1
|
Ma X, Zhang D, Yang Z, Sun M, Mei C, Zan L. Bta-miR-484 regulates proliferation and apoptosis of bovine intramuscular preadipocytes via targeting MAP3K9 to inhibit the JNK signaling pathway. Int J Biol Macromol 2025; 286:138082. [PMID: 39603290 DOI: 10.1016/j.ijbiomac.2024.138082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
Intramuscular fat (IMF) plays a crucial role in enhancing the tenderness, flavor, and juiciness of beef, making the increase of IMF content a significant objective in beef breeding. A key factor influencing IMF levels is the number of intramuscular preadipocytes. Previous studies have indicated a correlation between bta-miR-484 and IMF content. In this study, we found that bta-miR-484 is differentially expressed during the proliferation of intramuscular preadipocytes. Our research identified that bta-miR-484 targets MAP3K9, revealing a novel mechanism for regulating both proliferation and apoptosis via the JNK signaling pathway. Functional gain and loss experiments demonstrated that bta-miR-484 inhibits the transition of bovine intramuscular preadipocytes from the G0/G1 phase to the S phase, and significant increase the proportion of early apoptotic cells. Additionally, miRNA pulldown and luciferase reporter assays confirmed MAP3K9 as the target gene of bta-miR-484. Furthermore, rescue experiments indicated that bta-miR-484 mediates its effects on proliferation and apoptosis through the MAP3K9/JNK/CCND1 and MAP3K9/JNK/BCL2 axes. These findings suggest that bta-miR-484 is a non-coding RNA that inhibits the proliferation and promotes the apoptosis of intramuscular preadipocytes, indicating that treatment with bta-miR-484 may offers a novel strategy for enhancing IMF content.
Collapse
Affiliation(s)
- Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Meijun Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chugang Mei
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China; National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Wu L, Zhao M, Chen X, Wang H. A miR-219-5p-bmal1b negative feedback loop contributes to circadian regulation in zebrafish. Commun Biol 2024; 7:1671. [PMID: 39702498 DOI: 10.1038/s42003-024-07309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
MicroRNAs post-transcriptionally regulate gene expression and contribute to numerous life processes, including circadian rhythms. However, whether miRNAs contribute to zebrafish circadian regulation has not yet been investigated. Here, we showed that mature miR-219-5p, and its three pre-miRNAs, mir-219-1, mir-219-2, and mir-219-3, are rhythmically expressed primarily in Tectum opticum (TeO), Corpus cerebelli (CCe), and Crista cerellaris (CC) of the zebrafish brain. While mir-219-1 and mir-219-2 are regulated by the circadian clock through the E-like box, mir-219-3 is regulated by light via the D-box. Deleting mir-219-1, mir-219-2, or mir-219-3 individually or knocking down miR-219-5p all results in a shortened period of locomotor rhythms and up-regulation of bmal1b. RIP assays with Ago2 and miRNA pull-down assays show that miR-219-5p binds to bmal1b in the RISC. Cell transfection and in Vivo assays show that miR219-5p inhibits bmal1b through binding to its 3'UTR. Further, transcriptome analysis of miR-219-5p knockdown zebrafish adult brain reveals possible roles of miR-219-5p in phototransduction and neuroactive ligand-receptor interaction. Together, our findings demonstrate that mir-219-1, mir-219-2, and mir-219-3 are controlled directly by the circadian clock; and in turn, miR-219-5p contributes to circadian regulation by targeting bmal1b, highlighting a miR-219-5p-bmal1b negative feedback loop in the zebrafish circadian circuit.
Collapse
Affiliation(s)
- Lianxin Wu
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhao
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Xifeng Chen
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, China.
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
3
|
Xu R, Njumbe Ediage E, Verhaeghe T, Snoeys J, Dillen L. Therapeutic siRNA Loaded to RISC as Single and Double Strands Requires an Appropriate Quantitative Assay for RISC PK Assessment. Nucleic Acid Ther 2024; 34:199-210. [PMID: 38638105 DOI: 10.1089/nat.2023.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
In recent years, therapeutic siRNA projects are booming in the biotech and pharmaceutical industries. As these drugs act by silencing the target gene expression, a critical step is the binding of antisense strands of siRNA to RNA-induced silencing complex (RISC) and then degrading their target mRNA. However, data that we recently obtained suggest that double-stranded siRNA can also load to RISC. This brings a new understanding of the mechanism of RISC loading which may have a potential impact on how quantification of RISC loaded siRNA should be performed. By combining RNA immune precipitation and probe-based hybridization LC-fluorescence approach, we have developed a novel assay that can accurately quantify the RISC-bound antisense strand, irrespective of which form (double-stranded or single-stranded) is loaded on RISC. In addition, this novel assay can discriminate between the 5'-phosphorylated antisense (5'p-AS) and the nonphosphorylated forms, therefore specifically quantifying the RISC bound 5'p-AS. In comparison, stem-loop qPCR assay does not provide discrimination and accurate quantification when the oligonucleotide analyte exists as a mixture of double and single-stranded forms. Taking together, RISC loading assay with probe-hybridization LC-fluorescence technique would be a more accurate and specific quantitative approach for RISC-associated pharmacokinetic assessment.
Collapse
Affiliation(s)
- Rui Xu
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Emmanuel Njumbe Ediage
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Tom Verhaeghe
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Jan Snoeys
- Translational Pharmacokinetics/ Pharmacodynamics & Investigative Toxicology (TPPIT), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| | - Lieve Dillen
- Bioanalytical Discovery & Development Sciences (BDDS), Preclinical Sciences & Translational Safety (PSTS), Research & Development (R&D), Janssen Pharmaceutica NV, A Johnson & Johnson Company, Beerse, Belgium
| |
Collapse
|
4
|
Szakats S, McAtamney A, Wilson MJ. Identification of novel microRNAs in the embryonic mouse brain using deep sequencing. Mol Cell Biochem 2024; 479:297-311. [PMID: 37059894 PMCID: PMC10890980 DOI: 10.1007/s11010-023-04730-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Many advances in small RNA-seq technology and bioinformatics pipelines have been made recently, permitting the discovery of novel miRNAs in the embryonic day 15.5 (E15.5) mouse brain. We aimed to improve miRNA discovery in this tissue to expand our knowledge of the regulatory networks that underpin normal neurodevelopment, find new candidates for neurodevelopmental disorder aetiology, and deepen our understanding of non-coding RNA evolution. A high-quality small RNA-seq dataset of 458 M reads was generated. An unbiased miRNA discovery pipeline identified fifty putative novel miRNAs, six of which were selected for further validation. A combination of conservation analysis and target functional prediction was used to determine the authenticity of novel miRNA candidates. These findings demonstrate that miRNAs remain to be discovered, particularly if they have the features of other small RNA species.
