1
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Zhou M, Li S, Huang C. Physiological and pathological functions of circular RNAs in the nervous system. Neural Regen Res 2024; 19:342-349. [PMID: 37488888 PMCID: PMC10503630 DOI: 10.4103/1673-5374.379017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/20/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of covalently closed single-stranded RNAs that are expressed during the development of specific cells and tissues. CircRNAs play crucial roles in physiological and pathological processes by sponging microRNAs, modulating gene transcription, controlling the activity of certain RNA-binding proteins, and producing functional peptides. A key focus of research at present is the functionality of circRNAs in the nervous system and several advances have emerged over the last 2 years. However, the precise role of circRNAs in the nervous system has yet to be comprehensively reviewed. In this review, we first summarize the recently described roles of circRNAs in brain development, maturity, and aging. Then, we focus on the involvement of circRNAs in various diseases of the central nervous system, such as brain cancer, chronic neurodegenerative diseases, acute injuries of the nervous system, and neuropathic pain. A better understanding of the functionality of circRNAs will help us to develop potential diagnostic, prognostic, and therapeutic strategies to treat diseases of the nervous system.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Shi Li
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
3
|
Zepeda-Enríquez P, Silva-Cázares MB, López-Camarillo C. Novel Insights into Circular RNAs in Metastasis in Breast Cancer: An Update. Noncoding RNA 2023; 9:55. [PMID: 37736901 PMCID: PMC10514845 DOI: 10.3390/ncrna9050055] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Abstract
Circular RNAs (circRNAs) are single-stranded closed non-coding RNA molecules that are aberrantly expressed and produce tumor-specific gene signatures in human cancers. They exert biological functions by acting as transcriptional regulators, microRNA sponges, and protein scaffolds, regulating the formation of protein-RNA complexes and, ultimately, regulating gene expression. Triple-negative breast cancer (TNBC) is one of the most aggressive cancers of the mammary gland and has a poor prognosis. Studies of circRNAs in TNBC are limited but have demonstrated these molecules' pivotal roles in cell proliferation, invasion, metastasis, and resistance to chemo/radiotherapy, suggesting that they could be potential prognostic biomarkers and novel therapeutic targets. Here, we reviewed the status of actual knowledge about circRNA biogenesis and functions and summarized novel findings regarding their roles in TNBC development and progression. In addition, we discussed recent data about the importance of exosomes in the transport and export of circRNAs in TNBC. Deep knowledge of circRNA functions in metastasis and therapy responses could be an invaluable guide in the identification of novel therapeutic targets for advancing the treatment of TNBC.
Collapse
Affiliation(s)
- Paola Zepeda-Enríquez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico;
| | - Macrina B. Silva-Cázares
- Coordinación Academica Región Altiplano, Universidad Autónoma de San Luis Potosí, Matehuala 78700, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, CDMX 03100, Mexico;
| |
Collapse
|
4
|
Galang JN, Shen Y, Koitzsch U, Yu X, Eischeid-Scholz H, Bachurski D, Rau TT, Neppl C, Herling M, Bulimaga B, Vasyutina E, Schweiger MR, Büttner R, Odenthal M, Anokhina MM. Vesicular Release and Uptake of Circular LSD1-RNAs from Non-Cancer and Cancer Lung Cells. Int J Mol Sci 2023; 24:13981. [PMID: 37762282 PMCID: PMC10530930 DOI: 10.3390/ijms241813981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is highly expressed in many cancer types and strongly associated with cancer progression and metastasis. Circular RNAs (circRNAs) are produced by back-splicing and influence the interactive RNA network by microRNA and protein sponging. In the present study, we aimedto identify circRNAs that derive from the LSD1-encoding KDM1A gene, and to investigate their potential to be released and uptaken by lung cancer versus non-cancer epithelial cells. We identified four circLSD1-RNAs by RT-PCR with divergent primers, followed by sequencing. The expression level of circLSD1-RNAs was then studied by quantitative PCR on cellular and extracellular fractions of lung cancer (PC9) and non-cancer primary small airway epithelial (PSAE) cells. Moreover, we established the transgenic overexpression of circLSD1-RNAs. We show that circLSD1-RNAs are primarily located in the cytoplasm, but are packaged and released from lung cancer and non-cancer cells by extracellular vesicles (EVs) and ribonucleoprotein (RNP) complexes, respectively. Proteomics demonstrated a different protein pattern of EV fractions released from PC9 versus PSAE cells. Importantly, released circLSD1-RNAs were differently taken up by PSAE and PC9 cells. In conclusion, our findings provide primary evidence that circLSD1-RNAs participate in the intercellular communication of lung cancer cells with the tumor environment.
Collapse
Affiliation(s)
- Joelle Noriko Galang
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Yefeng Shen
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Ulrike Koitzsch
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Xiaojie Yu
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Hannah Eischeid-Scholz
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Daniel Bachurski
- CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, 50937 Cologne, Germany;
- Department I of Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany; (M.H.)
| | - Tilman T. Rau
- Institute of Pathology, University Hospital of Duesseldorf, 40225 Duesseldorf, Germany; (T.T.R.); (C.N.)
| | - Christina Neppl
- Institute of Pathology, University Hospital of Duesseldorf, 40225 Duesseldorf, Germany; (T.T.R.); (C.N.)
| | - Marco Herling
- Department I of Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany; (M.H.)
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany
| | - Bianca Bulimaga
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Elena Vasyutina
- Department I of Internal Medicine, University Hospital of Cologne, 50937 Cologne, Germany; (M.H.)
- Department of Hematology, Cellular Therapy and Hemostaseology, University of Leipzig, 04103 Leipzig, Germany
| | - Michal R. Schweiger
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
- Institute for Epigenetics, University Hospital of Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
| | - Maria M. Anokhina
- Institute of Pathology, University Hospital of Cologne, 50937 Cologne, Germany; (J.N.G.); (Y.S.); (X.Y.); (H.E.-S.); (B.B.); (R.B.)
