1
|
Kim Y, Kang M, Mamo MG, Adisasmita M, Huch M, Choi D. Liver organoids: Current advances and future applications for hepatology. Clin Mol Hepatol 2025; 31:S327-S348. [PMID: 39722609 PMCID: PMC11925438 DOI: 10.3350/cmh.2024.1040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024] Open
Abstract
The creation of self-organizing liver organoids represents a significant, although modest, step toward addressing the ongoing organ shortage crisis in allogeneic liver transplantation. However, researchers have recognized that achieving a fully functional whole liver remains a distant goal, and the original ambition of organoid-based liver generation has been temporarily put on hold. Instead, liver organoids have revolutionized the field of hepatology, extending their influence into various domains of precision and molecular medicine. These 3D cultures, capable of replicating key features of human liver function and pathology, have opened new avenues for human-relevant disease modeling, CRISPR gene editing, and high-throughput drug screening that animal models cannot accomplish. Moreover, advancements in creating more complex systems have led to the development of multicellular assembloids, dynamic organoid-on-chip systems, and 3D bioprinting technologies. These innovations enable detailed modeling of liver microenvironments and complex tissue interactions. Progress in regenerative medicine and transplantation applications continues to evolve and strives to overcome the obstacles of biocompatibility and tumorigenecity. In this review, we examine the current state of liver organoid research by offering insights into where the field currently stands, and the pivotal developments that are shaping its future.
Collapse
Affiliation(s)
- Yohan Kim
- Department of MetaBioHealth, Sungkyunkwan University, Suwon, Korea
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Korea
- Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, Suwon, Korea
| | - Minseok Kang
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Michael Girma Mamo
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Michael Adisasmita
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
- Research Institute of Regenerative Medicine and Stem Cells, Hanyang University, Seoul, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Korea
| |
Collapse
|
2
|
Ali AS, Wu D, Bannach-Brown A, Dhamrait D, Berg J, Tolksdorf B, Lichtenstein D, Dressler C, Braeuning A, Kurreck J, Hülsemann M. 3D bioprinting of liver models: A systematic scoping review of methods, bioinks, and reporting quality. Mater Today Bio 2024; 26:100991. [PMID: 38558773 PMCID: PMC10978534 DOI: 10.1016/j.mtbio.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 04/04/2024] Open
Abstract
Background Effective communication is crucial for broad acceptance and applicability of alternative methods in 3R biomedical research and preclinical testing. 3D bioprinting is used to construct intricate biological structures towards functional liver models, specifically engineered for deployment as alternative models in drug screening, toxicological investigations, and tissue engineering. Despite a growing number of reviews in this emerging field, a comprehensive study, systematically assessing practices and reporting quality for bioprinted liver models is missing. Methods In this systematic scoping review we systematically searched MEDLINE (Ovid), EMBASE (Ovid) and BioRxiv for studies published prior to June 2nd, 2022. We extracted data on methodological conduct, applied bioinks, the composition of the printed model, performed experiments and model applications. Records were screened for eligibility and data were extracted from included articles by two independent reviewers from a panel of seven domain experts specializing in bioprinting and liver biology. We used RAYYAN for the screening process and SyRF for data extraction. We used R for data analysis, and R and Graphpad PRISM for visualization. Results Through our systematic database search we identified 1042 records, from which 63 met the eligibility criteria for inclusion in this systematic scoping review. Our findings revealed that extrusion-based printing, in conjunction with bioinks composed of natural components, emerged as the predominant printing technique in the bioprinting of liver models. Notably, the HepG2 hepatoma cell line was the most frequently employed liver cell type, despite acknowledged limitations. Furthermore, 51% of the printed models featured co-cultures with non-parenchymal cells to enhance their complexity. The included studies offered a variety of techniques for characterizing these liver models, with their primary application predominantly focused on toxicity testing. Among the frequently analyzed liver markers, albumin and urea stood out. Additionally, Cytochrome P450 (CYP) isoforms, primarily CYP3A and CYP1A, were assessed, and select studies employed nuclear receptor agonists to induce CYP activity. Conclusion Our systematic scoping review offers an evidence-based overview and evaluation of the current state of research on bioprinted liver models, representing a promising and innovative technology for creating alternative organ models. We conducted a thorough examination of both the methodological and technical facets of model development and scrutinized the reporting quality within the realm of bioprinted liver models. This systematic scoping review can serve as a valuable template for systematically evaluating the progress of organ model development in various other domains. The transparently derived evidence presented here can provide essential support to the research community, facilitating the adaptation of technological advancements, the establishment of standards, and the enhancement of model robustness. This is particularly crucial as we work toward the long-term objective of establishing new approach methods as reliable alternatives to animal testing, with extensive and versatile applications.