Collapse
Affiliation(s)
- Susanna Szakats
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Alice McAtamney
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - Megan J Wilson
- Developmental Genomics Laboratory, Department of Anatomy, School of Biomedical Sciences, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
5
|
Bansal M, Ansari S, Verma M. Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels. Med Oncol 2024; 41:55. [PMID: 38216843 DOI: 10.1007/s12032-023-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder distinguished by a specific genetic anomaly known as a reciprocal translocation between chromosomes 9 and 22. This translocation causes fusion between the BCR and ABL regions. Consequently, BCR::ABL oncoprotein is formed, which plays a significant role in driving CML progression. Imatinib, a tyrosine kinase inhibitor (TKI), became the first line of drugs against CML. However, with continuous treatment, patients developed resistance against it. Indeed, to address this challenge, microRNA-based therapy emerges as a promising approach. miRNAs are 20-25 nucleotides long and hold great significance in various cellular processes, including cell differentiation, proliferation, migration, and apoptosis. In several malignancies, it has been reported that miRNAs might help to promote or prevent tumourigenesis and abnormal expression because they could act as both oncogenes/tumor suppressors. Recently, because of their vital regulatory function in maintaining cell homeostasis, miRNAs might be used to control CML progression and in developing new therapies for TKI-resistant patients. They might also act as potential prognostic, diagnostic, and therapeutic biomarkers based on their expression profiles. Various annotation tools and microarray-based expression profiles can be used to predict dysregulated miRNAs and their target genes. The main purpose of this review is to provide brief insights into the role of dysregulated miRNAs in CML pathogenesis and to emphasize their clinical relevance, such as their significant potential as therapeutics against CML. Utilizing these miRNAs as a therapeutic approach by inhibition or amplification of their activity could unlock new doors for the therapy of CML.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Fusion Proteins, bcr-abl
- Drug Resistance, Neoplasm/genetics
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Manvi Bansal
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sana Ansari
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Malkhey Verma
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Identification of miR-192 target genes in porcine endometrial epithelial cells based on miRNA pull-down. Mol Biol Rep 2023; 50:4273-4284. [PMID: 36914869 DOI: 10.1007/s11033-023-08349-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION MicroRNAs (miRNAs)-a class of small endogenous non-coding RNAs-are widely involved in post-transcriptional gene regulation of numerous physiological processes. High-throughput sequencing revealed that the miR-192 expression level appeared to be significantly higher in the blood exosomes of sows at early gestation than that in non-pregnant sows. Furthermore, miR-192 was hypothesized to have a regulatory role in embryo implantation; however, the target genes involved in exerting the regulatory function of miR-192 required further elucidation. METHODS In the present study, potential target genes of miR-192 in porcine endometrial epithelial cells (PEECs) were identified through biotin-labeled miRNA pull-down; functional and pathway enrichment analysis was performed via gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Bioinformatic analyses were concurrently used to predict the potential target genes associated with sow embryo implantation. In addition, double luciferase reporter vectors, reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR), and Western blot were performed to verify the targeting and regulatory roles of the abovementioned target genes. RESULTS A total of 1688 differentially expressed mRNAs were identified via miRNA pull-down. Through RT-qPCR, the accuracy of the sequencing data was verified. In the bioinformatics analysis, potential target genes of miR-192 appeared to form a dense inter-regulatory network and regulated multiple signaling pathways, such as metabolic pathways and the PI3K-Akt, MAPKs, and mTOR signaling pathways, that are relevant to the mammalian embryo implantation process. In addition, CSK (C-terminal Src kinase) and YY1 (Yin-Yang-1) were predicted to be potential candidates, and we validated that miR-192 directly targets and suppresses the expression of the CSK and YY1 genes. CONCLUSION We screened 1688 potential target genes of miR-192 were screened, and CSK and YY1 were identified as miR-192 target genes. The outcomes of the present study provide novel insights into the regulatory mechanism of porcine embryo implantation and the identification of miRNA target genes.
Collapse
|
7
|
Rokavec M, Huang Z, Hermeking H. Meta-analysis of miR-34 target mRNAs using an integrative online application. Comput Struct Biotechnol J 2022; 21:267-274. [PMID: 36582442 PMCID: PMC9764205 DOI: 10.1016/j.csbj.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Members of the microRNA-34/miR-34 family are induced by the p53 tumor suppressor and themselves possess tumor suppressive properties, as they inhibit the translation of mRNAs that encode proteins involved in processes, such as proliferation, migration, invasion, and metastasis. Here we performed a comprehensive integrative meta-analysis of multiple computational and experimental miR-34 related datasets and developed tools to identify and characterize novel miR-34 targets. A miR-34 target probability score was generated for every mRNA to estimate the likelihood of representing a miR-34 target. Experimentally validated miR-34 targets were strongly enriched among mRNAs with the highest scores providing a proof of principle for our analysis. We integrated the results from the meta-analysis in a user-friendly METAmiR34TARGET website (www.metamir34target.com/) that allows to graphically represent the meta-analysis results for every mRNA. Moreover, the website harbors a screen function, which allows to select multiple miR-34-related criteria/analyses and cut-off values to facilitate the stringent and comprehensive prediction of relevant miR-34 targets in expression data obtained from cell lines and tumors/tissues. Furthermore, information on more than 200 miR-34 target mRNAs, that have been experimentally validated so far, has been integrated in the web-tool. The website and datasets provided here should facilitate further investigation into the mechanisms of tumor suppression by the p53/miR-34 connection and identification of potential cancer drug targets.
Collapse
Affiliation(s)
- Matjaz Rokavec
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany,Corresponding authors at: Experimental and Molecular Pathology, Institute of Pathology Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany.
| | - Zekai Huang
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Ludwig-Maximilians-Universität München, Germany,German Cancer Consortium (DKTK), Partner Site Munich, Germany,German Cancer Research Center (DKFZ), Heidelberg, Germany,Corresponding authors at: Experimental and Molecular Pathology, Institute of Pathology Ludwig-Maximilians-University Munich, Thalkirchner Strasse 36, D-80337 Munich, Germany.
