1
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
2
|
Niyatiwatchanchai N, Pothirat C, Chaiwong W, Liwsrisakun C, Phetsuk N, Duangjit P, Choomuang W. Short-term effects of air pollutant exposure on small airway dysfunction, spirometry, health-related quality of life, and inflammatory biomarkers in wildland firefighters: a pilot study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:850-863. [PMID: 35440236 DOI: 10.1080/09603123.2022.2063263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Clinical Trials Registry: Study ID: TCTR20200828005.
Collapse
Affiliation(s)
- Nutchanok Niyatiwatchanchai
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chaicharn Pothirat
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Warawut Chaiwong
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chalerm Liwsrisakun
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nittaya Phetsuk
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pilaiporn Duangjit
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Woranoot Choomuang
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Mooney M, Panagodage Perera NK, Saw R, Waddington G, Cross TJ, Hughes D. Exercise in bushfire smoke for high performance athletes: A Position Statement from the Australian Institute of SportEndorsed by Australasian College of Sport and Exercise Physicians (ACSEP) and Sport Medicine Australia (SMA). J Sci Med Sport 2023; 26:98-108. [PMID: 36858652 DOI: 10.1016/j.jsams.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVES The frequency of bushfires in Australia is increasing and it is expected bushfire smoke will become a more prevalent phenomenon impacting air quality. The objective of this position statement is to provide guidance to the sport sector regarding exercise in air affected by bushfire smoke. DESIGN This is position statement from the Australian Institute of Sport, based on a narrative review of the literature regarding bushfire smoke and its effects on health and exercise performance. METHODS A narrative review of scientific publications regarding the effects of bushfire smoke on health and exercise performance. RESULTS Bushfire smoke has negative impacts on health and performance. Athletes exercising at high intensity over a prolonged duration will increase their exposure to air pollutants. Athletes with a history of elevated airway responsiveness are likely to be at increased risk of an adverse response to bushfire smoke exposure. CONCLUSIONS Athletes, coaches, support staff and sport organisations should monitor air quality (PM2.5 concentration) and make appropriate adjustments to training duration and intensity.
Collapse
Affiliation(s)
- Mathew Mooney
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia. https://twitter.com/Mat_Mooney
| | - Nirmala Kanthi Panagodage Perera
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia. https://twitter.com/Nim_Perera
| | - Richard Saw
- Sports Medicine, Australian Institute of Sport, Australia. https://twitter.com/_RichardSaw
| | - Gordon Waddington
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia. https://twitter.com/DrGWaddington
| | - Troy J Cross
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
| | - David Hughes
- Sports Medicine, Australian Institute of Sport, Australia; University of Canberra Research Institute for Sport and Exercise (UCRISE), University of Canberra, Australia.
| |
Collapse
|
4
|
Koopmans E, Cornish K, Fyfe TM, Bailey K, Pelletier CA. Health risks and mitigation strategies from occupational exposure to wildland fire: a scoping review. J Occup Med Toxicol 2022; 17:2. [PMID: 34983565 PMCID: PMC8725416 DOI: 10.1186/s12995-021-00328-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Due to accelerating wildland fire activity, there is mounting urgency to understand, prevent, and mitigate the occupational health impacts associated with wildland fire suppression. The objectives of this review of academic and grey literature were to: 1. Identify the impact of occupational exposure to wildland fires on physical, mental, and emotional health; and 2. Examine the characteristics and effectiveness of prevention, mitigation, or management strategies studied to reduce negative health outcomes associated with occupational exposure to wildland fire. METHODS Following established scoping review methods, academic literature as well as government and industry reports were identified by searching seven academic databases and through a targeted grey literature search. 4679 articles were screened using pre-determined eligibility criteria. Data on study characteristics, health outcomes assessed, prevention or mitigation strategies studied, and main findings were extracted from each included document. The results of this scoping review are presented using descriptive tables and a narrative summary to organize key findings. RESULTS The final sample was comprised of 100 articles: 76 research articles and 24 grey literature reports. Grey literature focused on acute injuries and fatalities. Health outcomes reported in academic studies focused on respiratory health (n = 14), mental health (n = 16), and inflammation and oxidative stress (n = 12). The identified studies evaluated short-term outcomes measuring changes across a single shift or wildland fire season. Most research was conducted with wildland firefighters and excluded personnel such as aviation crews, contract crews, and incident management teams. Five articles reported direct study of mitigation strategies, focusing on the potential usage of masks, advanced hygiene protocols to reduce exposure, fluid intake to manage hydration and core temperature, and glutamine supplementation to reduce fatigue. CONCLUSIONS While broad in scope, the evidence base linking wildland fire exposure to any one health outcome is limited. The lack of long-term evidence on changes in health status or morbidity is a clear evidence gap and there is a need to prioritize research on the mental and physical health impact of occupational exposure to wildland fire.