- Center for Molecular Medicine Cologne, University of Cologne, 50937 Cologne, Germany;
- Institute of Pathology, University Hospital of Duesseldorf, 40225 Duesseldorf, Germany; (T.T.R.); (C.N.)
| |
Collapse
|
5
|
Li Z, Li Y, Han D, Wang X, Li C, Chen T, Li W, Liang Y, Luo D, Chen B, Wang L, Zhao W, Yang Q. circRNA-SFMBT2 orchestrates ERα activation to drive tamoxifen resistance in breast cancer cells. Cell Death Dis 2023; 14:482. [PMID: 37524698 PMCID: PMC10390580 DOI: 10.1038/s41419-023-06006-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023]
Abstract
Dysregulated ERα signaling is responsible for endocrine resistance and eventual relapse in patients with estrogen receptor-positive (ER+) breast cancer. Thus, identifying novel ERα regulators is necessary to fully understand the mechanisms of endocrine resistance. Here, we identified circRNA-SFMBT2 to be highly expressed in ER+ breast cancer cells in comparison to ER- cells and found that high circRNA-SFMBT2 levels were related to larger tumor size and poor prognosis in patients with ER+ breast cancer. In vitro and in vivo experiments confirmed that the circRNA-SFMBT2 level was positively correlated with the ERα protein level, implying a regulatory role for circRNA-SFMBT2 in ERα signaling. Moreover, we found that circRNA-SFMBT2 biogenesis could be facilitated via RNA-binding protein quaking (QKI), and biologically elevated circRNA-SFMBT2 expression promoted cell growth and tamoxifen resistance in ER+ breast cancer. Mechanistically, circRNA-SFMBT2 exhibits a specific tertiary structure that endows it with a high binding affinity for ERα and allows it to interact with the AF2 and DBD domains of ERα, enforcing recruitment of RNF181 to the AF1 domain of ERα. Furthermore, the circRNA-SFMBT2/RNF181 axis differentially regulated K48-linked and K63-linked ubiquitination of ERα to enhance ERα stability, resulting in increased expression of ERα target genes and tumor progression. In summary, circRNA-SFMBT2 is an important regulator of ERα signaling, and antagonizing circRNA-SFMBT2 expression may constitute a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Zheng Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolong Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Chen Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tong Chen
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenhao Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
6
|
Kumar R, Mondal R, Lahiri T, Pal MK. Application of sequence semantic and integrated cellular geography approach to study alternative biogenesis of exonic circular RNA. BMC Bioinformatics 2023; 24:148. [PMID: 37069509 PMCID: PMC10108499 DOI: 10.1186/s12859-023-05279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/09/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Concurrent existence of lncRNA and circular RNA at both nucleus and cytosol within a cell at different proportions is well reported. Previous studies showed that circular RNAs are synthesized in nucleus followed by transportation across the nuclear membrane and the export is primarily defined by their length. lncRNAs primarily originated through inefficient splicing and seem to use NXF1 for cytoplasm export. However, it is not clear whether circularization of lncRNA happens only in nucleus or it also occurs in cytoplasm. Studies indicate that circular RNAs arise when the splicing apparatus undergoes a phenomenon of back splicing. Minor spliceosome (U12 type) mediated splicing occurs in cytoplasm and is responsible for the splicing of 0.5% of introns of human cells. Therefore, possibility of cRNA biogenesis mediated by minor spliceosome at cytoplasm cannot be ruled out. Secondly, information on genes transcribing both circular and lncRNAs along with total number of RBP binding sites for both of these RNA types is extractable from databases. This study showed how these apparently unconnected pieces of reports could be put together to build a model for exploring biogenesis of circular RNA. RESULTS As a result of this study, a model was built under the premises that, sequences with special semantics were molecular precursors in biogenesis of circular RNA which occurred through catalytic role of some specific RBPs. The model outcome was further strengthened by fulfillment of three logical lemmas which were extracted and assimilated in this work using a novel data analytic approach, Integrated Cellular Geography. Result of the study was found to be in well agreement with proposed model. Furthermore this study also indicated that biogenesis of circular RNA was a post-transcriptional event. CONCLUSIONS Overall, this study provides a novel systems biology based model under the paradigm of Integrated Cellular Geography which can assimilate independently performed experimental results and data published by global researchers on RNA biology to provide important information on biogenesis of circular RNAs considering lncRNAs as precursor molecule. This study also suggests the possible RBP-mediated circularization of RNA in the cytoplasm through back-splicing using minor spliceosome.
Collapse
Affiliation(s)
- Rajnish Kumar
- Department of Pathology and Laboratory Medicine, Medical Center, University of Kansas, Kansas City, 66160, USA
| | - Rajkrishna Mondal
- Department of Biotechnology, Nagaland University, Dimapur, Nagaland, 797112, India
| | - Tapobrata Lahiri
- Room No. 4302, Department of Applied Sciences, Computer Centre - II, Indian Institute of Information Technology-Allahabad, Allahabad, 211015, India.
| | - Manoj Kumar Pal
- Faculty of Engineering and Technology, United University Prayagraj, Prayagraj, UP, 211012, India
| |
Collapse
|
7
|
Noncoding RNA Regulation of Hormonal and Metabolic Systems in the Fruit Fly Drosophila. Metabolites 2023; 13:metabo13020152. [PMID: 36837772 PMCID: PMC9967906 DOI: 10.3390/metabo13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The importance of RNAs is commonly recognised thanks to protein-coding RNAs, whereas non-coding RNAs (ncRNAs) were conventionally regarded as 'junk'. In the last decade, ncRNAs' significance and roles are becoming noticeable in various biological activities, including those in hormonal and metabolic regulation. Among the ncRNAs: microRNA (miRNA) is a small RNA transcript with ~20 nucleotides in length; long non-coding RNA (lncRNA) is an RNA transcript with >200 nucleotides; and circular RNA (circRNA) is derived from back-splicing of pre-mRNA. These ncRNAs can regulate gene expression levels at epigenetic, transcriptional, and post-transcriptional levels through various mechanisms in insects. A better understanding of these crucial regulators is essential to both basic and applied entomology. In this review, we intend to summarise and discuss the current understanding and knowledge of miRNA, lncRNA, and circRNA in the best-studied insect model, the fruit fly Drosophila.