| |
Collapse
|
8
|
Chen Y, Wu L, Bao M. MiR-485-5p Suppress the Malignant Characteristics of the Lung Adenocarcinoma via Targeting NADPH Quinone Oxidoreductase-1 to Inhibit the PI3K/Akt. Mol Biotechnol 2022; 65:794-806. [PMID: 36219369 DOI: 10.1007/s12033-022-00577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022]
Abstract
Lung adenocarcinoma (LUAD), a prevalent form of non-small cell lung cancer (NSCLC), has a high incidence and mortality rate. However, its molecular regulatory mechanisms have yet to be fully understood. The purpose of this study was to look into how NADPH quinone oxidoreductase-1 (NQO1) and it miR-485-5p and affected LUAD cells. The levels of miR-485-5p and NQO1 expression in LUAD cells and tissues were determined by means of quantitative reverse transcription polymerase chain reaction. The viability, proliferation, migration, and apoptosis of LUAD cells were assessed using cell counting Kit-8, 5-bromo-2'-deoxyuridine, transwell, and caspase-3 assays, respectively. Western blot experiments were used to examine the relative protein expression of matrix metallopeptidase 2 and matrix metallopeptidase 9, as well as the phosphorylation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) in LUAD cells. Luciferase and RNA pull-down experiments were also conducted for the verification of miR-485-5p's underlying relationship with NQO1. In our study, we found that LUAD cells and tissues had miR-485-5p downregulation and NQO1 upregulation. The experimental outcomes indicated that miR-485-5p overexpression in LUAD cells reduced their malignant behaviors, suppressed PI3K and Akt phosphorylation, and facilitated apoptosis. The results also revealed that NQO1 was a direct miR-485-5p target, and that NQO1 could reverse miR-485-5p's inhibitory effect on the malignant phenotype of LUAD cells. Furthermore, it was also observed that through targeting NQO1, miR-485-5p could suppress LUAD cell migration and proliferation, further blocking the phosphorylation of PI3K and Akt and inducing apoptosis among LUAD cells. In conclusion, the miR-485-5/NQO1 axis regulates LUAD progression through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yupeng Chen
- Thoracic Surgery, Wuhan No.1 Hospital, Wuhan, 430022, Hubei, China
| | - Lin Wu
- Department of Oncology, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, 430014, Hubei, China
| | - Min Bao
- Department of Respiratory Medicine, Wuhan Third Hospital, No. 241 Pengliuyang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| |
Collapse
|
9
|
miR-22 Suppresses EMT by Mediating Metabolic Reprogramming in Colorectal Cancer through Targeting MYC-Associated Factor X. DISEASE MARKERS 2022; 2022:7843565. [PMID: 36061355 PMCID: PMC9436592 DOI: 10.1155/2022/7843565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/16/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal cancers. MicroRNAs (miRNAs) have been proved to be unusually expressed in CRC progression and thus alter multiple pathological processes in CRC cells. However, the specific roles and mechanisms of miR-22 in CRC have not been clearly reported. MicroRNA-22 (miR-22) and MYC-associated factor X (MAX) expressions were determined by RT-qPCR in CRC tissues and cells. The targeted regulatory effects of miR-22 and MAX were confirmed by luciferase reporter and coimmunoprecipitation assays. Also, gain- and loss-of-function and rescue experiments were used to elucidate the function and mechanism of miR-22 and MAX in CRC cells and the mouse xenograft model. We discovered that miR-22 was hypermethylated and downregulated, while MAX was upregulated in CRC. miR-22 markedly inhibited migration, invasion, glycolysis, and cancer stem cell transcription factors in CRC cells. In addition, it was found that miR-22 can directly target MAX. Additional functional experiments confirmed that MAX overexpression can rescue the effects of miR-22 on the behavior of CRC cells. This study suggested that miR-22, as a cancer suppressor, participates in CRC progression by targeting MAX, which might provide basic information for therapeutic targets for CRC.
Collapse
|
10
|
piR-823 inhibits cell apoptosis via modulating mitophagy by binding to PINK1 in colorectal cancer. Cell Death Dis 2022; 13:465. [PMID: 35581181 PMCID: PMC9114376 DOI: 10.1038/s41419-022-04922-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
Mitophagy plays a vital role in the maintenance of mitochondrial homeostasis and tumorigenesis. Noncoding RNA piR-823 contributes to colorectal tumorigenesis. In this study, we aim to evaluate piR-823-mediated mitophagy and its mechanistic association with colorectal cancer (CRC). Digital gene expression analysis was performed to explore the potential functions of piR-823. A piR-823 antagomir (Ant-823) was used to inhibit piR-823 expression, and piR-823 mimics (mimics-823) were used to increase piR-823 expression. Mitophagy was measured in vivo and in vitro by immunofluorescence and western blot analysis. JC-1 staining, ATP production, real-time PCR, and western blot analysis were used to measure changes in mitochondrial quality and number. siRNA transfection was used to inhibit mitophagy, and CCCP was used to induce mitophagy. RNA pull-down assays and RNA-binding protein immunoprecipitation assays were conducted to investigate the molecular mechanisms. Here, we found that CRC cells transfected with Ant-823 presented an altered expression of autophagic and mitophagy genes by Digital gene expression analysis. Ant-823 could promote Parkin activation and mitophagy in vitro and in vivo, followed by mitochondrial loss and dysfunction of some mitochondria, whereas mimics-823 exerted the opposite effects in CRC cells. The inhibition of mitophagy by siParkin alleviated Ant-823-induced mitochondrial loss and dysfunction, as well as apoptosis to a certain extent. Furthermore, piR-823 was found to interact with PINK1 and promote its ubiquitination and proteasome-dependent degradation, thus alleviating mitophagy. Finally, these findings were verifed in samples obtained by patients affected by colorectal cancer. In conclusion, we identify a novel mechanism by which piR-823 regulates mitophagy during CRC tumorigenesis by increasing PINK1 degradation.
Collapse
|
11
|
Zhang MX, Lin JR, Yang ST, Zou J, Xue Y, Feng CZ, Cao L. Characterization of circRNA-Associated-ceRNA Networks Involved in the Pathogenesis of Postoperative Cognitive Dysfunction in Aging Mice. Front Aging Neurosci 2022; 14:727805. [PMID: 35444525 PMCID: PMC9014220 DOI: 10.3389/fnagi.2022.727805] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a clinical entity associated with declined cognitive function following surgery. It occurs more frequently in elderly patients. Recent studies have shown that circRNA-associated-ceRNA networks, constructed based on interactions between circRNA-miRNA and miRNA-mRNA, provide key insight into the molecular mechanisms underlying the pathogenesis of several neurological diseases. However, the mechanism of POCD remains undetermined. In this study, laparotomies were performed under isoflurane anesthesia on young (2-month-old) and aging (17-month-old) male C57BL/6 mice. The results showed that the aging mice were more likely than the young mice to develop POCD. Subsequently, differentially expressed circRNAs, miRNAs, and mRNAs were characterized by RNA sequencing the hippocampi of young and aging mice under control and surgery conditions. Six circRNAs, 6 miRNAs, and 203 mRNAs were identified to construct the circRNA-associated-ceRNA network for the control condition, while 13 circRNAs, 8 miRNAs, and 189 mRNAs were used for the circRNA-associated-ceRNA network for the surgery condition. Further Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of these two networks revealed that the circRNA-associated-ceRNA networks are involved in POCD pathogenesis though modulating the Wnt and VEGF signaling pathways, as well as neural processes associated with long-term synaptic depression and synaptic transmission. In particular, the mmu-miR-298-5P regulatory pathway identified in this study’s mouse model suggests that mm9_circ_009789- and mm9_circ_004229-associated-ceRNA networks as closely related to the occurrence of POCD through regulating PKC signaling pathway, neural cell apoptosis and glycolipid metabolism pathway. These findings provide possible insight into the role of the circRNA-associated-ceRNA networks, helping to unravel the complexity of the molecular pathogenesis of POCD.