Collapse
Affiliation(s)
- Ahmed S.M. Ali
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Dongwei Wu
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Alexandra Bannach-Brown
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| | - Diyal Dhamrait
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| | - Johanna Berg
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Beatrice Tolksdorf
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment (BfR), Department Food Safety, Berlin, Germany
| | - Corinna Dressler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Medical Library, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment (BfR), Department Food Safety, Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Germany
| | - Maren Hülsemann
- Berlin Institute of Health (BIH) @Charité, QUEST Center for Responsible Research, Berlin, Germany
| |
Collapse
|
3
|
Carvalho AM, Bansal R, Barrias CC, Sarmento B. The Material World of 3D-Bioprinted and Microfluidic-Chip Models of Human Liver Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307673. [PMID: 37961933 DOI: 10.1002/adma.202307673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Biomaterials are extensively used to mimic cell-matrix interactions, which are essential for cell growth, function, and differentiation. This is particularly relevant when developing in vitro disease models of organs rich in extracellular matrix, like the liver. Liver disease involves a chronic wound-healing response with formation of scar tissue known as fibrosis. At early stages, liver disease can be reverted, but as disease progresses, reversion is no longer possible, and there is no cure. Research for new therapies is hampered by the lack of adequate models that replicate the mechanical properties and biochemical stimuli present in the fibrotic liver. Fibrosis is associated with changes in the composition of the extracellular matrix that directly influence cell behavior. Biomaterials could play an essential role in better emulating the disease microenvironment. In this paper, the recent and cutting-edge biomaterials used for creating in vitro models of human liver fibrosis are revised, in combination with cells, bioprinting, and/or microfluidics. These technologies have been instrumental to replicate the intricate structure of the unhealthy tissue and promote medium perfusion that improves cell growth and function, respectively. A comprehensive analysis of the impact of material hints and cell-material interactions in a tridimensional context is provided.
Collapse
Affiliation(s)
- Ana Margarida Carvalho
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ruchi Bansal
- Translational Liver Research, Department of Medical Cell Biophysics, Technical Medical Center, Faculty of Science and Technology, University of Twente, Enschede, 7522 NB, The Netherlands
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS - Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, Gandra, 4585-116, Portugal
| |
Collapse
|
4
|
Li W, Liu Z, Tang F, Jiang H, Zhou Z, Hao X, Zhang JM. Application of 3D Bioprinting in Liver Diseases. MICROMACHINES 2023; 14:1648. [PMID: 37630184 PMCID: PMC10457767 DOI: 10.3390/mi14081648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Liver diseases are the primary reason for morbidity and mortality in the world. Owing to a shortage of organ donors and postoperative immune rejection, patients routinely suffer from liver failure. Unlike 2D cell models, animal models, and organoids, 3D bioprinting can be successfully employed to print living tissues and organs that contain blood vessels, bone, and kidney, heart, and liver tissues and so on. 3D bioprinting is mainly classified into four types: inkjet 3D bioprinting, extrusion-based 3D bioprinting, laser-assisted bioprinting (LAB), and vat photopolymerization. Bioinks for 3D bioprinting are composed of hydrogels and cells. For liver 3D bioprinting, hepatic parenchymal cells (hepatocytes) and liver nonparenchymal cells (hepatic stellate cells, hepatic sinusoidal endothelial cells, and Kupffer cells) are commonly used. Compared to conventional scaffold-based approaches, marked by limited functionality and complexity, 3D bioprinting can achieve accurate cell settlement, a high resolution, and more efficient usage of biomaterials, better mimicking the complex microstructures of native tissues. This method will make contributions to disease modeling, drug discovery, and even regenerative medicine. However, the limitations and challenges of this method cannot be ignored. Limitation include the requirement of diverse fabrication technologies, observation of drug dynamic response under perfusion culture, the resolution to reproduce complex hepatic microenvironment, and so on. Despite this, 3D bioprinting is still a promising and innovative biofabrication strategy for the creation of artificial multi-cellular tissues/organs.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Radiology, Yancheng Third People’s Hospital, Affiliated Hospital 6 of Nantong University, Yancheng 224000, China
| | - Zhaoyue Liu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Fengwei Tang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Hao Jiang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Zhengyuan Zhou
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
| | - Xiuqing Hao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
| | - Jia Ming Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics; Nanjing 210016, China
- Nanjing Hangdian Intelligent Manufacturing Technology Co., Ltd., Nanjing 210014, China
- Yangtze River Delta Intelligent Manufacturing Innovation Center, Nanjing 210014, China
| |
Collapse
|
5
|
Sun L, Wang Y, Zhang S, Yang H, Mao Y. 3D bioprinted liver tissue and disease models: Current advances and future perspectives. BIOMATERIALS ADVANCES 2023; 152:213499. [PMID: 37295133 DOI: 10.1016/j.bioadv.2023.213499] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) bioprinting is a promising technology for fabricating complex tissue constructs with biomimetic biological functions and stable mechanical properties. In this review, the characteristics of different bioprinting technologies and materials are compared, and development in strategies for bioprinting normal and diseased hepatic tissue are summarized. In particular, features of bioprinting and other bio-fabrication strategies, such as organoids and spheroids are compared to demonstrate the strengths and weaknesses of 3D printing technology. Directions and suggestions, such as vascularization and primary human hepatocyte culture, are provided for the future development of 3D bioprinting.
