbiology, Tea Research Association-North Bengal Regional R & D Center, Nagrakata, West Bengal, India
| | - Yamini Tak
- Agricultural Research Station (ARS), Agriculture University, Kota, Rajasthan, India
| | - Mandeep Rawat
- Department of Horticulture, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Julie Thakur
- Department of Botany, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi, India
| | - Heena Rani
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
10
|
Yang S, Mi L, Wu J, Liao X, Xu Z. Strategy for anthocyanins production: From efficient green extraction to novel microbial biosynthesis. Crit Rev Food Sci Nutr 2022; 63:9409-9424. [PMID: 35486571 DOI: 10.1080/10408398.2022.2067117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthocyanins are widely distributed in nature and exhibit brilliant colors and multiple health-promoting effects; therefore, they are extensively incorporated into foods, pharmaceuticals, and cosmetic industries. Anthocyanins have been traditionally produced by plant extraction, which is characterized by high expenditure, low production rates, and rather complex processes, and hence cannot meet the increasing market demand. In addition, the emerging environmental issues resulting from traditional solvent extraction technologies necessitate a more efficient and eco-friendly alternative strategy for producing anthocyanins. This review summarizes the efficient approach for green extraction and introduces a novel strategy for microbial biosynthesis of anthocyanins, emphasizing the technological changes in production.
Collapse
Affiliation(s)
- Shini Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lu Mi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jihong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaojun Liao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhenzhen Xu
- Institute of Quality Standard & Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
11
|
Navarro-Baez JE, Martínez LM, Welti-Chanes J, Buitimea-Cantúa GV, Escobedo-Avellaneda Z. High Hydrostatic Pressure to Increase the Biosynthesis and Extraction of Phenolic Compounds in Food: A Review. Molecules 2022; 27:1502. [PMID: 35268602 PMCID: PMC8911777 DOI: 10.3390/molecules27051502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 01/26/2023] Open
Abstract
Phenolic compounds from fruits and vegetables have shown antioxidant, anticancer, anti-inflammatory, among other beneficial properties for human health. All these benefits have motivated multiple studies about preserving, extracting, and even increasing the concentration of these compounds in foods. A diverse group of vegetable products treated with High Hydrostatic Pressure (HHP) at different pressure and time have shown higher phenolic content than their untreated counterparts. The increments have been associated with an improvement in their extraction from cellular tissues and even with the activation of the biosynthetic pathway for their production. The application of HHP from 500 to 600 MPa, has been shown to cause cell wall disruption facilitating the release of phenolic compounds from cell compartments. HPP treatments ranging from 15 to 100 MPa during 10-20 min at room temperature have produced changes in phenolic biosynthesis with increments up to 155%. This review analyzes the use of HHP as a method to increase the phenolic content in vegetable systems. Phenolic content changes are associated with either an immediate stress response, with a consequent improvement in their extraction from cellular tissues, or a late stress response that activates the biosynthetic pathways of phenolics in plants.
Collapse
Affiliation(s)
| | | | | | | | - Zamantha Escobedo-Avellaneda
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Eugenio Garza Sada 2501, Monterrey 64700, Mexico; (J.E.N.-B.); (L.M.M.); (J.W.-C.); (G.V.B.-C.)
| |
Collapse
|
12
|
Tena N, Asuero AG. Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants (Basel) 2022; 11:antiox11020286. [PMID: 35204169 PMCID: PMC8868086 DOI: 10.3390/antiox11020286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/24/2023] Open
Abstract
Nowadays, food industries are concerned about satisfying legal requirements related to waste policy and environmental protection. In addition, they take steps to ensure food safety and quality products that have high nutritional properties. Anthocyanins are considered high added-value compounds due to their sensory qualities, colors, and nutritional properties; they are considered bioactive ingredients. They are found in high concentrations in many by-products across the food industry. Thus, the non-conventional extraction techniques presented here are useful in satisfying the current food industry requirements. However, selecting more convenient extraction techniques is not easy. Multiple factors are implicated in the decision. In this review, we compile the most recent applications (since 2015) used to extract anthocyanins from different natural matrices, via conventional and non-conventional extraction techniques. We analyze the main advantages and disadvantages of anthocyanin extraction techniques from different natural matrices and discuss the selection criteria for sustainability of the processes. We present an up-to-date analysis of the principles of the techniques and an optimization of the extraction conditions, technical progress, and industrial applications. Finally, we provide a critical comparison between these techniques and some recommendations, to select and optimize the techniques for industrial applications.
Collapse
|
13
|
Emerging Non-Thermal Technologies for the Extraction of Grape Anthocyanins. Antioxidants (Basel) 2021; 10:antiox10121863. [PMID: 34942965 PMCID: PMC8698441 DOI: 10.3390/antiox10121863] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Anthocyanins are flavonoid pigments broadly distributed in plants with great potential to be used as food colorants due to their range of colors, innocuous nature, and positive impact on human health. However, these molecules are unstable and affected by pH changes, oxidation and high temperatures, making it very important to extract them using gentle non-thermal technologies. The use of emerging non-thermal techniques such as High Hydrostatic Pressure (HHP), Ultra High Pressure Homogenization (UHPH), Pulsed Electric Fields (PEFs), Ultrasound (US), irradiation, and Pulsed Light (PL) is currently increasing for many applications in food technology. This article reviews their application, features, advantages and drawbacks in the extraction of anthocyanins from grapes. It shows how extraction can be significantly increased with many of these techniques, while decreasing extraction times and maintaining antioxidant capacity.
Collapse
|