Collapse
Affiliation(s)
- Erica Koopmans
- Health Research Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Katie Cornish
- Health Research Institute, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Trina M Fyfe
- Northern Medical Program, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Katherine Bailey
- School of Health Sciences, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada
| | - Chelsea A Pelletier
- School of Health Sciences, University of Northern British Columbia, 3333 University Way, Prince George, BC, V2N 4Z9, Canada.
| |
Collapse
|
5
|
Krug J, Long R, Colón M, Habel A, Urbanski S, Landis MS. Evaluation of small form factor, filter-based PM 2.5 samplers for temporary non-regulatory monitoring during wildland fire smoke events. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2021; 265:1-8. [PMID: 35153533 PMCID: PMC8832362 DOI: 10.1016/j.atmosenv.2021.118718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Wildland fire activity and associated emission of particulate matter air pollution is increasing in the United States over the last two decades due primarily to a combination of increased temperature, drought, and historically high forest fuel loading. The regulatory monitoring networks in the Unites States are mostly concentrated in larger population centers where anthropogenic air pollution sources are concentrated. Smaller population centers in areas more likely to be impacted by wildland fire smoke in many instances lack adequate observational air quality data. Several commercially available small form factor filter-based PM2.5 samplers (SFFFS) were evaluated under typical ambient and simulated near-to mid-field wildland fire smoke conditions to evaluate their accuracy for use in temporary deployments during prescribed and wildfire events. The performance of all the SFFFS tested versus the designated federal reference methods (FRM) was acceptable in determining PM2.5 concentration in both ambient (2.7-14.0 μg m-3) and chamber smoke environments (24.6-3044.6 μg m-3) with accuracies ranging from ~92 to 98%. However, only the ARA Instruments model N-FRM Sampler was found to provide PM2.5 mass measurement accuracies that meet FRM guideline performance specifications under both typical ambient (97.3 ± 1.9%) and simulated wildland fire conditions (98.2 ± 1.4%).