Collapse
Affiliation(s)
- Meng-Xue Zhang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Run Lin
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shu-Ting Yang
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Zou
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yao Xue
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chen-Zhuo Feng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Chen-Zhuo Feng,
| | - Lin Cao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Lin Cao,
| |
Collapse
|
12
|
Hu W, Zheng X, Liu J, Zhang M, Liang Y, Song M. MicroRNA MiR-130a-3p promotes gastric cancer by targeting Glucosaminyl N-acetyl transferase 4 (GCNT4) to regulate the TGF-β1/SMAD3 pathway. Bioengineered 2021; 12:11634-11647. [PMID: 34696660 PMCID: PMC8810009 DOI: 10.1080/21655979.2021.1995099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer is the third-leading cause of cancer-related deaths worldwide. Dysregulation of glucosaminyl (N-acetyl) transferase 4 (GCNT4) gene and miR-130a-3p gene has been reported in the development of gastric cancer. We elucidated the function of the miR-130a-3p-GCNT4 axis in gastric cancer. Reverse transcription quantitative polymerase-chain reaction measured miR-130a-3p and GCNT4 levels in gastric cancer tissues and cells. The interaction between miR-130a-3p and GCNT4 was assessed using luciferase and RNA pull-down assays. Biological roles of miR-130a-3p and GCNT4 were determined using cell proliferation, migration, and invasion assays in gastric cancer cells. In addition, the effect of miR-130a-3p on the tumor growth in vivo was investigated using tumor xenografts assay. Levels of total TGF-β1, phosphorylated SMAD3 (p-SMAD3), and SMAD3 were measured by using western blot. The results showed that miR-130a-3p levels were increased, while GCNT4 levels were reduced in gastric cancer tissues and cell lines. While miR-130a-3p mimics facilitated cellular proliferation, migration, and invasion in vitro, promoted tumor growth in vivo, and activated the TGF-β1/SMAD3 signaling pathway, overexpression of GCNT4 prevented the growth of gastric cancer cells and restrained the activation of the TGF-β1/SMAD3 pathway. Mechanistically, miR-130a-3p suppressed gastric cancer genesis by inhibiting GCNT4 expression and activating the TGF-β1/SMAD3 signaling pathway. Altogether, we proposed that targeting of GCNT4 and activation of the TGF-β1/SMAD3 signaling pathway by miR-130a-3p enhanced the growth of gastric cancer cells. This study provides important strategies for the selection of therapeutic targets for gastric cancer treatment involving miR-130a-3p/GCNT4/TGF-β1/SMAD3 axis.
Collapse
Affiliation(s)
- Wei Hu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Xin Zheng
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Jun Liu
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Min Zhang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Yan Liang
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Ming Song
- Department of General Surgery, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
13
|
Li Z, Zhou X, Huang J, Xu Z, Xing C, Yang J, Zhou X. MicroRNA hsa-miR-150-5p inhibits nasopharyngeal carcinogenesis by suppressing PYCR1 (pyrroline-5-carboxylate reductase 1). Bioengineered 2021; 12:9766-9778. [PMID: 34696668 PMCID: PMC8810012 DOI: 10.1080/21655979.2021.1995102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/05/2022] Open
Abstract
Nasopharyngeal cancer is a rare cancer type, but with a low five-year survival rate. Dysregulation of pyrroline-5-carboxylate reductase 1 (PYCR1) and microRNA hsa-miR-150-5p is involved in the development of various cancers. However, the molecular mechanism of the hsa-miR-150-5p-PYCR1 axis in nasopharyngeal cancer remains unclear. To identify the mechanism of the hsa-miR-150-5p-PYCR1 axis, the expression of hsa-miR-150-5p and PYCR1 in nasopharyngeal cancer tissues and cells was first measured by reverse transcription quantitative polymerase chain reaction. The luciferase and RNA pull-down assays were used to confirm the interaction between hsa-miR-150-5p and PYCR1. The overexpression of hsa-miR-150-5p and PYCR1 was detected by cell viability, proliferation, western blotting, migration, and invasion in nasopharyngeal cancer cells. The expression levels of hsa-miR-150-5p was reduced in the nasopharyngeal cancer tissues and cells and were negatively correlated with the PYCR1 levels. The upregulation of hsa-miR-150-5p significantly repressed cell growth and promoted apoptosis. However, the upregulation of PYCR1 expression significantly promoted nasopharyngeal carcinogenesis, which could abolish the inhibitory effect of hsa-miR-150-5p. In conclusion, we clarified that hsa-miR-150-5p attenuated nasopharyngeal carcinogenesis by reducing the PYCR1 expression levels. This provides a new perspective of nasopharyngeal cancer involving both hsa-miR-150-5p and PYCR1 for the treatment of nasopharyngeal cancer.
