1
|
Gren BA, Antczak M, Zok T, Sulkowska JI, Szachniuk M. Knotted artifacts in predicted 3D RNA structures. PLoS Comput Biol 2024; 20:e1011959. [PMID: 38900780 PMCID: PMC11218946 DOI: 10.1371/journal.pcbi.1011959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 06/01/2024] [Indexed: 06/22/2024] Open
Abstract
Unlike proteins, RNAs deposited in the Protein Data Bank do not contain topological knots. Recently, admittedly, the first trefoil knot and some lasso-type conformations have been found in experimental RNA structures, but these are still exceptional cases. Meanwhile, algorithms predicting 3D RNA models have happened to form knotted structures not so rarely. Interestingly, machine learning-based predictors seem to be more prone to generate knotted RNA folds than traditional methods. A similar situation is observed for the entanglements of structural elements. In this paper, we analyze all models submitted to the CASP15 competition in the 3D RNA structure prediction category. We show what types of topological knots and structure element entanglements appear in the submitted models and highlight what methods are behind the generation of such conformations. We also study the structural aspect of susceptibility to entanglement. We suggest that predictors take care of an evaluation of RNA models to avoid publishing structures with artifacts, such as unusual entanglements, that result from hallucinations of predictive algorithms.
Collapse
Affiliation(s)
- Bartosz A. Gren
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Maciej Antczak
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | | | - Marta Szachniuk
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
2
|
Niemyska W, Mukherjee S, Gren BA, Niewieczerzal S, Bujnicki JM, Sulkowska JI. Discovery of a trefoil knot in the RydC RNA: Challenging previous notions of RNA topology. J Mol Biol 2024; 436:168455. [PMID: 38272438 DOI: 10.1016/j.jmb.2024.168455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Knots are very common in polymers, including DNA and protein molecules. Yet, no genuine knot has been identified in natural RNA molecules to date. Upon re-examining experimentally determined RNA 3D structures, we discovered a trefoil knot 31, the most basic non-trivial knot, in the RydC RNA. This knotted RNA is a member of a small family of short bacterial RNAs, whose secondary structure is characterized by an H-type pseudoknot. Molecular dynamics simulations suggest a folding pathway of the RydC RNA that starts with a native twisted loop. Based on sequence analyses and computational RNA 3D structure predictions, we postulate that this trefoil knot is a conserved feature of all RydC-related RNAs. The first discovery of a knot in a natural RNA molecule introduces a novel perspective on RNA 3D structure formation and on fundamental research on the relationship between function and spatial structure of biopolymers.
Collapse
Affiliation(s)
- Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland
| | - Bartosz A Gren
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Szymon Niewieczerzal
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
3
|
Luwanski K, Hlushchenko V, Popenda M, Zok T, Sarzynska J, Martsich D, Szachniuk M, Antczak M. RNAspider: a webserver to analyze entanglements in RNA 3D structures. Nucleic Acids Res 2022; 50:W663-W669. [PMID: 35349710 PMCID: PMC9252836 DOI: 10.1093/nar/gkac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Kamil Luwanski
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Vladyslav Hlushchenko
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Daniil Martsich
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
4
|
Popenda M, Zok T, Sarzynska J, Korpeta A, Adamiak R, Antczak M, Szachniuk M. Entanglements of structure elements revealed in RNA 3D models. Nucleic Acids Res 2021; 49:9625-9632. [PMID: 34432024 PMCID: PMC8464073 DOI: 10.1093/nar/gkab716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023] Open
Abstract
Computational methods to predict RNA 3D structure have more and more practical applications in molecular biology and medicine. Therefore, it is crucial to intensify efforts to improve the accuracy and quality of predicted three-dimensional structures. A significant role in this is played by the RNA-Puzzles initiative that collects, evaluates, and shares RNAs built computationally within currently nearly 30 challenges. RNA-Puzzles datasets, subjected to multi-criteria analysis, allow revealing the strengths and weaknesses of computer prediction methods. Here, we study the issue of entangled RNA fragments in the predicted RNA 3D structure models. By entanglement, we mean an arrangement of two structural elements such that one of them passes through the other. We propose the classification of entanglements driven by their topology and components. It distinguishes two general classes, interlaces and lassos, and subclasses characterized by element types-loops, dinucleotide steps, open single-stranded fragments-and puncture multiplicity. Our computational pipeline for entanglement detection, applied for 1,017 non-redundant models from RNA-Puzzles, has shown the frequency of different entanglements and allowed identifying 138 structures with intersected assemblies.