Collapse
Affiliation(s)
- Jonathan Krug
- US EPA, Office of Research and Development, Research Triangle Park, NC, USA
| | - Russell Long
- US EPA, Office of Research and Development, Research Triangle Park, NC, USA
| | - Maribel Colón
- US EPA, Office of Research and Development, Research Triangle Park, NC, USA
| | - Andrew Habel
- Jacobs Technology Inc., Research Triangle Park, NC, USA
| | - Shawn Urbanski
- U.S. Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
| | - Matthew S. Landis
- US EPA, Office of Research and Development, Research Triangle Park, NC, USA
| |
Collapse
|
6
|
Rajinikanth SK, Chitra M, Kannan N, Baskaran V, Krishnan M. A comparative analysis of biomass and clean fuel exposure on pulmonary function during cooking among rural women in Tamilnadu, India. Bioinformation 2021; 17:593-598. [PMID: 35095233 PMCID: PMC8770405 DOI: 10.6026/97320630017593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 11/23/2022] Open
Abstract
It is of interest to document data on the comparative analysis of biomass and clean fuel exposure on pulmonary function during cooking among rural women. The study consisted of 100 biomass and 100 LPG fuel using women with no smoking habits and other related illness Parameters such as FVC, FEV1, FEV1/FVC, PEFR, FEF25-75%were obtained using the computerized spirometry to assess the pulmonary function in these subjects. The collected data were analyzed using the Student t-test method and Pearson correlation. The exposure index for biomass fuel users is 69.78±27.25 showing high exposure duration during cooking. The parameters for pulmonary functions significantly declined in FVC (42.34±13.6), FEV1 (45.55±15.98), PEFR (34.11±14.78) and FEF25-75% (45.56±23.00) for biomass fuel user. However, this is not true for FEV1/FVC ratio (107.56±16.9). The increase in PFT suggests the restrictive and obstructive patterns of pulmonary diseases. There was a negative correlation between increased duration of cooking and the value of FEV1/FVC (r = -0.2961), FEF25-75% (r = -0.3519) and PEFR (r = -0.2868). Thus, the deformation of pulmonary function due to extended exposure of biomass fuel for cooking women in rural Tamilnadu is shown using parameter features such as high exposure index, overcrowded area and improper ventilated houses.
Collapse
Affiliation(s)
| | - M Chitra
- Department of physiology, Shri Sathya Sai Medical College and Research Institute, Chennai and Sri Balaji Vidyapeeth, Puducherry, Tamil Nadu, India
| | - N Kannan
- Department of physiology, Adhiparasakthi Institute of Medical Sciences and Research, Melmaruvathur, Tamilnadu, India
| | | | - Madhan Krishnan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Schwartz C, Bølling AK, Carlsten C. Controlled human exposures to wood smoke: a synthesis of the evidence. Part Fibre Toxicol 2020; 17:49. [PMID: 33008417 PMCID: PMC7530963 DOI: 10.1186/s12989-020-00375-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/19/2020] [Indexed: 01/16/2023] Open
Abstract
Background Exposure to particulate matter (PM) from wood combustion represents a global health risk, encompassing diverse exposure sources; indoor exposures due to cooking in developing countries, ambient PM exposures from residential wood combustion in developed countries, and the predicted increasing number of wildfires due to global warming. Although physicochemical properties of the PM, as well as the exposure levels vary considerably between these sources, controlled human exposure studies may provide valuable insight to the harmful effects of wood smoke (WS) exposures in general. However, no previous review has focused specifically on controlled human exposure studies to WS. Results The 22 publications identified, resulting from 12 controlled human studies, applied a range of combustion conditions, exposure levels and durations, and exercise components in their WS exposure. A range of airway, cardiovascular and systemic endpoints were assessed, including lung function and heart rate measures, inflammation and oxidative stress. However, the possibility for drawing general conclusions was precluded by the large variation in study design, resulting in differences in physicochemical properties of WS, effective dose, as well as included endpoints and time-points for analysis. Overall, there was most consistency in reported effects for airways, while oxidative stress, systemic inflammation and cardiovascular physiology did not show any clear patterns. Conclusion Based on the reviewed controlled human exposure studies, conclusions regarding effects of acute WS exposure on human health are premature. Thus, more carefully conducted human studies are needed. Future studies should pay particular attention to the applied WS exposure, to assure that both exposure levels and PM properties reflect the research question.