Collapse
Affiliation(s)
- Zhiqun Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiaoliu Zhou
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiajun Huang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhencai Xu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chengliang Xing
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Junwei Yang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xuejun Zhou
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
14
|
Luo Z, Hao S, Yuan J, Zhu K, Liu S, Zhang J, Yao L. Long non-coding RNA LINC00958 promotes colorectal cancer progression by enhancing the expression of LEM domain containing 1 via microRNA miR-3064-5p. Bioengineered 2021; 12:8100-8115. [PMID: 34672237 PMCID: PMC8806780 DOI: 10.1080/21655979.2021.1985259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is a common cause of cancer-related death worldwide. Thus, there is an urgent need to determine the mechanism of progression of colorectal cancer. In this study, we investigated the function and mechanism of long non-coding RNA LINC00958, providing a new biomarker for colorectal cancer. The expression of LINC00958, miR-3064-5p, and LEM domain containing 1 (LEMD1) in colorectal cancer tissues and cell lines was analyzed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). The interaction between LINC00958, miR-3064-5p, and LEMD1 was assessed using the luciferase assay. The viability, proliferation, migration, invasion, and apoptosis of colorectal cancer cells with silenced LINC00958, miR-3064-5p, and LEMD1 were investigated using the cell counting kit-8 (CCK-8), 5′-Bromo-2′-deoxyuridine (BrdU), flow cytometry, wound healing, and transwell assays. Phosphorylated phosphoinositide 3-kinase (p-PI3K) and phosphorylated protein kinase B (p-AKT) protein levels were measured by western blotting. LINC00958 and LEMD1 were found to have increased, while the expression of miR-3064-5p was decreased in colorectal cancer tissues and cell lines. Silencing of LINC00958 hampered cell viability, proliferation, migration, and invasion, while enhancing the apoptosis in colorectal cancer cells. Notably, LINC00958 inhibited miR-3064-5p and promoted LEMD1; the miR-3064-5p inhibitor abrogated the effect of LINC00958 silencing in colorectal cancer cells. Additionally, LEMD1 knockdown inhibited the activation of PI3K/AKT signaling. Our analyses have shown that LINC00958 could facilitate the progression of colorectal cancer by sponging miR-3064-5p and releasing LEMD1, leading to the activation of the PI3K/AKT pathway. Thus, LINC00958 may be considered as an effective biomarker for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Zhaoxia Luo
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shunxin Hao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jian Yuan
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Shuo Liu
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lei Yao
- Department of General Surgery, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Lambert M, Benmoussa A, Diallo I, Ouellet-Boutin K, Dorval V, Majeau N, Joly-Beauparlant C, Droit A, Bergeron A, Têtu B, Fradet Y, Pouliot F, Provost P. Identification of Abundant and Functional dodecaRNAs (doRNAs) Derived from Ribosomal RNA. Int J Mol Sci 2021; 22:9757. [PMID: 34575920 PMCID: PMC8467515 DOI: 10.3390/ijms22189757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022] Open
Abstract
Using a modified RNA-sequencing (RNA-seq) approach, we discovered a new family of unusually short RNAs mapping to ribosomal RNA 5.8S, which we named dodecaRNAs (doRNAs), according to the number of core nucleotides (12 nt) their members contain. Using a new quantitative detection method that we developed, we confirmed our RNA-seq data and determined that the minimal core doRNA sequence and its 13-nt variant C-doRNA (doRNA with a 5' Cytosine) are the two most abundant doRNAs, which, together, may outnumber microRNAs. The C-doRNA/doRNA ratio is stable within species but differed between species. doRNA and C-doRNA are mainly cytoplasmic and interact with heterogeneous nuclear ribonucleoproteins (hnRNP) A0, A1 and A2B1, but not Argonaute 2. Reporter gene activity assays suggest that C-doRNA may function as a regulator of Annexin II receptor (AXIIR) expression. doRNAs are differentially expressed in prostate cancer cells/tissues and may control cell migration. These findings suggest that unusually short RNAs may be more abundant and important than previously thought.
Collapse
Affiliation(s)
- Marine Lambert
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Abderrahim Benmoussa
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Idrissa Diallo
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Katheryn Ouellet-Boutin
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Véronique Dorval
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Nathalie Majeau
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
| | - Charles Joly-Beauparlant
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Arnaud Droit
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Molecular Medicine, Université Laval, Quebec City, QC G1V 4G2, Canada
| | - Alain Bergeron
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Bernard Têtu
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Yves Fradet
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Frédéric Pouliot
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
- Department of Surgery, Université Laval, Quebec City, QC G1R 2J6, Canada
| | - Patrick Provost
- CHU de Québec Research Center/CHUL Pavilion—Université Laval, 2705 boulevard Laurier, Quebec City, QC G1V 4G2, Canada; (M.L.); (A.B.); (I.D.); (K.O.-B.); (N.M.); (C.J.-B.); (A.D.); (A.B.); (B.T.); (Y.F.); (F.P.)
- Department of Microbiology, Infectious Diseases and Immunology, Université Laval, Quebec City, QC G1V 4G2, Canada
- Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
16
|
Mohamad SFS, Elias MH. Potential treatment for chronic myeloid leukemia using microRNA: in silico comparison between plants and human microRNAs in targeting BCR-ABL1 gene. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00156-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Chronic myeloid leukemia (CML) is a myeloproliferative disorder characterized by the expression of the BCR-ABL1 fusion gene. Tyrosine kinase inhibitors (TKI) are used to treat CML, but mutations in the tyrosine kinase domain contribute to CML chemo-resistance. Therefore, finding alternative molecular-targeted therapy is important for the comprehensive treatment of CML. MicroRNAs (miRNA) are small non-coding regulatory RNAs which suppress the expression of their target genes by binding to the 3′ untranslated region (3′UTR) of the target mRNA. Hypothetically, the miRNA-mRNA interaction would suppress BCR-ABL1 expression and consequently reduce and inhibit CML cell proliferation. Thus, our objective was to determine the target interaction of human and plant miRNAs targeting the 3′UTR region of BCR-ABL1 in terms of miRNA binding conformity, protein interaction network, and pathways using in silico analysis. The 3′UTR sequence of BCR-ABL1 is obtained from Ensembl Genome Browser while the binding conformity was determined using the PsRNATarget Analysis Server, RNA22, Target Rank Server, and DIANA TOOLS. Protein-protein interaction network and pathway analysis are determined using STRING, Cytoscape, and KEGG pathway analysis.
Results
Five plants and five human miRNAs show strong binding conformity with 3′UTR of BCR-ABL1. The strongest binding conformity was shown by Oryza sativa’s Osa-miR1858a and osa-miR1858b with −24.4 kcal/mol folding energy and a p value of 0.0077. Meanwhile, in human miRNA, the hsa-miR-891a-3p shows the highest miTG score of 0.99 with −12 kcal/mol folding energy and a p value of 0.037. Apart from ABL1, osa-miR1858a/osa-miR1858b and hsa-miR891a-3p also target other 720 and 645 genes, respectively. The interaction network of Osa-miR1858a/osa-miR1858b and hsa-miR891a-3p identifies nineteen and twelve ABL1’s immediate neighboring proteins, respectively. The pathways analysis focuses on the RAS, MAPK, CML, and hematopoietic cell lineage pathway.
Conclusion
Both plant and human miRNAs tested in this study could be a potential therapeutic prospect in CML treatment, but thermodynamically, osa-miR1858a/osa-miR1858b binding to ABL1 is more favorable. However, it is important to carry out more research in vitro and in vivo and clinical studies to assess its efficacy as a targeted therapy for CML.