Collapse
|
8
|
Wang Y, Li Q, Wang S, Wang BJ, Jin Y, Hu H, Fu QS, Wang JW, Wu Q, Qian L, Cao TT, Xia YB, Huang XX, Xu L. The role of noncoding RNAs in cancer lipid metabolism. Front Oncol 2022; 12:1026257. [PMID: 36452489 PMCID: PMC9704363 DOI: 10.3389/fonc.2022.1026257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2023] Open
Abstract
Research on noncoding ribonucleic acids (ncRNAs) is mostly and broadly focused on microRNAs (miRNAs), cyclic RNAs (circRNAs), and long ncRNAs (lncRNAs), which have been confirmed to play important roles in tumor cell proliferation, invasion, and migration. Specifically, recent studies have shown that ncRNAs contribute to tumorigenesis and tumor development by mediating changes in enzymes related to lipid metabolism. The purpose of this review is to discuss the characterized ncRNAs involved in the lipid metabolism of tumors to highlight ncRNA-mediated lipid metabolism-related enzyme expression in malignant tumors and its importance to tumor development. In this review, we describe the types of ncRNA and the mechanism of tumor lipid metabolism and analyze the important role of ncRNA in tumor lipid metabolism and its future prospects from the perspectives of ncRNA biological function and lipid metabolic enzyme classification. However, several critical issues still need to be resolved. Because ncRNAs can affect tumor processes by regulating lipid metabolism enzymes, in the future, we can study the unique role of ncRNAs from four aspects: disease prevention, detection, diagnosis, and treatment. Therefore, in the future, the development of ncRNA-targeted therapy will become a hot direction and shoulder a major task in the medical field.
Collapse
Affiliation(s)
- Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Qian Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Bi-jun Wang
- Department of Clinical Medicine, Clinical College of Anhui Medical University, Hefei, Anhui, China
| | - Yan Jin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Hao Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Qing-sheng Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Jia-wei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Qing Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Long Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ting-ting Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ya-bin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Xiao-xu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| |
Collapse
|
9
|
Zhang X, Liang Z, Wang C, Shen Z, Sun S, Gong C, Hu X. Viral Circular RNAs and Their Possible Roles in Virus-Host Interaction. Front Immunol 2022; 13:939768. [PMID: 35784275 PMCID: PMC9247149 DOI: 10.3389/fimmu.2022.939768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/26/2022] [Indexed: 11/24/2022] Open
Abstract
Circular RNAs (circRNAs) as novel regulatory molecules have been recognized in diverse species, including viruses. The virus-derived circRNAs play various roles in the host biological process and the life cycle of the viruses. This review summarized the circRNAs from the DNA and RNA viruses and discussed the biogenesis of viral and host circRNAs, the potential roles of viral circRNAs, and their future perspective. This review will elaborate on new insights gained on viruses encoded circRNAs during virus infection.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zi Liang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chonglong Wang
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Zeen Shen
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Sufei Sun
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| | - Xiaolong Hu
- School of Biology and Basic Medical Science, Soochow University, Suzhou, China
- Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou, China
- *Correspondence: Xiaolong Hu, ; Chengliang Gong,
| |
Collapse
|
10
|
An M, Zheng H, Huang J, Lin Y, Luo Y, Kong Y, Pang M, Zhang D, Yang J, Chen J, Li Y, Chen C, Lin T. Aberrant Nuclear Export of circNCOR1 Underlies SMAD7-Mediated Lymph Node Metastasis of Bladder Cancer. Cancer Res 2022; 82:2239-2253. [PMID: 35395674 PMCID: PMC9359746 DOI: 10.1158/0008-5472.can-21-4349] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 01/07/2023]
Abstract
Circular RNAs (circRNA) containing retained introns are normally sequestered in the nucleus. Dysregulation of cellular homeostasis can drive their nuclear export, which may be involved in cancer metastasis. However, the mechanism underlying circRNA nuclear export and its role in lymph node (LN) metastasis of bladder cancer remain unclear. Here, we identify an intron-retained circRNA, circNCOR1, that is significantly downregulated in LN metastatic bladder cancer and is negatively associated with poor prognosis of patients. Overexpression of circNCOR1 inhibited lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Nuclear circNCOR1 epigenetically promoted SMAD7 transcription by increasing heterogeneous nuclear ribonucleoprotein L (hnRNPL)-induced H3K9 acetylation in the SMAD7 promoter, leading to inhibition of the TGFβ-SMAD signaling pathway. Nuclear retention of circNCOR1 was regulated by small ubiquitin-like modifier (SUMO)ylation of DDX39B, an essential regulatory factor responsible for circRNA nuclear-cytoplasmic transport. Reduced SUMO2 binding to DDX39B markedly increased circNCOR1 retention in the nucleus to suppress bladder cancer LN metastasis. By contrast, SUMOylated DDX39B activated nuclear export of circNCOR1, impairing the suppressive role of circNCOR1 on TGFβ-SMAD cascade activation and bladder cancer LN metastasis. In patient-derived xenograft (PDX) models, overexpression of circNCOR1 and inhibition of TGFβ signaling significantly repressed tumor growth and LN metastasis. This study highlights SUMOylation-induced nuclear export of circNCOR1 as a key event regulating TGFβ-SMAD signaling and bladder cancer lymphangiogenesis, thus supporting circNCOR1 as a novel therapeutic agent for patients with LN metastatic bladder cancer. SIGNIFICANCE This study identifies the novel intron-retained circNCOR1 and elucidates a SUMOylation-mediated DDX39B-circNCOR1-SMAD7 axis that regulates lymph node metastasis of bladder cancer.
Collapse
Affiliation(s)
- Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuming Luo
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yao Kong
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dingwen Zhang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiabin Yang
- Pancreatic Center, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Corresponding Authors: Tianxin Lin, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiangyi Road, Yuexiu District, Guangzhou, Guangdong Province 510120, P. R. China. Phone: 8620-3407-0447; Fax: 8620-8133-2336; E-mail:; and Changhao Chen,
| |
Collapse
|
11
|
Non-Coding RNA Networks as Potential Novel Biomarker and Therapeutic Target for Sepsis and Sepsis-Related Multi-Organ Failure. Diagnostics (Basel) 2022; 12:diagnostics12061355. [PMID: 35741168 PMCID: PMC9222180 DOI: 10.3390/diagnostics12061355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
According to “Sepsis-3” consensus, sepsis is a life-threatening clinical syndrome caused by a dysregulated inflammatory host response to infection. A rapid identification of sepsis is mandatory, as the extent of the organ damage triggered by both the pathogen itself and the host’s immune response could abruptly evolve to multiple organ failure and ultimately lead to the death of the patient. The most commonly used therapeutic strategy is to provide hemodynamic and global support to the patient and to rapidly initiate broad-spectrum empiric antibiotic therapy. To date, there is no gold standard diagnostic test that can ascertain the diagnosis of sepsis. Therefore, once sepsis is suspected, the presence of organ dysfunction can be assessed using the Sepsis-related Organ Failure Assessment (SOFA) score, although the diagnosis continues to depend primarily on clinical judgment. Clinicians can now rely on several serum biomarkers for the diagnosis of sepsis (e.g., procalcitonin), and promising new biomarkers have been evaluated, e.g., presepsin and adrenomedullin, although their clinical relevance in the hospital setting is still under discussion. Non-codingRNA, including long non-codingRNAs (lncRNAs), circularRNAs (circRNAs) and microRNAs (miRNAs), take part in a complex chain of events playing a pivotal role in several important regulatory processes in humans. In this narrative review we summarize and then analyze the function of circRNAs-miRNA-mRNA networks as putative novel biomarkers and therapeutic targets for sepsis, focusing only on data collected in clinical settings in humans.