Collapse
Affiliation(s)
- Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China; Department of General Surgery, The First affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinhan Wang
- Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences & PUMC, Dongcheng, Beijing 100730, China
| | - Shuquan Zhang
- Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences & PUMC, Dongcheng, Beijing 100730, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences, Dongcheng, Beijing, 100730, China.
| |
Collapse
|
6
|
Advances of Engineered Hydrogel Organoids within the Stem Cell Field: A Systematic Review. Gels 2022; 8:gels8060379. [PMID: 35735722 PMCID: PMC9222364 DOI: 10.3390/gels8060379] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Organoids are novel in vitro cell culture models that enable stem cells (including pluripotent stem cells and adult stem cells) to grow and undergo self-organization within a three-dimensional microenvironment during the process of differentiation into target tissues. Such miniature structures not only recapitulate the histological and genetic characteristics of organs in vivo, but also form tissues with the capacity for self-renewal and further differentiation. Recent advances in biomaterial technology, particularly hydrogels, have provided opportunities to improve organoid cultures; by closely integrating the mechanical and chemical properties of the extracellular matrix microenvironment, with novel synthetic materials and stem cell biology. This systematic review critically examines recent advances in various strategies and techniques utilized for stem-cell-derived organoid culture, with particular emphasis on the application potential of hydrogel technology in organoid culture. We hope this will give a better understanding of organoid cultures for modelling diseases and tissue engineering applications.
Collapse
|
7
|
Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 2022; 25:103549. [PMID: 34977507 PMCID: PMC8689151 DOI: 10.1016/j.isci.2021.103549] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global healthcare challenge, affecting 1 in 4 adults, and death rates are predicted to rise inexorably. The progressive form of NAFLD, non-alcoholic steatohepatitis (NASH), can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. However, no medical treatments are licensed for NAFLD-NASH. Identifying efficacious therapies has been hindered by the complexity of disease pathogenesis, a paucity of predictive preclinical models and inadequate validation of pharmacological targets in humans. The development of clinically relevant in vitro models of the disease will pave the way to overcome these challenges. Currently, the combined application of emerging technologies (e.g., organ-on-a-chip/microphysiological systems) and control engineering approaches promises to unravel NAFLD biology and deliver tractable treatment candidates. In this review, we will describe advances in preclinical models for NAFLD-NASH, the recent introduction of novel technologies in this space, and their importance for drug discovery endeavors in the future.
Collapse
Affiliation(s)
- Maria Jimenez Ramos
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lucia Bandiera
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK.,Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Filippo Menolascina
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK.,Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jonathan Andrew Fallowfield
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
8
|
Ramos MJ, Bandiera L, Menolascina F, Fallowfield JA. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience 2022; 25:103549. [PMID: 34977507 DOI: 10.1016/j.isci] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global healthcare challenge, affecting 1 in 4 adults, and death rates are predicted to rise inexorably. The progressive form of NAFLD, non-alcoholic steatohepatitis (NASH), can lead to fibrosis, cirrhosis, and hepatocellular carcinoma. However, no medical treatments are licensed for NAFLD-NASH. Identifying efficacious therapies has been hindered by the complexity of disease pathogenesis, a paucity of predictive preclinical models and inadequate validation of pharmacological targets in humans. The development of clinically relevant in vitro models of the disease will pave the way to overcome these challenges. Currently, the combined application of emerging technologies (e.g., organ-on-a-chip/microphysiological systems) and control engineering approaches promises to unravel NAFLD biology and deliver tractable treatment candidates. In this review, we will describe advances in preclinical models for NAFLD-NASH, the recent introduction of novel technologies in this space, and their importance for drug discovery endeavors in the future.