Graphical abstract
Collapse
|
17
|
Su G, Sun G, Lv J, Zhang W, Liu H, Tang Y, Su H. Hsa_circ_0004831 downregulation is partially responsible for atorvastatinalleviated human umbilical vein endothelial cell injuries induced by ox-LDL through targeting the miR-182-5p/CXCL12 axis. BMC Cardiovasc Disord 2021; 21:221. [PMID: 33932991 PMCID: PMC8088699 DOI: 10.1186/s12872-021-01998-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The dysfunction and injury of human umbilical vein endothelial cells (HUVECs) are key events of atherosclerosis (AS). Atorvastatin (ATV) has been shown to play a protective role on endothelial cells. However, the associated molecular mechanisms remain not fully illustrated. METHODS HUVECs were treated with oxidized low-density lipoprotein (ox-LDL) to mimic the pathological conditions of endothelial cell injury in AS. Cell injuries were assessed according to cell viability, cell apoptosis, cycle progression, oxidative stress and inflammatory responses using CCK-8 assay, flow cytometry assay or commercial kits. The expression of hsa_circ_0004831, miR-182-5p, and C-X-C motif chemokine 12 (CXCL12) mRNA was examined using quantitative real-time PCR (qPCR). The expression of CXCL12 protein was quantitated by western blot. The predicted target relationship between miR-182-5p and hsa_circ_0004831 or CXCL12 was verified by pull-down assay, dual-luciferase reporter assay or RIP assay. RESULTS The expression of hsa_circ_0004831 was upregulated by ox-LDL but downregulated by ATV in HUVECs. ATV promoted cell viability and cell cycle progression but inhibited apoptosis, oxidative stress and inflammation in ox-LDL-treated HUVECs, while the role of ATV was partially reversed by hsa_circ_0004831 overexpression. MiR-182-5p was targeted by hsa_circ_0004831, and hsa_circ_0004831 overexpression-restored apoptosis, oxidative stress and inflammation were blocked by miR-182-5p restoration. Further, CXCL12 was targeted by miR-182-5p, and miR-182-5p inhibition-stimulated apoptosis, oxidative stress and inflammation were lessened by CXCL12 knockdown. CONCLUSION Hsa_circ_0004831-targeted miR-182-5p/CXCL12 regulatory network is one of the pathways by which ATV protects against ox-LDL-induced endothelial injuries.
Collapse
Affiliation(s)
- Gang Su
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Guangli Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China.
| | - Jian Lv
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China.
| | - Weiwei Zhang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Hai Liu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Yajing Tang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 453100, China
| | - Haoang Su
- The Second School of Clinical Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
18
|
Ma Q, Matsunaga A, Ho B, Oksenberg JR, Didonna A. Oligodendrocyte-specific Argonaute profiling identifies microRNAs associated with experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:297. [PMID: 33046105 PMCID: PMC7552381 DOI: 10.1186/s12974-020-01964-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) belong to a class of evolutionary conserved, non-coding small RNAs with regulatory functions on gene expression. They negatively affect the expression of target genes by promoting either RNA degradation or translational inhibition. In recent years, converging studies have identified miRNAs as key regulators of oligodendrocyte (OL) functions. OLs are the cells responsible for the formation and maintenance of myelin in the central nervous system (CNS) and represent a principal target of the autoimmune injury in multiple sclerosis (MS). METHODS MiRAP is a novel cell-specific miRNA affinity-purification technique which relies on genetically tagging Argonaut 2 (AGO2), an enzyme involved in miRNA processing. Here, we exploited miRAP potentiality to characterize OL-specific miRNA dynamics in the MS model experimental autoimmune encephalomyelitis (EAE). RESULTS We show that 20 miRNAs are differentially regulated in OLs upon transition from pre-symptomatic EAE stages to disease peak. Subsequent in vitro differentiation experiments demonstrated that a sub-group of them affects the OL maturation process, mediating either protective or detrimental signals. Lastly, transcriptome profiling highlighted the endocytosis, ferroptosis, and FoxO cascades as the pathways associated with miRNAs mediating or inhibiting OL maturation. CONCLUSIONS Altogether, our work supports a dual role for miRNAs in autoimmune demyelination. In particular, the enrichment in miRNAs mediating pro-myelinating signals suggests an active involvement of these non-coding RNAs in the homeostatic response toward neuroinflammatory injury.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Atsuko Matsunaga
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Brenda Ho
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Jorge R Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| |
Collapse
|
19
|
Lei D, Wang Y, Zhang L, Wang Z. Circ_0010729 regulates hypoxia-induced cardiomyocyte injuries by activating TRAF5 via sponging miR-27a-3p. Life Sci 2020; 262:118511. [PMID: 33010282 DOI: 10.1016/j.lfs.2020.118511] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Ischemic cardiomyopathy is a severe cardiovascular disease with high mortality. Circular RNAs (circRNAs) are widely regulated in diverse human diseases, including Ischemic cardiomyopathy. This study aimed to investigate a novel functional mechanism of circRNA circ_0010729 in hypoxia-induced cardiomyocyte injuries. Human cardiomyocytes (AC16) were exposed to hypoxia to mimic ischemic cardiomyopathy in vitro. Cell viability, apoptosis/necrosis and glycolysis progress, were determined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, flow cytometry assay and glycolysis stress test, respectively. Cell apoptosis was also assessed by the activity of cleaved caspase-3/7. The levels of glycolysis-related proteins and tumor necrosis factor receptor-associated factor 5 (TRAF5) were examined by western blot. The expression of circ_0010729 and miR-27a-3p was measured by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The prediction about the targeted relationship was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and RNA pull-down assay. As a result, hypoxia treatment inhibited cell viability, induced cell apoptosis and blocked glycolysis, however, these injuries were alleviated by circ_0010729 knockdown. MiR-27a-3p was targeted by circ_0010729, and miR-27a-3p inhibition reversed the role of circ_0010729 knockdown, leading to the deterioration of cell injuries. Further, TRAF5 was a target of miR-27a-3p, and circ_0010729 upregulated the expression of TRAF5 by sponging miR-27a-3p. MiR-27a-3p restoration enhanced cell viability, depleted cell apoptosis and promoted glycolysis of hypoxia-induced AC16 cells, while these effects were abolished by TRAF5 overexpression. In conclusion, circ_0010729 knockdown alleviated hypoxia-induced AC16 cell injuries by mediating the miR-27a-3p/TRAF5 axis.
Collapse
Affiliation(s)
- Dazhou Lei
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Yan Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Luochao Zhang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China
| | - Zhifang Wang
- Department of Cardiology, Xinxiang Central Hospital, Xinxiang, Henan 453000, China.
| |
Collapse
|
20
|
Wu S, Chen H, Zuo L, Jiang H, Yan H. Suppression of long noncoding RNA MALAT1 inhibits the development of uveal melanoma via microRNA-608-mediated inhibition of HOXC4. Am J Physiol Cell Physiol 2020; 318:C903-C912. [PMID: 31913701 DOI: 10.1152/ajpcell.00262.2019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study explored the effects of the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on the development of uveal melanoma. Moreover, the role of the MALAT1/microRNA-608 (miR-608)/homeobox C4 (HOXC4) axis was assessed by evaluating the proliferation, invasion, and migration, as well as the cell cycle distribution of uveal melanoma in vitro after knocking down MALAT1 or HOXC4 and/or overexpression of miR-608 in uveal melanoma cells (MUM-2B and C918). Moreover, the effects of the MALAT1/miR-608/HOXC4 axis in uveal melanoma in vivo were further evaluated by injecting the C918 cells into the NOD/SCID mice. HOXC4 was found to be a gene upregulated in uveal melanoma, while knockdown of its expression resulted in suppression of uveal melanoma cell migration, proliferation, and invasion, as well as cell cycle progression. In addition, the upregulation of miR-608 reduced the expression of HOXC4 in the uveal melanoma cells, which was rescued by overexpression of MALAT1. Hence, MALAT1 could upregulate the HOXC4 by binding to miR-608. The suppressed progression of uveal melanoma in vitro by miR-608 was rescued by overexpression of MALAT1. Additionally, in vivo assays demonstrated that downregulation of MALAT1 could suppress tumor growth through downregulation of HOXC4 expression via increasing miR-608 in uveal melanoma. In summary, MALAT1 downregulation functions to restrain the development of uveal melanoma via miR-608-mediated inhibition of HOXC4.