Collapse
|
12
|
Emerging roles of circular RNAs in cancer: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Mei X, Chen SY. Circular RNAs in cardiovascular diseases. Pharmacol Ther 2022; 232:107991. [PMID: 34592203 PMCID: PMC8930437 DOI: 10.1016/j.pharmthera.2021.107991] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/08/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
In eukaryotes, precursor mRNAs (pre-mRNAs) produce a unique class of biologically active molecules namely circular RNAs (circRNAs) with a covalently closed-loop structure via back-splicing. Because of this unconventional circular form, circRNAs exhibit much higher stability than linear RNAs due to the resistance to exonuclease degradation and thereby play exclusive cellular regulatory roles. Recent studies have shown that circRNAs are widely expressed in eukaryotes and display tissue- and disease-specific expression patterns, including in the cardiovascular system. Although numerous circRNAs are discovered by in silico methods, a limited number of circRNAs have been studied. This review intends to summarize the current understanding of the characteristics, biogenesis, and functions of circRNAs and delineate the practical approaches for circRNAs investigation. Moreover, we discuss the emerging roles of circRNAs in cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohan Mei
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shi-You Chen
- Departments of Surgery, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medical Pharmacology & Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America.
| |
Collapse
|
14
|
Chen X, Zhou M, Yant L, Huang C. Circular RNA in disease: Basic properties and biomedical relevance. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1723. [PMID: 35194939 DOI: 10.1002/wrna.1723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 12/26/2022]
Abstract
Circular RNAs (circRNAs) represent a class of covalently closed RNA molecules with great diversity in molecular features, functions, and regulatory mechanisms. Emerging advances in our understanding of circRNA biogenesis, nuclear export, and stability control have been made very recently. In particular, novel roles of circRNAs in diverse human diseases are increasingly recognized. Various circRNAs have been found to affect many disease-relevant pathways through a diverse array of mechanisms, including forming R-loops, sponging miRNAs or proteins, and translating functional proteins, resulting in different pathological phenotypes. This recent progress calls for a revised view of circRNAs in diseases threatening the lives and health of humans. In this review, we focus on the recently described functional relevance of disease-associated circRNAs as well as the potential of circRNAs in diverse clinical applications. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Xiaolan Chen
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Promoter-Bound Full-Length Intronic Circular RNAs-RNA Polymerase II Complexes Regulate Gene Expression in the Human Parasite Entamoeba histolytica. Noncoding RNA 2022; 8:ncrna8010012. [PMID: 35202086 PMCID: PMC8876499 DOI: 10.3390/ncrna8010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Ubiquitous eukaryotic non-coding circular RNAs are involved in numerous co- and post-transcriptional regulatory mechanisms. Recently, we reported full-length intronic circular RNAs (flicRNAs) in Entamoeba histolytica, with 3′ss–5′ss ligation points and 5′ss GU-rich elements essential for their biogenesis and their suggested role in transcription regulation. Here, we explored how flicRNAs impact gene expression regulation. Using CLIP assays, followed by qRT-PCR, we identified that the RabX13 control flicRNA and virulence-associated flicRNAs were bound to the HA-tagged RNA Pol II C-terminus domain in E. histolytica transformants. The U2 snRNA was also present in such complexes, indicating that they belonged to transcription initiation/elongation complexes. Correspondingly, inhibition of the second step of splicing using boric acid reduced flicRNA formation and modified the expression of their parental genes and non-related genes. flicRNAs were also recovered from chromatin immunoprecipitation eluates, indicating that the flicRNA-Pol II complex was formed in the promoter of their cognate genes. Finally, two flicRNAs were found to be cytosolic, whose functions remain to be uncovered. Here, we provide novel evidence of the role of flicRNAs in gene expression regulation in cis, apparently in a widespread fashion, as an element bound to the RNA polymerase II transcription initiation complex, in E. histolytica.
Collapse
|
16
|
Jiang X, Guo S, Wang S, Zhang Y, Chen H, Wang Y, Liu RL, Niu YJ, Xu Y. EIF4A3-induced circARHGAP29 promotes aerobic glycolysis in docetaxel-resistant prostate cancer through IGF2BP2/c-Myc/LDHA signaling. Cancer Res 2021; 82:831-845. [PMID: 34965937 DOI: 10.1158/0008-5472.can-21-2988] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/15/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022]
Abstract
Docetaxel-based chemotherapy is a standard-of-care treatment for metastatic prostate cancer (PCa), and chemoresistance remains a major challenge in clinical practice. Recent studies have demonstrated that circular RNAs (circRNAs) play critical roles in the development and progression of PCa. However, the biological roles and potential functions of circRNAs in mediating docetaxel-resistant PCa have yet to be well elucidated. In this study, we analyzed the expression profiles of circRNAs in docetaxel-resistant and -sensitive PCa cells through RNA sequencing and found that expression of circARHGAP29 was significantly upregulated in docetaxel-resistant cell lines and clinical samples. Ectopic expression of circARHGAP29 triggered docetaxel resistance and aerobic glycolysis in PCa cells, which was reduced by silencing circARHGAP29. Moreover, eukaryotic initiation factor 4A3 (EIF4A3), which bound the back-spliced junction site and the downstream flanking sequence of circARHGAP29, induced cyclization and cytoplasmic export of circARHGAP29. circARHGAP29 increased the stability of lactate dehydrogenase A (LDHA) mRNA by strengthening its interaction with insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), leading to enhanced glycolytic metabolism. In addition, circARHGAP29 interacted with and stabilized c-Myc mRNA and protein, which further increased LDHA expression by facilitating its transcription. These findings reveal the crucial function of circARHGAP29 in PCa glycolysis by increasing and stabilizing LDHA mRNA, providing a promising therapeutic target in docetaxel-resistant PCa.