Collapse
Affiliation(s)
- Maria Jimenez Ramos
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Lucia Bandiera
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK
- Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Filippo Menolascina
- Institute for Bioengineering, The University of Edinburgh, Edinburgh EH9 3BF, UK
- Synthsys - Centre for Synthetic and Systems Biology, The University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Jonathan Andrew Fallowfield
- Centre for Inflammation Research, The University of Edinburgh, The Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| |
Collapse
|
9
|
Ramadan Q, Zourob M. 3D Bioprinting at the Frontier of Regenerative Medicine, Pharmaceutical, and Food Industries. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 2:607648. [PMID: 35047890 PMCID: PMC8757855 DOI: 10.3389/fmedt.2020.607648] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
3D printing technology has emerged as a key driver behind an ongoing paradigm shift in the production process of various industrial domains. The integration of 3D printing into tissue engineering, by utilizing life cells which are encapsulated in specific natural or synthetic biomaterials (e.g., hydrogels) as bioinks, is paving the way toward devising many innovating solutions for key biomedical and healthcare challenges and heralds' new frontiers in medicine, pharmaceutical, and food industries. Here, we present a synthesis of the available 3D bioprinting technology from what is found and what has been achieved in various applications and discussed the capabilities and limitations encountered in this technology.
Collapse
Affiliation(s)
- Qasem Ramadan
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohammed Zourob
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Wang X, Guo C, Guo L, Wang M, Liu M, Song Y, Jiao H, Wei X, Zhao Z, Kaplan DL. Radially Aligned Porous Silk Fibroin Scaffolds as Functional Templates for Engineering Human Biomimetic Hepatic Lobules. ACS APPLIED MATERIALS & INTERFACES 2022; 14:201-213. [PMID: 34929079 DOI: 10.1021/acsami.1c18215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioengineering functional hepatic tissue constructs that physiologically replicate the human native liver tissue in vitro is sought for clinical research and drug discovery. However, the intricate architecture and specific biofunctionality possessed by the native liver tissue remain challenging to mimic in vitro. In the present study, a versatile strategy to fabricate lobular-like silk protein scaffolds with radially aligned lamellar sheets, interconnected channels, and a converging central cavity was designed and implemented. A proof-of-concept study to bioengineer biomimetic hepatic lobules was conducted through coculturing human hepatocytes and primary endothelial cells on these lobular-like scaffolds. Relatively long-term viability of hepatocyte/endothelial cells was found along with cell alignment and organization in vitro. The hepatocytes showed special epithelial polarity and bile duct formation, similar to the liver plate, while the aligned endothelial cells generated endothelial networks, similar to natural hepatic sinuses. This endowed the three-dimensional (3D) tissue constructs with the capability to recapitulate hepatic-like parenchymal-mesenchymal growth patterns in vitro. More importantly, the cocultured hepatocytes outperformed monocultures or monolayer cultures, displaying significantly enhanced hepatocyte functions, including functional gene expression, albumin (ALB) secretion, urea synthesis, and metabolic activity. Thus, this functional unit with a biomimetic phenotype provides a novel technology for bioengineering biomimetic hepatic lobules in vitro, with potential utility as a building block for bioartificial liver (BAL) engineering or as a robust tool for drug metabolism investigation.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Chengchen Guo
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310023, China
| | - Lina Guo
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Mingqi Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Ming Liu
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Yizhe Song
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Hui Jiao
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Xiaoqing Wei
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - Zinan Zhao
- Department of Histology & Embryology, College of Basic Medical Sciences, Dalian Medical University, Liaoning 116044, China
| | - David L Kaplan
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
11
|
Maharjan S, Bonilla D, Zhang YS. 3D Bioprinting for Liver Regeneration. 3D BIOPRINTING AND NANOTECHNOLOGY IN TISSUE ENGINEERING AND REGENERATIVE MEDICINE 2022:459-488. [DOI: 10.1016/b978-0-12-824552-1.00010-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Ströbel S, Kostadinova R, Fiaschetti-Egli K, Rupp J, Bieri M, Pawlowska A, Busler D, Hofstetter T, Sanchez K, Grepper S, Thoma E. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci Rep 2021; 11:22765. [PMID: 34815444 PMCID: PMC8611054 DOI: 10.1038/s41598-021-01951-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive and severe liver disease, characterized by lipid accumulation, inflammation, and downstream fibrosis. Despite its increasing prevalence, there is no approved treatment yet available for patients. This has been at least partially due to the lack of predictive preclinical models for studying this complex disease. Here, we present a 3D in vitro microtissue model that uses spheroidal, scaffold free co-culture of primary human hepatocytes, Kupffer cells, liver endothelial cells and hepatic stellate cells. Upon exposure to defined and clinically relevant lipotoxic and inflammatory stimuli, these microtissues develop key pathophysiological features of NASH within 10 days, including an increase of intracellular triglyceride content and lipids, and release of pro-inflammatory cytokines. Furthermore, fibrosis was evident through release of procollagen type I, and increased deposition of extracellular collagen fibers. Whole transcriptome analysis revealed changes in the regulation of pathways associated with NASH, such as lipid metabolism, inflammation and collagen processing. Importantly, treatment with anti-NASH drug candidates (Selonsertib and Firsocostat) decreased the measured specific disease parameter, in accordance with clinical observations. These drug treatments also significantly changed the gene expression patterns of the microtissues, thus providing mechanisms of action and revealing therapeutic potential. In summary, this human NASH model represents a promising drug discovery tool for understanding the underlying complex mechanisms in NASH, evaluating efficacy of anti-NASH drug candidates and identifying new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Simon Ströbel
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH, Switzerland.
| | | | | | - Jana Rupp
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | - Manuela Bieri
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | | | - Donna Busler
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | | | | | - Sue Grepper
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | - Eva Thoma
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| |
Collapse
|
13
|
Lam DTUH, Dan YY, Chan YS, Ng HH. Emerging liver organoid platforms and technologies. CELL REGENERATION (LONDON, ENGLAND) 2021; 10:27. [PMID: 34341842 PMCID: PMC8329140 DOI: 10.1186/s13619-021-00089-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
Building human organs in a dish has been a long term goal of researchers in pursue of physiologically relevant models of human disease and for replacement of worn out and diseased organs. The liver has been an organ of interest for its central role in regulating body homeostasis as well as drug metabolism. An accurate liver replica should contain the multiple cell types found in the organ and these cells should be spatially organized to resemble tissue structures. More importantly, the in vitro model should recapitulate cellular and tissue level functions. Progress in cell culture techniques and bioengineering approaches have greatly accelerated the development of advance 3-dimensional (3D) cellular models commonly referred to as liver organoids. These 3D models described range from single to multiple cell type containing cultures with diverse applications from establishing patient-specific liver cells to modeling of chronic liver diseases and regenerative therapy. Each organoid platform is advantageous for specific applications and presents its own limitations. This review aims to provide a comprehensive summary of major liver organoid platforms and technologies developed for diverse applications.
Collapse
Affiliation(s)
- Do Thuy Uyen Ha Lam
- Laboratory of precision disease therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore
- Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Hospital, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
| | - Yun-Shen Chan
- Laboratory of precision disease therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
| | - Huck-Hui Ng
- Laboratory of precision disease therapeutics, Genome Institute of Singapore, 60 Biopolis Street, Singapore, 138672, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore, 117559, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117597, Singapore.
| |
Collapse
|
14
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Abstract
Three-dimensional (3D) printing techniques have revolutionized the field of tissue engineering. This is especially favorable to construct intricate tissues such as liver, as 3D printing allows for the precise delivery of biomaterials, cells and bioactive molecules in complex geometries. Bioinks made of polymers, of both natural and synthetic origin, have been very beneficial to printing soft tissues such as liver. Using polymeric bioinks, 3D hepatic structures are printed with or without cells and biomolecules, and have been used for different tissue engineering applications. In this review, with the introduction to basic 3D printing techniques, we discuss different natural and synthetic polymers including decellularized matrices that have been employed for the 3D bioprinting of hepatic structures. Finally, we focus on recent advances in polymeric bioinks for 3D hepatic printing and their applications. The studies indicate that much work has been devoted to improvising the design, stability and longevity of the printed structures. Others focus on the printing of tissue engineered hepatic structures for applications in drug screening, regenerative medicine and disease models. More attention must now be diverted to developing personalized structures and stem cell differentiation to hepatic lineage.