Collapse
Affiliation(s)
- Shuai Wu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Han Chen
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Ling Zuo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hai Jiang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| | - Hongtao Yan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
21
|
Wang Z, Ji N, Chen Z, Sun Z, Wu C, Yu W, Hu F, Huang M, Zhang M. MiR-1165-3p Suppresses Th2 Differentiation via Targeting IL-13 and PPM1A in a Mouse Model of Allergic Airway Inflammation. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:859-876. [PMID: 32638565 PMCID: PMC7346992 DOI: 10.4168/aair.2020.12.5.859] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE CD4⁺T cells are essential in the pathogenesis of allergic asthma. We have previously demonstrated that microRNA-1165-3p (miR-1165-3p) was significantly reduced in T-helper type (Th) 2 cells and that miR-1165-3p was a surrogate marker for atopic asthma. Little is known about the mechanisms of miR-1165-3p in the regulation of Th2-dominated allergic inflammation. We aimed to investigate the associations between Th2 differentiation and miR-1165b-3p in asthma as well as the possible mechanisms. METHODS CD4⁺ naïve T cells were differentiated into Th1 or Th2 cells in vitro. MiR-1165-3p was up-regulated or down-regulated using lentiviral systems during Th1/Th2 differentiation. In vivo, the lentiviral particles with the miR-1165-3p enhancer were administered by tail vein injection on the first day of a house dust mite -induced allergic airway inflammation model. Allergic inflammation and Th1/Th2 differentiation were routinely monitored. To investigate the potential targets of miR-1165-3p, biotin-microRNA pull-down products were sequenced, and the candidates were further verified with a dual-luciferase reporter assay. The roles of a target protein phosphatase, Mg2+/Mn2+-dependent 1A (PPM1A), in Th2 cell differentiation and allergic asthma were further explored. Plasma PPM1A was determined by ELISA in 18 subjects with asthma and 20 controls. RESULTS The lentivirus encoding miR-1165-3p suppressed Th2-cell differentiation in vitro. In contrast, miR-1165-3p silencing promoted Th2-cell development. In the HDM-induced model of allergic airway inflammation, miR-1165-3p up-regulation was accompanied by reduced airway hyper-responsiveness, serum immunoglobulin E, airway inflammation and Th2-cell polarization. IL-13 and PPM1A were the direct targets of miR-1165-3p. The expression of IL-13 or PPM1A was inversely correlated with that of miR-1165-3p. PPM1A regulated the signal transducer and activator of transcription and AKT signaling pathways during Th2 differentiation. Moreover, plasma PPM1A was significantly increased in asthmatic patients. CONCLUSIONS MiR-1165-3p negatively may regulate Th2-cell differentiation by targeting IL-13 and PPM1A in allergic airway inflammation.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixiao Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chaojie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenqing Yu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Infectious Disease, Taizhou People's Hospital, Taizhou, China
| | - Fan Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
22
|
Bai Y, Lang L, Zhao W, Niu R. Long Non-Coding RNA HOXA11-AS Promotes Non-Small Cell Lung Cancer Tumorigenesis Through microRNA-148a-3p/DNMT1 Regulatory Axis. Onco Targets Ther 2019; 12:11195-11206. [PMID: 31908486 PMCID: PMC6927266 DOI: 10.2147/ott.s198367] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 10/01/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Our present study aimed to further investigate the molecular basis of long non-coding RNA homeobox A11 antisense (HOXA11-AS) in the tumorigenesis of non-small cell lung cancer (NSCLC). METHODS HOXA11-AS, microRNA-148a-3p (miR-148a-3p), and DNA methyltransferase 1 (DNMT1) mRNA levels were measured by RT-qPCR assay. DNMT1 protein level was determined by Western blot assay. Cell proliferative capacity and apoptotic rate were determined by CCK-8 assay and flow cytometry analysis, respectively. The relationships of HOXA11-AS, miR-148a-3p, and DNMT1 were tested through bioinformatics analysis, luciferase assay, and RNA pull down assay. Mouse xenograft models of NSCLC were established to examine the biological function of HOXA11-AS in vivo. RESULTS HOXA11-AS expression was notably upregulated and miR-148a-3p expression was conspicuously downregulated in NSCLC tissues and cells. HOXA11-AS knockdown curbed NSCLC cell proliferation and promoted cell apoptosis through directly increasing miR-148a-3p expression. Moreover, miR-148a-3p overexpression suppressed NSCLC cell proliferation and induced cell apoptosis. HOXA11-AS functioned as a competing endogenous RNA (ceRNA) of miR-148a-3p to increase DNMT1 expression in NSCLC cells. And, DNMT1 upregulation weakened the influence of HOXA11-AS1 loss on NSCLC cell proliferation and apoptosis. Additionally, HOXA11-AS knockdown suppressed NSCLC xenograft growth by upregulating miR-148a-3p and downregulating DNMT1 in vivo. CONCLUSION HOXA11-AS facilitated NSCLC tumorigenesis through miR-148a-3p/DNMT1 axis in vitro and in vivo, deepening our understanding of the molecular basis of HOXA11-AS in the development of NSCLC.