Collapse
Affiliation(s)
| | - Shanqi Guo
- Hematology, Tianjin Cancer Institute and Hospital
| | | | | | | | - Yong Wang
- School of Laboratory Medicine, Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University
| | - Ran Lu Liu
- Department of Urology, Second Hospital of TianJin Medical University, TianJin
| | - Yuan-Jie Niu
- Chawnshang Chang Sex Hormone Research Center , Department of Urology, The Second affiliated hospital of Tianjin Medical University
| | - Yong Xu
- Tianjin Institute of Urology
| |
Collapse
|
17
|
TÜNCEL Ö, KARA M, YAYLAK B, ERDOĞAN İ, AKGÜL B. Noncoding RNAs in apoptosis: identification and function. Turk J Biol 2021; 46:1-40. [PMID: 37533667 PMCID: PMC10393110 DOI: 10.3906/biy-2109-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 02/08/2022] [Accepted: 11/14/2021] [Indexed: 08/04/2023] Open
Abstract
Apoptosis is a vital cellular process that is critical for the maintenance of homeostasis in health and disease. The derailment of apoptotic mechanisms has severe consequences such as abnormal development, cancer, and neurodegenerative diseases. Thus, there exist complex regulatory mechanisms in eukaryotes to preserve the balance between cell growth and cell death. Initially, protein-coding genes were prioritized in the search for such regulatory macromolecules involved in the regulation of apoptosis. However, recent genome annotations and transcriptomics studies have uncovered a plethora of regulatory noncoding RNAs that have the ability to modulate not only apoptosis but also many other biochemical processes in eukaryotes. In this review article, we will cover a brief summary of apoptosis and detection methods followed by an extensive discussion on microRNAs, circular RNAs, and long noncoding RNAs in apoptosis.
Collapse
Affiliation(s)
- Özge TÜNCEL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Merve KARA
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bilge YAYLAK
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - İpek ERDOĞAN
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| | - Bünyamin AKGÜL
- Non-coding RNA Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, İzmir Institute of Technology, İzmir,
Turkey
| |
Collapse
|
18
|
Babin L, Andraos E, Fuchs S, Pyronnet S, Brunet E, Meggetto F. From circRNAs to fusion circRNAs in hematological malignancies. JCI Insight 2021; 6:151513. [PMID: 34747369 PMCID: PMC8663548 DOI: 10.1172/jci.insight.151513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Circular RNAs (circRNAs) represent a type of endogenous noncoding RNA generated by back-splicing events. Unlike the majority of RNAs, circRNAs are covalently closed, without a 5' end or a 3' poly(A) tail. A few circRNAs can be associated with polysomes, suggesting a protein-coding potential. CircRNAs are not degraded by RNA exonucleases or ribonuclease R and are enriched in exosomes. Recent developments in experimental methods coupled with evolving bioinformatic approaches have accelerated functional investigation of circRNAs, which exhibit a stable structure, a long half-life, and tumor specificity and can be extracted from body fluids and used as potential biological markers for tumors. Moreover, circRNAs may regulate the occurrence and development of cancers and contribute to drug resistance through a variety of molecular mechanisms. Despite the identification of a growing number of circRNAs, their effects in hematological cancers remain largely unknown. Recent studies indicate that circRNAs could also originate from fusion genes (fusion circRNAs, f-circRNAs) next to chromosomal translocations, which are considered the primary cause of various cancers, notably hematological malignancies. This Review will focus on circRNAs and f-circRNAs in hematological cancers.
Collapse
Affiliation(s)
- Loelia Babin
- CRCT INSERM, UMR1037, Toulouse, France.,Toulouse III University-Paul Sabatier, UMR1037 INSERM, UMR5071 CNRS, Toulouse, France.,The Toulouse Cancer Laboratory of Excellence (TOUCAN), Toulouse, France
| | - Elissa Andraos
- CRCT INSERM, UMR1037, Toulouse, France.,Toulouse III University-Paul Sabatier, UMR1037 INSERM, UMR5071 CNRS, Toulouse, France.,The Toulouse Cancer Laboratory of Excellence (TOUCAN), Toulouse, France
| | - Steffen Fuchs
- CRCT INSERM, UMR1037, Toulouse, France.,Toulouse III University-Paul Sabatier, UMR1037 INSERM, UMR5071 CNRS, Toulouse, France.,The Toulouse Cancer Laboratory of Excellence (TOUCAN), Toulouse, France.,Department of Pediatric Oncology, Charité University Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stéphane Pyronnet
- CRCT INSERM, UMR1037, Toulouse, France.,Toulouse III University-Paul Sabatier, UMR1037 INSERM, UMR5071 CNRS, Toulouse, France.,The Toulouse Cancer Laboratory of Excellence (TOUCAN), Toulouse, France
| | - Erika Brunet
- Imagine Institute INSERM Joint Research Unit 1163, Laboratory of Genome Dynamics in the Immune System, Paris, France.,Paris Descartes-Sorbonne University, Imagine Institute, Paris, France
| | - Fabienne Meggetto
- CRCT INSERM, UMR1037, Toulouse, France.,Toulouse III University-Paul Sabatier, UMR1037 INSERM, UMR5071 CNRS, Toulouse, France.,The Toulouse Cancer Laboratory of Excellence (TOUCAN), Toulouse, France
| |
Collapse
|
19
|
Qin S, Mao Y, Chen X, Xiao J, Qin Y, Zhao L. The functional roles, cross-talk and clinical implications of m6A modification and circRNA in hepatocellular carcinoma. Int J Biol Sci 2021; 17:3059-3079. [PMID: 34421350 PMCID: PMC8375232 DOI: 10.7150/ijbs.62767] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. HCC has high rates of death and recurrence, as well as very low survival rates. N6-methyladenosine (m6A) is the most abundant modification in eukaryotic RNAs, and circRNAs are a class of circular noncoding RNAs that are generated by back-splicing and they modulate multiple functions in a variety of cellular processes. Although the carcinogenesis of HCC is complex, emerging evidence has indicated that m6A modification and circRNA play vital roles in HCC development and progression. However, the underlying mechanisms governing HCC, their cross-talk, and clinical implications have not been fully elucidated. Therefore, in this paper, we elucidated the biological functions and molecular mechanisms of m6A modification in the carcinogenesis of HCC by illustrating three different regulatory factors ("writer", "eraser", and "reader") of the m6A modification process. Additionally, we dissected the functional roles of circRNAs in various malignant behaviors of HCC, thereby contributing to HCC initiation, progression and relapse. Furthermore, we demonstrated the cross-talk and interplay between m6A modification and circRNA by revealing the effects of the collaboration of circRNA and m6A modification on HCC progression. Finally, we proposed the clinical potential and implications of m6A modifiers and circRNAs as diagnostic biomarkers and therapeutic targets for HCC diagnosis, treatment and prognosis evaluation.