Collapse
Affiliation(s)
- Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, P: 604-875-4729, 2775 Laurel Street 10th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Anette Kocbach Bølling
- Section of Air Pollution and Noise, Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213, Oslo, Norway
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, P: 604-875-4729, 2775 Laurel Street 10th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
8
|
Abstract
OBJECTIVES The current laboratory study quantified blood oxidative stress to woodsmoke exposure. METHODS Participants inhaled woodsmoke during three randomized crossover exercise trials (Clean Air [0 μg/m], Low Exposure [250 μg/m], and High Exposure [500 μg/m], Woodsmoke [particulate matter less than 2.5 μm, PM2.5]). Trolox equivalent antioxidant capacity (TEAC), uric acid (UA), 8-isoprostanes (8-ISO), lipid hydroperoxides (LOOH), protein carbonyls (PC), nitrotyrosine (3-NT), 8-isoprostane, and myeloperoxidase (MPO) were quantified in Pre, immediately Post, and 1- (1Hr) hour post blood samples. RESULTS UA decreased following Low Exposure, while plasma TEAC levels increased Post and 1Hr. LOOH levels decreased 1Hr Post (High Exposure), while 8-Iso increased following both smoke trials. PC and MPO were unchanged following all trials, while 3-NT increased over Clean Air. CONCLUSION Blood oxidative stress occurred largely independent of PM2.5 concentrations. Future studies should employ longer duration smoke and exercise combined with physiologic parameters.
Collapse
|
9
|
Fedak KM, Good N, Walker ES, Balmes J, Brook RD, Clark ML, Cole-Hunter T, Devlin R, L'Orange C, Luckasen G, Mehaffy J, Shelton R, Wilson A, Volckens J, Peel JL. Acute Effects on Blood Pressure Following Controlled Exposure to Cookstove Air Pollution in the STOVES Study. J Am Heart Assoc 2019; 8:e012246. [PMID: 31286826 PMCID: PMC6662148 DOI: 10.1161/jaha.119.012246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Exposure to air pollution from solid fuel used in residential cookstoves is considered a leading environmental risk factor for disease globally, but evidence for this relationship is largely extrapolated from literature on smoking, secondhand smoke, and ambient fine particulate matter (PM2.5). Methods and Results We conducted a controlled human‐exposure study (STOVES [the Subclinical Tests on Volunteers Exposed to Smoke] Study) to investigate acute responses in blood pressure following exposure to air pollution emissions from cookstove technologies. Forty‐eight healthy adults received 2‐hour exposures to 5 cookstove treatments (three stone fire, rocket elbow, fan rocket elbow, gasifier, and liquefied petroleum gas), spanning PM2.5 concentrations from 10 to 500 μg/m3, and a filtered air control (0 μg/m3). Thirty minutes after exposure, systolic pressure was lower for the three stone fire treatment (500 μg/m3PM2.5) compared with the control (−2.3 mm Hg; 95% CI, −4.5 to −0.1) and suggestively lower for the gasifier (35 μg/m3PM2.5; −1.8 mm Hg; 95% CI, −4.0 to 0.4). No differences were observed at 3 hours after exposure; however, at 24 hours after exposure, mean systolic pressure was 2 to 3 mm Hg higher for all treatments compared with control except for the rocket elbow stove. No differences were observed in diastolic pressure for any time point or treatment. Conclusions Short‐term exposure to air pollution from cookstoves can elicit an increase in systolic pressure within 24 hours. This response occurred across a range of stove types and PM2.5 concentrations, raising concern that even low‐level exposures to cookstove air pollution may pose adverse cardiovascular effects.
Collapse
Affiliation(s)
- Kristen M Fedak
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Nicholas Good
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Ethan S Walker
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - John Balmes
- 2 Department of Medicine University of California San Francisco San Francisco CA
| | - Robert D Brook
- 3 Division of Cardiovascular Medicine University of Michigan Medical School Ann Arbor MI
| | - Maggie L Clark
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Tom Cole-Hunter
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO.,4 Centre for Air Pollution, Energy, and Health Research Queensland University of Technology Brisbane Australia
| | - Robert Devlin
- 5 Environmental Public Health Division United States Environmental Protection Agency Chapel Hill NC
| | - Christian L'Orange
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | | | - John Mehaffy
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | - Rhiannon Shelton
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| | - Ander Wilson
- 8 Department of Statistics Colorado State University Fort Collins CO
| | - John Volckens
- 6 Department of Mechanical Engineering Colorado State University Fort Collins CO
| | - Jennifer L Peel
- 1 Department of Environmental and Radiological Health Sciences Colorado State University Fort Collins CO
| |
Collapse
|