Collapse
Affiliation(s)
- Yue Bai
- Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| | - Lili Lang
- Department of Radiology, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| | - Wentao Zhao
- Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| | - Rong Niu
- Department One of Thoracic Surgery, Gansu Provincial Cancer Hospital, Gansu, People’s Republic of China
| |
Collapse
|
23
|
Zhang J, Wang Q, Quan Z. Long non-coding RNA CASC9 enhances breast cancer progression by promoting metastasis through the meditation of miR-215/TWIST2 signaling associated with TGF-β expression. Biochem Biophys Res Commun 2019; 515:644-650. [PMID: 31178137 DOI: 10.1016/j.bbrc.2019.05.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 05/10/2019] [Indexed: 01/19/2023]
Abstract
Accumulating study has indicated that long non-coding RNAs (lncRNAs) could serve as critical modulators to meditate tumor metastasis. In the study, the crucial role of lncRNA cancer susceptibility candidate 9 (CASC9) in regulating cervical cancer metastasis and progression was investigated. CASC9 expression was markedly increased in cervical cancer tissues and cell lines. Cervical cancer patients with low CASC9 expression showed better overall survival rate. Moreover, cancer-associated fibroblasts (CAFs)-derived transforming growth factor β (TGF-β) could increase CASC9 expression. The crosslink between CAFs and cervical cancer cells led to CASC9 to elevate the metastasis of cervical cancer cells. CASC9 dysregulation could function as a miRNA sponge to competitively protect twist homolog 2 (TWIST2) mRNA 3'UTR from miR-215. Results in this study indicated the effects of CASC9 on cervical cancer and suggested a novel axis by which CASC9 meditated cervical cancer cell metastasis and proliferation both in vivo and in vitro. Together, CASC9 could be a prognostic marker for cervical cancer to develop effective therapeutic treatment against cervical cancer growth.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Imaging Center, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, 710061, China; Department of Imaging Center, The First Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi, 710061, China
| | - Qi Wang
- Department of Gynecology, Qingdao Women and Children's Hospital, Qingdao, Shandong, 266000, China
| | - Zhicheng Quan
- Department of Imaging Department, Central Hospital of Hanzhong City, Shaanxi Province, Hanzhong, Shaanxi, 723000, China.
| |
Collapse
|
24
|
Aalijahan H, Ghorbian S. Long non-coding RNAs and cervical cancer. Exp Mol Pathol 2019; 106:7-16. [DOI: https:/doi.org/10.1016/j.yexmp.2018.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
|
25
|
Aalijahan H, Ghorbian S. Long non-coding RNAs and cervical cancer. Exp Mol Pathol 2019; 106:7-16. [PMID: 30471246 DOI: 10.1016/j.yexmp.2018.11.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/24/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
|
26
|
Zhu Z, Du S, Yin K, Ai S, Yu M, Liu Y, Shen Y, Liu M, Jiao R, Chen X, Guan W. Knockdown long noncoding RNA nuclear paraspeckle assembly transcript 1 suppresses colorectal cancer through modulating miR-193a-3p/KRAS. Cancer Med 2019; 8:261-275. [PMID: 30575330 PMCID: PMC6346262 DOI: 10.1002/cam4.1798] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
The nuclear paraspeckle assembly transcript 1 (abbreviated as NEAT1), a nuclear sufficient long noncoding RNA (abbreviated as lncRNA), has aroused a rising concern in recent years. As uncovered by reports, the increase in NEAT1 is related to the deteriorated prognosis of lung cancer, breast cancer, hepatocellular cancer, and colorectal cancer (abbreviated as CRC). Thus far, the mechanism of NEAT1 has not been elucidated by the existing researches. The impact of knockdown of both NEAT1 and its predicted downstream miR-193a-3p in CRC cells was examined here to delve into their interactions and mechanisms. Additionally, the target of miR-193a-3p, Kirsten rat sarcoma viral oncogene homolog (abbreviated as KRAS), was also predicted by bioinformatics algorithms. Small interfering RNA and antisense oligonucleotides that inhibit NEAT1, as well as overexpression or knockdown of miR-193a-3p, were adequately drawn upon to confirm that NEAT1 serves as a miR-193a-3p sponge or competing endogenous RNA, to impact miR-193a-3p's further functions, including modulating KRAS proteins, both in vitro and in vivo. Generally, lncRNA NEAT1/hsa-miR-193a-3p/KRAS axis was substantiated in CRC cells and could provide novel insight into both diagnostic and therapeutic advancement in CRC.
Collapse
Affiliation(s)
- Zhouting Zhu
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Shangce Du
- Department of General SurgeryDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingChina
| | - Kai Yin
- Department of General SurgeryTaixing Hospital Affiliated to Yangzhou UniversityTaixingChina
| | - Shichao Ai
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Mengchao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yanqing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yan Shen
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Minghui Liu
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Ruihua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Xi Chen
- State Key Laboratory of Pharmaceutical Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Wenxian Guan
- Department of General SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
27
|
Tang X, Xie X, Wang X, Wang Y, Jiang X, Jiang H. The Combination of piR-823 and Eukaryotic Initiation Factor 3 B (EIF3B) Activates Hepatic Stellate Cells via Upregulating TGF-β1 in Liver Fibrogenesis. Med Sci Monit 2018; 24:9151-9165. [PMID: 30556540 PMCID: PMC6319143 DOI: 10.12659/msm.914222] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Piwi-interacting RNA (piRNA) is the largest class of small non-coding RNA, which has also been identified in somatic tissues, and aberrant expression of piRNAs in tumor tissues may be implicated in carcinogenesis. piR-823 is increased in liver cirrhosis and hepatocellular carcinoma (HCC). However, there is no report on the function of piR-823 in hepatic stellate cells (HSCs) activation during hepatic fibrosis. The present study investigated the role of piR-823 in HSC activation. MATERIAL AND METHODS Liver fibrosis was induced in mice by carbon tetrachloride (CCL4) injection and bile duct ligation (BDL). The primary HSCs were isolated from mice and cultured. The expression of piR-823 was measured by real-time PCR. The effect of piR-823 on HSCs was evaluated by either sense sequence or antisense sequence of piR-823 carried by liposome. Proteins binding to piR-823 were assayed by RNA pull-down technique and liquid chromatography-mass spectrometry (LC-MS). RESULTS Our data for the first time show that piR-823 is significantly upregulated in activated HSCs. Overexpression of piR-823 promoted HSC proliferation, α-SMA and COL1a1 production, whereas inhibition of piR-823 suppressed the activity of HSCs. Interestingly, the combination of piR-823 and EIF3B promoted TGF-β1 expression. CONCLUSIONS Our data illustrate a novel mechanism of piR-823 in HSC activities. The combination of piR-823 and EIF3B increased TGF-β1 expression, which activates HSCs in liver fibrosis. piR-823 may be a new target in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xuechan Tang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China (mainland)
| | - Xiaoli Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China (mainland)
| | - Xin Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China (mainland)
| | - Yan Wang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China (mainland)
| | - Xiaoyu Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China (mainland)
| | - Huiqing Jiang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
28
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that repress the translation and reduce the stability of target mRNAs in animal cells. Post-transcriptional regulation mediated by miRNAs is a highly conserved mechanism utilized by organisms throughout phylogeny to fine tune gene expression. We document the approaches used to study the function of a single miRNA and miRNA regulation of biological pathways in the sea urchin embryo. The protocols that are described include selection of miRNA inhibitors, test of miRNA direct targets, and the use of target protector morpholinos to evaluate the impact of miRNA inhibition on its targets. Using the described techniques and strategies, the sea urchin researcher will be able to validate a miRNA's direct targets and evaluate how inhibition of the miRNA affects developmental processes. These results will contribute to our understanding of the regulatory roles of miRNAs in development.
Collapse
Affiliation(s)
- Carolyn Remsburg
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Kalin Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, United States
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|