Collapse
Affiliation(s)
- Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Qin
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China; and Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
Khorsandi K, Esfahani H, Abrahamse H. Characteristics of circRNA and its approach as diagnostic tool in melanoma. Expert Rev Mol Diagn 2021; 21:1079-1094. [PMID: 34380368 DOI: 10.1080/14737159.2021.1967749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
One of the most common types of cancer in the world is skin cancer, which has been divided into two groups: non-melanoma and melanoma skin cancer. Different external and internal agents are considered as risk factors for melanoma skin cancer pathogenesis but the exact mechanisms are not yet confirmed. Genetic and epigenetic changes, UV exposure, arsenic compounds, and chemical substances are contributory factors to the development of melanoma. A correlation has emerged between new therapies and the discovery of a basic molecular pattern for skin cancer patients. Circular RNAs (circRNAs) are described as a unique group of extensively expressed endogenous regulatory RNAs with closed-loop structure bonds connecting the 5' and 3' ends, which are commonly expressed in mammalian cells. In this review, we describe the biogenesis of circular RNAs and its function in cancerous conditions focusing on the crosstalk between different circRNAs and melanoma. Increasing evidence suggests that circRNAs appears to be relative to the origin and development of skin-related diseases like malignant melanoma. Different circular RNAs like hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL, by targeting different cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7 c-3p), can participate in melanoma cancer progression.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Nrf SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
21
|
Xu J, Chen X, Sun Y, Shi Y, Teng F, Lv M, Liu C, Jia X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front Oncol 2021; 11:691317. [PMID: 34307155 PMCID: PMC8299466 DOI: 10.3389/fonc.2021.691317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.
Collapse
Affiliation(s)
- Juan Xu
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Chen
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqian Shi
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Teng
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
22
|
Jia R, Song Z, Lin J, Li Z, Shan G, Huang C. Gawky modulates MTF-1-mediated transcription activation and metal discrimination. Nucleic Acids Res 2021; 49:6296-6314. [PMID: 34107019 PMCID: PMC8216474 DOI: 10.1093/nar/gkab474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023] Open
Abstract
Metal-induced genes are usually transcribed at relatively low levels under normal conditions and are rapidly activated by heavy metal stress. Many of these genes respond preferentially to specific metal-stressed conditions. However, the mechanism by which the general transcription machinery discriminates metal stress from normal conditions and the regulation of MTF-1-meditated metal discrimination are poorly characterized. Using a focused RNAi screening in Drosophila Schneider 2 (S2) cells, we identified a novel activator, the Drosophila gawky, of metal-responsive genes. Depletion of gawky has almost no effect on the basal transcription of the metallothionein (MT) genes, but impairs the metal-induced transcription by inducing the dissociation of MTF-1 from the MT promoters and the deficient nuclear import of MTF-1 under metal-stressed conditions. This suggests that gawky serves as a 'checkpoint' for metal stress and metal-induced transcription. In fact, regular mRNAs are converted into gawky-controlled transcripts if expressed under the control of a metal-responsive promoter, suggesting that whether transcription undergoes gawky-mediated regulation is encrypted therein. Additionally, lack of gawky eliminates the DNA binding bias of MTF-1 and the transcription preference of metal-specific genes. This suggests a combinatorial control of metal discrimination by gawky, MTF-1, and MTF-1 binding sites.
Collapse
Affiliation(s)
- Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| | - Ge Shan
- School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
| |
Collapse
|
23
|
Song Z, Lin J, Li Z, Huang C. The nuclear functions of long noncoding RNAs come into focus. Noncoding RNA Res 2021; 6:70-79. [PMID: 33898883 PMCID: PMC8053782 DOI: 10.1016/j.ncrna.2021.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs), defined as untranslated and tightly-regulated transcripts with a length exceeding 200 nt, are common outputs of the eukaryotic genome. It is becoming increasingly apparent that many lncRNAs likely serve as important regulators in a variety of biological processes. In particular, some of them accumulate in the nucleus and function in diverse nuclear events, including chromatin remodeling, transcriptional regulation, RNA processing, DNA damage repair, etc. Here, we unite recent progresses on the functions of nuclear lncRNAs and provide insights into the future research directions of this field.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Jiamei Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 401331, China
- Corresponding author. School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
24
|
Long F, Lin Z, Li L, Ma M, Lu Z, Jing L, Li X, Lin C. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol Cancer 2021; 20:26. [PMID: 33536039 PMCID: PMC7856739 DOI: 10.1186/s12943-021-01318-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a common hereditary tumor that is often fatal. Its pathogenesis involves multiple genes, including circular RNAs (circRNAs). Notably, circRNAs constitute a new class of noncoding RNAs (ncRNAs) with a covalently closed loop structure and have been characterized as stable, conserved molecules that are abundantly expressed in tissue/development-specific patterns in eukaryotes. Based on accumulating evidence, circRNAs are aberrantly expressed in CRC tissues, cells, exosomes, and blood from patients with CRC. Moreover, numerous circRNAs have been identified as either oncogenes or tumor suppressors that mediate tumorigenesis, metastasis and chemoradiation resistance in CRC. Although the regulatory mechanisms of circRNA biogenesis and functions remain fairly elusive, interesting results have been obtained in studies investigating CRC. In particular, the expression of circRNAs in CRC is comprehensively modulated by multiple factors, such as splicing factors, transcription factors, specific enzymes and cis-acting elements. More importantly, circRNAs exert pivotal effects on CRC through various mechanisms, including acting as miRNA sponges or decoys, interacting with RNA binding proteins, and even translating functional peptides. Finally, circRNAs may serve as promising diagnostic and prognostic biomarkers and potential therapeutic targets in the clinical practice of CRC. In this review, we discuss the dysregulation, functions and clinical significance of circRNAs in CRC and further discuss the molecular mechanisms by which circRNAs exert their functions and how their expression is regulated. Based on this review, we hope to reveal the functions of circRNAs in the initiation and progression of cancer and highlight the future perspectives on strategies targeting circRNAs in cancer research.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of The University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Zhi Lin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Liang Li
- Class 25 Grade 2016, The Five-Year Program in Clinical Medicine, School of Medicine, University of South China, Hengyang, Hunan, 421001, P.R. China
| | - Min Ma
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Zhixing Lu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Liang Jing
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China.