Collapse
|
16
|
Neo S, Makiishi E, Fujimoto A, Hisasue M. Human placental hydrolysate promotes the long-term culture of hepatocyte-like cells derived from canine bone marrow. J Vet Med Sci 2020; 82:1821-1827. [PMID: 33132358 PMCID: PMC7804030 DOI: 10.1292/jvms.20-0320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Long-term culture of canine artificial hepatocytes has not been established. We hypothesized that human placental hydrolysate (hPH) may support the long-term
culture of differentiated hepatocyte-like cells. Canine bone marrow cells were cultured using modified hepatocyte growth medium supplemented with hPH.
Quantitative reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemical analysis for albumin, qualitative RT-PCR for cytochrome P450 1A1
(CYP1A1), hepatocyte growth factor (HGF), Cytokeratin 7 (CK7), CD90, CD44, and CD34, and functional analyses of CYP450 activity and low-density lipoprotein
(LDL) uptake were performed. Cultured hepatocyte-like cells were able to maintain hepatocyte characteristics, including morphology, albumin synthesis, CYP450
activity, and LDL uptake for 80 days. Thus, hPH may be a potential facilitator for the long-term culture of hepatocyte-like cells. Clinicopathologically, this
culture protocol of artificial hepatocytes will contribute to liver function evaluation.
Collapse
Affiliation(s)
- Sakurako Neo
- Laboratory of Clinical Diagnosis, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Eri Makiishi
- Laboratory of Small Animal Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Ayumi Fujimoto
- Laboratory of Small Animal Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Masaharu Hisasue
- Laboratory of Small Animal Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
17
|
Zhang X, Jiang T, Chen D, Wang Q, Zhang LW. Three-dimensional liver models: state of the art and their application for hepatotoxicity evaluation. Crit Rev Toxicol 2020; 50:279-309. [DOI: 10.1080/10408444.2020.1756219] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xihui Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Tianyan Jiang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Dandan Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| | - Qi Wang
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control (NIFDC), China Food and Drug Administration (CFDA), Beijing, P. R. China
| | - Leshuai W. Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, P. R. China
| |
Collapse
|
18
|
da Silva Morais A, Vieira S, Zhao X, Mao Z, Gao C, Oliveira JM, Reis RL. Advanced Biomaterials and Processing Methods for Liver Regeneration: State-of-the-Art and Future Trends. Adv Healthc Mater 2020; 9:e1901435. [PMID: 31977159 DOI: 10.1002/adhm.201901435] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/13/2019] [Indexed: 12/17/2022]
Abstract
Liver diseases contribute markedly to the global burden of mortality and disease. The limited organ disposal for orthotopic liver transplantation results in a continuing need for alternative strategies. Over the past years, important progress has been made in the field of tissue engineering (TE). Many of the early trials to improve the development of an engineered tissue construct are based on seeding cells onto biomaterial scaffolds. Nowadays, several TE approaches have been developed and are applied to one vital organ: the liver. Essential elements must be considered in liver TE-cells and culturing systems, bioactive agents or growth factors (GF), and biomaterials and processing methods. The potential of hepatocytes, mesenchymal stem cells, and others as cell sources is demonstrated. They need engineered biomaterial-based scaffolds with perfect biocompatibility and bioactivity to support cell proliferation and hepatic differentiation as well as allowing extracellular matrix deposition and vascularization. Moreover, they require a microenvironment provided using conventional or advanced processing technologies in order to supply oxygen, nutrients, and GF. Herein the biomaterials and the conventional and advanced processing technologies, including cell-sheets process, 3D bioprinting, and microfluidic systems, as well as the future trends in these major fields are discussed.