Collapse
Affiliation(s)
- Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Agnieszka Korpeta
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
- Institute of Computing Science & European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| |
Collapse
|
5
|
Qi X, Zhang F, Su Z, Jiang S, Han D, Ding B, Liu Y, Chiu W, Yin P, Yan H. Programming molecular topologies from single-stranded nucleic acids. Nat Commun 2018; 9:4579. [PMID: 30389935 PMCID: PMC6214983 DOI: 10.1038/s41467-018-07039-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/12/2018] [Indexed: 12/03/2022] Open
Abstract
Molecular knots represent one of the most extraordinary topological structures in biological polymers. Creating highly knotted nanostructures with well-defined and sophisticated geometries and topologies remains challenging. Here, we demonstrate a general strategy to design and construct highly knotted nucleic acid nanostructures, each weaved from a single-stranded DNA or RNA chain by hierarchical folding in a prescribed order. Sets of DNA and RNA knots of two- or three-dimensional shapes have been designed and constructed (ranging from 1700 to 7500 nucleotides), and they exhibit complex topological features, with high crossing numbers (from 9 up to 57). These single-stranded DNA/RNA knots can be replicated and amplified enzymatically in vitro and in vivo. This work establishes a general platform for constructing nucleic acid nanostructures with complex molecular topologies.
Collapse
Affiliation(s)
- Xiaodong Qi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Fei Zhang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| | - Zhaoming Su
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Shuoxing Jiang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dongran Han
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, 94305, USA
- Division of Cryo-EM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Peng Yin
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Hao Yan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
6
|
Dabrowski-Tumanski P, Sulkowska JI. The APS-bracket – A topological tool to classify lasso proteins, RNAs and other tadpole-like structures. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Liu L, Hyeon C. Contact Statistics Highlight Distinct Organizing Principles of Proteins and RNA. Biophys J 2017; 110:2320-2327. [PMID: 27276250 DOI: 10.1016/j.bpj.2016.04.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/15/2016] [Accepted: 04/01/2016] [Indexed: 11/18/2022] Open
Abstract
Although both RNA and proteins have densely packed native structures, chain organizations of these two biopolymers are fundamentally different. Motivated by the recent discoveries in chromatin folding that interphase chromosomes have territorial organization with signatures pointing to metastability, we analyzed the biomolecular structures deposited in the Protein Data Bank and found that the intrachain contact probabilities, P(s) as a function of the arc length s, decay in power-law ∼s(-γ) over the intermediate range of s, 10 ≲ s ≲ 110. We found that the contact probability scaling exponent is γ ≈ 1.11 for large RNA (N > 110), γ ≈ 1.41 for small-sized RNA (N < 110), and γ ≈ 1.65 for proteins. Given that Gaussian statistics is expected for a fully equilibrated chain in polymer melts, the deviation of γ-value from γ = 1.5 for the subchains of large RNA in the native state suggests that the chain configuration of RNA is not fully equilibrated. It is visually clear that folded structures of large-sized RNA (N ≳ 110) adopt crumpled structures, partitioned into modular multidomains assembled by proximal sequences along the chain, whereas the polypeptide chain of folded proteins looks better mixed with the rest of the structure. Our finding of γ ≈ 1 for large RNA might be an ineluctable consequence of the hierarchical ordering of the secondary to tertiary elements in the folding process.
Collapse
Affiliation(s)
- Lei Liu
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Synthesizing topological structures containing RNA. Nat Commun 2017; 8:14936. [PMID: 28361879 PMCID: PMC5381007 DOI: 10.1038/ncomms14936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/15/2017] [Indexed: 12/27/2022] Open
Abstract
Though knotting and entanglement have been observed in DNA and proteins, their existence in RNA remains an enigma. Synthetic RNA topological structures are significant for understanding the physical and biological properties pertaining to RNA topology, and these properties in turn could facilitate identifying naturally occurring topologically nontrivial RNA molecules. Here we show that topological structures containing single-stranded RNA (ssRNA) free of strong base pairing interactions can be created either by configuring RNA-DNA hybrid four-way junctions or by template-directed synthesis with a single-stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of reverse transcription (RT) and obtain different RT-PCR patterns for an ssRNA knot and circle of the same sequence.
Collapse
|