- School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
25
|
Abstract
Circular RNAs (circRNAs) are a type of closed, long, non-coding RNAs, which have attracted significant attention in recent years. CircRNAs exhibit unique functions and are characterized by stable expression in various tissues across different species. Because the identification of circRNA in plant viroids in 1976, numerous studies have been conducted to elucidate its generation as well as expression under normal and disease conditions. The rapid development of research focused on the roles of circRNAs as biomarkers in diseases such as cancers has led to increased interests in evaluating the effects of toxicants on the human genetics from a toxicological perspective. Notably, increasing amounts of chemicals are generated in the environment; however, their toxic features and interactions with the human body, particularly from the epigenetic viewpoint, remain largely unknown. Considering the unique features of circRNAs as potential prognostic biomarkers as well as their roles in evaluating health risks following exposure to toxicants, the aim of this review was to assess the latest progress in the research concerning circRNA, to address the role of the circRNA-miRNA-mRNA axis in diseases and processes occurring after exposure to toxic compounds. Another goal was to identify the gaps in understanding the interactions between toxic compounds and circRNAs as potential biomarkers. The review presents general information about circRNA (ie, biogenesis and functions) and provides insights into newly discovered exosome-contained circRNA. The roles of circRNAs as potential biomarkers are also explored. A comprehensive review of the available literature on the role of circRNA in toxicological research (ie, chemical carcinogenesis, respiratory toxicology, neurotoxicology, and other unclassified toxicological categories) is included.
Collapse
Affiliation(s)
- Yueting Shao
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China.,Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
26
|
Zhou M, Xiao MS, Li Z, Huang C. New progresses of circular RNA biology: from nuclear export to degradation. RNA Biol 2020; 18:1365-1373. [PMID: 33241761 DOI: 10.1080/15476286.2020.1853977] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circular RNA, typically generated from backsplicing reaction, is a class of single-stranded and covalently linked RNA. Although most circular RNAs are lowly expressed, some of them are able to accumulate to high levels and even exceed their cognate mRNAs due to their longer half-lives. Once produced in the nucleus, the majority of circular RNAs are exported to the cytoplasm for their proper functions or degradation. In this review, we will summarize the biogenesis and classification of circular RNAs and highlight the recent advances in our understanding of circular RNA nuclear export and degradation.
Collapse
Affiliation(s)
- Min Zhou
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Mei-Sheng Xiao
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| |
Collapse
|
27
|
Guha S, Bhaumik SR. Viral regulation of mRNA export with potentials for targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194655. [PMID: 33246183 DOI: 10.1016/j.bbagrm.2020.194655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 10/15/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Eukaryotic gene expression begins with transcription in the nucleus to synthesize mRNA (messenger RNA), which is subsequently exported to the cytoplasm for translation to protein. Like transcription and translation, mRNA export is an important regulatory step of eukaryotic gene expression. Various factors are involved in regulating mRNA export, and thus gene expression. Intriguingly, some of these factors interact with viral proteins, and such interactions interfere with mRNA export of the host cell, favoring viral RNA export. Hence, viruses hijack host mRNA export machinery for export of their own RNAs from nucleus to cytoplasm for translation to proteins for viral life cycle, suppressing host mRNA export (and thus host gene expression and immune/antiviral response). Therefore, the molecules that can impair the interactions of these mRNA export factors with viral proteins could emerge as antiviral therapeutic agents to suppress viral RNA transport and enhance host mRNA export, thereby promoting host gene expression and immune response. Thus, there has been a number of studies to understand how virus hijacks mRNA export machinery in suppressing host gene expression and promoting its own RNA export to the cytoplasm for translation to proteins required for viral replication/assembly/life cycle towards developing targeted antiviral therapies, as concisely described here.
Collapse
Affiliation(s)
- Shalini Guha
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA
| | - Sukesh R Bhaumik
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, IL 62901, USA.
| |
Collapse
|
28
|
Huang Y, Wang Y, Zhang C, Sun X. Biological functions of circRNAs and their progress in livestock and poultry. Reprod Domest Anim 2020; 55:1667-1677. [DOI: 10.1111/rda.13816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Yanli Wang
- Development Planning Office Henan University of Science and Technology Luoyang China
| | - Cai Zhang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Xihong Sun
- Development Planning Office Henan University of Science and Technology Luoyang China
| |
Collapse
|
29
|
Zucko D, Boris-Lawrie K. Circular RNAs Are Regulators of Diverse Animal Transcriptomes: One Health Perspective. Front Genet 2020; 11:999. [PMID: 33193584 PMCID: PMC7531264 DOI: 10.3389/fgene.2020.00999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Derived from linear (parental) precursor mRNA, circRNA are recycled exons and introns whose ends are ligated. By titrating microRNAs and RNA binding proteins, circRNA interconnect networks of competing endogenous RNAs. Without altering chromosomal DNA, circRNA regulates skeletal muscle development and proliferation, lactation, ovulation, brain development, and responses to infections and metabolic stress. This review integrates emerging knowledge of circRNA activity coming from genome-wide characterizations in many clades of animals. circRNA research addresses one of the main pillars of the One Health vision – to improve the health and productivity of food animals and generate translational knowledge in animal species.