Collapse
Affiliation(s)
- Alain da Silva Morais
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Sílvia Vieira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and FunctionalizationDepartment of Polymer Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Joaquim M. Oliveira
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine 4805‐017 Barco Guimarães Portugal
- ICVS/3B's–PT Government Associate Laboratory Braga/ Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision MedicineUniversity of Minho 4805‐017 Barco Guimarães Portugal
| |
Collapse
|
19
|
Weems AC, Pérez-Madrigal MM, Arno MC, Dove AP. 3D Printing for the Clinic: Examining Contemporary Polymeric Biomaterials and Their Clinical Utility. Biomacromolecules 2020; 21:1037-1059. [PMID: 32058702 DOI: 10.1021/acs.biomac.9b01539] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The advent of additive manufacturing offered the potential to revolutionize clinical medicine, particularly with patient-specific implants across a range of tissue types. However, to date, there are very few examples of polymers being used for additive processes in clinical settings. The state of the art with regards to 3D printable polymeric materials being exploited to produce novel clinically relevant implants is discussed here. We focus on the recent advances in the development of implantable, polymeric medical devices and tissue scaffolds without diverging extensively into bioprinting. By introducing the major 3D printing techniques along with current advancements in biomaterials, we hope to provide insight into how these fields may continue to advance while simultaneously reviewing the ongoing work in the field.
Collapse
Affiliation(s)
- Andrew C Weems
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | | | - Maria C Arno
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| |
Collapse
|
20
|
Ruoß M, Vosough M, Königsrainer A, Nadalin S, Wagner S, Sajadian S, Huber D, Heydari Z, Ehnert S, Hengstler JG, Nussler AK. Towards improved hepatocyte cultures: Progress and limitations. Food Chem Toxicol 2020; 138:111188. [PMID: 32045649 DOI: 10.1016/j.fct.2020.111188] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Hepatotoxicity is among the most frequent reasons for drug withdrawal from the market. Therefore, there is an urgent need for reliable predictive in vitro tests, which unfailingly identify hepatotoxic drug candidates, reduce drug development time, expenses and the number of test animals. Currently, human hepatocytes represent the gold standard. However, the use of hepatocytes is challenging since the cells are not constantly available and lose their metabolic activity in culture. To solve these problems many different approaches have been developed in the past decades. The aim of this review is to present these approaches and to discuss the possibilities and limitations as well as future opportunities and directions.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Sahar Sajadian
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Diana Huber
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Zahra Heydari
- Department of Regenerative Medicine, Cell Science Research Centre, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Technical University of Dortmund, Dortmund, Germany
| | - Andreas K Nussler
- Department of Traumatology, Siegfried Weller Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
21
|
Kryou C, Leva V, Chatzipetrou M, Zergioti I. Bioprinting for Liver Transplantation. Bioengineering (Basel) 2019; 6:E95. [PMID: 31658719 PMCID: PMC6956058 DOI: 10.3390/bioengineering6040095] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Bioprinting techniques can be used for the in vitro fabrication of functional complex bio-structures. Thus, extensive research is being carried on the use of various techniques for the development of 3D cellular structures. This article focuses on direct writing techniques commonly used for the fabrication of cell structures. Three different types of bioprinting techniques are depicted: Laser-based bioprinting, ink-jet bioprinting and extrusion bioprinting. Further on, a special reference is made to the use of the bioprinting techniques for the fabrication of 2D and 3D liver model structures and liver on chip platforms. The field of liver tissue engineering has been rapidly developed, and a wide range of materials can be used for building novel functional liver structures. The focus on liver is due to its importance as one of the most critical organs on which to test new pharmaceuticals, as it is involved in many metabolic and detoxification processes, and the toxicity of the liver is often the cause of drug rejection.
Collapse
Affiliation(s)
- Christina Kryou
- Department of Physics, National Technical University of Athens, 15780 Zografou, Greece.
| | - Valentina Leva
- Department of Physics, National Technical University of Athens, 15780 Zografou, Greece.
| | | | - Ioanna Zergioti
- Department of Physics, National Technical University of Athens, 15780 Zografou, Greece.
| |
Collapse
|
22
|
Chameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK, Bojedla SSR, Pati F. 3D Bioprinting: Recent Trends and Challenges. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00113-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Kolan KCR, Semon JA, Bromet B, Day DE, Leu MC. Bioprinting with human stem cell-laden alginate-gelatin bioink and bioactive glass for tissue engineering. Int J Bioprint 2019; 5:204. [PMID: 32596547 PMCID: PMC7310267 DOI: 10.18063/ijb.v5i2.2.204] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023] Open
Abstract
Three-dimensional (3D) bioprinting technologies have shown great potential in the fabrication of 3D models for different human tissues. Stem cells are an attractive cell source in tissue engineering as they can be directed by material and environmental cues to differentiate into multiple cell types for tissue repair and regeneration. In this study, we investigate the viability of human adipose-derived mesenchymal stem cells (ASCs) in alginate-gelatin (Alg-Gel) hydrogel bioprinted with or without bioactive glass. Highly angiogenic borate bioactive glass (13-93B3) in 50 wt% is added to polycaprolactone (PCL) to fabricate scaffolds using a solvent-based extrusion 3D bioprinting technique. The fabricated scaffolds with 12 × 12 × 1 mm3 in overall dimensions are physically characterized, and the glass dissolution from PCL/glass composite over a period of 28 days is studied. Alg-Gel composite hydrogel is used as a bioink to suspend ASCs, and scaffolds are then bioprinted in different configurations: Bioink only, PCL+bioink, and PCL/glass+bioink, to investigate ASC viability. The results indicate the feasibility of the solvent-based bioprinting process to fabricate 3D cellularized scaffolds with more than 80% viability on day 0. The decrease in viability after 7 days due to glass concentration and static culture conditions is discussed. The feasibility of modifying Alg-Gel with 13-93B3 glass for bioprinting is also investigated, and the results are discussed.