Collapse
Affiliation(s)
- Dora Zucko
- Department of Veterinary and Biomedical Sciences, Veterinary Medicine Graduate Program, University of Minnesota Twin Cities, Saint Paul, MN, United States
| | - Kathleen Boris-Lawrie
- Department of Veterinary and Biomedical Sciences, Veterinary Medicine Graduate Program, University of Minnesota Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
30
|
Song Z, Jia R, Tang M, Xia F, Xu H, Li Z, Huang C. Antisense oligonucleotide technology can be used to investigate a circular but not linear RNA-mediated function for its encoded gene locus. SCIENCE CHINA-LIFE SCIENCES 2020; 64:784-794. [PMID: 32815066 DOI: 10.1007/s11427-020-1743-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
As a class of powerful molecular tool, antisense oligonucleotides (ASOs) are not only broadly used in protein and RNA biology, but also a highly selective therapeutic strategy for many diseases. Although the concept that ASO reagents only reduce expression of the targeted gene in a post-transcriptional manner has long been established, the effect and mechanism of ASO reagents on RNA polymerase II (Pol II) transcription are largely unknown. This raised question is particularly important for the appropriate use of ASOs and the valid interpretation of ASO-mediated experiments. In this study, our results show that linear RNA ASO attenuates transcription of nascent transcripts by inducing premature transcription termination which is combinatorially controlled by Integrator, exosome, and Rat1 in Drosophila. However, circular RNA (circRNA) ASO transfection does not affect transcription activity of the encoded gene. These data suggest that the ASO technique can be applied to study a circRNA-mediated but not linear RNA-mediated function for its encoded gene locus.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Mingfeng Tang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Fei Xia
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Haiyang Xu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
31
|
Liang ZZ, Guo C, Zou MM, Meng P, Zhang TT. circRNA-miRNA-mRNA regulatory network in human lung cancer: an update. Cancer Cell Int 2020; 20:173. [PMID: 32467668 PMCID: PMC7236303 DOI: 10.1186/s12935-020-01245-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs, as hopeful diagnosis markers and therapeutic molecules, have been studied, probed and applied into several diseases, such as cardiovascular diseases, systemic lupus erythematosus, leukemia, pulmonary tuberculosis, and cancer especially. Recently, mounting evidence has supported that circRNAs play a key role in the tumorigenesis, progress, invasion and metastasis in lung cancer. Its special structure—3′–5′ covalent loop—allow it to execute several special functions in both normal eukaryotic cells and cancer cells. Our review summaries the latest studies on characteristics and biogenesis of circRNAs, and highlight the regulatory functions about miRNA sponge of lung-cancer-related circRNAs. In addition, the interaction of the circRNA-miRNA-mRNA regulatory network will also be elaborated in detail in this review. Therefore, this review can provide a new idea or strategy for further development and application in clinical setting in terms of early-diagnosis and better treatment.
Collapse
Affiliation(s)
- Zhuo-Zheng Liang
- 1Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630 China
| | - Cheng Guo
- 2Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Man-Man Zou
- 1Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630 China
| | - Ping Meng
- 1Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630 China
| | - Tian-Tuo Zhang
- 1Department of Pulmonary Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Institute of Respiratory Diseases of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, 510630 China
| |
Collapse
|
32
|
Wang Y, Jiang Z, Yu M, Yang G. Roles of circular RNAs in regulating the self-renewal and differentiation of adult stem cells. Differentiation 2020; 113:10-18. [PMID: 32179373 DOI: 10.1016/j.diff.2020.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
|
33
|
Zhao Y, Shi Y, Shen H, Xie W. m 6A-binding proteins: the emerging crucial performers in epigenetics. J Hematol Oncol 2020; 13:35. [PMID: 32276589 PMCID: PMC7146974 DOI: 10.1186/s13045-020-00872-8] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is a well-known post-transcriptional modification that is the most common type of methylation in eukaryotic mRNAs. The regulation of m6A is dynamic and reversible, which is erected by m6A methyltransferases ("writers") and removed by m6A demethylases ("erasers"). Notably, the effects on targeted mRNAs resulted by m6A predominantly depend on the functions of different m6A-binding proteins ("readers") including YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), and insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs). Indeed, m6A readers not only participate in multiple procedures of RNA metabolism, but also are involved in a variety of biological processes. In this review, we summarized the specific functions and underlying mechanisms of m6A-binding proteins in tumorigenesis, hematopoiesis, virus replication, immune response, and adipogenesis.
Collapse
Affiliation(s)
- Yanchun Zhao
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yuanfei Shi
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Huafei Shen
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Wanzhuo Xie
- Department of Hematology, the First Affiliated Hospital of Medical School of Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
34
|
Li Y, Wang J, Huang C, Shen M, Zhan H, Xu K. RNA N6-methyladenosine: a promising molecular target in metabolic diseases. Cell Biosci 2020; 10:19. [PMID: 32110378 PMCID: PMC7035649 DOI: 10.1186/s13578-020-00385-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
N6-methyladenosine is a prevalent and abundant transcriptome modification, and its methylation regulates the various aspects of RNAs, including transcription, translation, processing and metabolism. The methylation of N6-methyladenosine is highly associated with numerous cellular processes, which plays important roles in the development of physiological process and diseases. The high prevalence of metabolic diseases poses a serious threat to human health, but its pathological mechanisms remain poorly understood. Recent studies have reported that the progression of metabolic diseases is closely related to the expression of RNA N6-methyladenosine modification. In this review, we aim to summarize the biological and clinical significance of RNA N6-methyladenosine modification in metabolic diseases, including obesity, type 2 diabetes, non-alcoholic fatty liver disease, hypertension, cardiovascular diseases, osteoporosis and immune-related metabolic diseases.
Collapse
Affiliation(s)
- Yan Li
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Jiawen Wang
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Chunyan Huang
- Houjie Hospital of Dongguan, Dongguan, 523945 Guangdong China
| | - Meng Shen
- Chengdu Tumor Hospital, Chengdu, 610041 Sichuan China
| | - Huakui Zhan
- 1Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072 Sichuan China
| | - Keyang Xu
- 4Hangzhou Xixi Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310023 Zhejiang China
| |
Collapse
|
35
|
Defining an evolutionarily conserved role of GW182 in circular RNA degradation. Cell Discov 2019; 5:45. [PMID: 31636958 PMCID: PMC6796862 DOI: 10.1038/s41421-019-0113-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 11/20/2022] Open
|
36
|
Campa CC, Weisbach NR, Santinha AJ, Incarnato D, Platt RJ. Multiplexed genome engineering by Cas12a and CRISPR arrays encoded on single transcripts. Nat Methods 2019; 16:887-893. [PMID: 31406383 DOI: 10.1038/s41592-019-0508-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/07/2019] [Indexed: 12/28/2022]
Abstract
The ability to modify multiple genetic elements simultaneously would help to elucidate and control the gene interactions and networks underlying complex cellular functions. However, current genome engineering technologies are limited in both the number and the type of perturbations that can be performed simultaneously. Here, we demonstrate that both Cas12a and a clustered regularly interspaced short palindromic repeat (CRISPR) array can be encoded in a single transcript by adding a stabilizer tertiary RNA structure. By leveraging this system, we illustrate constitutive, conditional, inducible, orthogonal and multiplexed genome engineering of endogenous targets using up to 25 individual CRISPR RNAs delivered on a single plasmid. Our method provides a powerful platform to investigate and orchestrate the sophisticated genetic programs underlying complex cell behaviors.
Collapse
Affiliation(s)
- Carlo C Campa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Niels R Weisbach
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - António J Santinha
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Danny Incarnato
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|