Collapse
Affiliation(s)
- Krishna C. R. Kolan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Julie A. Semon
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Bradley Bromet
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Delbert E. Day
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Ming C. Leu
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
24
|
Current Biomedical Applications of 3D Printing and Additive Manufacturing. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9081713] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Additive manufacturing (AM) has emerged over the past four decades as a cost-effective, on-demand modality for fabrication of geometrically complex objects. The ability to design and print virtually any object shape using a diverse array of materials, such as metals, polymers, ceramics and bioinks, has allowed for the adoption of this technology for biomedical applications in both research and clinical settings. Current advancements in tissue engineering and regeneration, therapeutic delivery, medical device fabrication and operative management planning ensure that AM will continue to play an increasingly important role in the future of healthcare. In this review, we outline current biomedical applications of common AM techniques and materials.
Collapse
|
25
|
Mukherjee S, Zhelnin L, Sanfiz A, Pan J, Li Z, Yarde M, McCarty J, Jarai G. Development and validation of an in vitro 3D model of NASH with severe fibrotic phenotype. Am J Transl Res 2019; 11:1531-1540. [PMID: 30972180 PMCID: PMC6456529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Nonalcoholic steatohepatitis represents a significant and rapidly growing unmet medical need. The development of novel therapies has been hindered in part, by the limitations of existing preclinical models. There is a strong need for physiologically relevant in vivo and in vitro liver fibrosis models that are characterized by better translational predictability. In this study, we used the InSphero 3D InSightTM three-dimensional (3D) human liver microtissue (3D-hLMT) system prepared by co-culturing primary human hepatocytes with hepatic stellate cells, Kupffer cells and endothelial cells to develop a model of NASH with a severe fibrotic phenotype. In our model, palmitic acid (PA) induced a robust proinflammatory and profibrogenic phenotype in the 3D-hLMT. PA significantly increased several markers of the inflammatory and profibrotic process including gene expression of collagens, α-sma, tissue inhibitor of matrix metalloprotease 1 (timp1) and the stellate cell activation marker pdgfrβ as well as secreted CXCL8 (IL8) levels. We also observed TGFβ pathway activation, increase in active collagen synthesis and significant overall increase in tissue damage in the 3D-hLMTs. Immunohistochemistry analysis demonstrated the upregulation of collagen, cleaved caspase 3 as well as of the PDGFRβ protein. We further validated the model using a phase 3 clinical compound, GS-4997, an apoptosis signal-regulating kinase 1 (ASK-1) inhibitor and showed that GS-4997 significantly decreased PA induced profibrotic and proinflammatory response in the 3D-hLMTs with decreases in apoptosis and stellate cell activation in the microtissues. Taken together we have established and validated an in vitro 3D-hLMT NASH model with severe fibrotic phenotype that can be a powerful tool to investigate experimental compounds for the treatment of NASH.
Collapse
Affiliation(s)
| | - Leonid Zhelnin
- Fibrosis Discovery, Bristol Myers SquibbPennington 08534, NJ
| | - Anthony Sanfiz
- Fibrosis Discovery, Bristol Myers SquibbPennington 08534, NJ
| | - Jie Pan
- Lead Discovery and Optimization, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Zhuyin Li
- Lead Discovery and Optimization, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Melissa Yarde
- Lead Discovery and Optimization, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Jean McCarty
- Department of Pathology, Bristol Myers SquibbLawrenceville 08543, NJ
| | - Gabor Jarai
- Fibrosis Discovery, Bristol Myers SquibbPennington 08534, NJ
| |
Collapse
|