1
|
Shigematsu M, Matsubara R, Gumas J, Kawamura T, Kirino Y. Angiogenin-catalyzed cleavage within tRNA anticodon-loops identified by cP-RNA-seq. Biosci Biotechnol Biochem 2025; 89:398-405. [PMID: 39658364 PMCID: PMC11840711 DOI: 10.1093/bbb/zbae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Angiogenin (Ang), an endoribonuclease belonging to the RNase A superfamily, cleaves the anticodon-loops of tRNAs to produce tRNA-half molecules. Although previous studies have demonstrated the involvement of Ang in the pathobiology of neurodegenerative disorders, the characterization of Ang-generated tRNA halves in neuronal cells remains limited. This is partly due to the technical limitations of standard RNA-seq methods, which cannot capture Ang-generated RNAs containing a 2',3'-cyclic phosphate (cP). In this report, we established an Ang-treatment model using SH-SY5Y, a human neuroblastoma cell line, and demonstrated Ang-dependent accumulation of tRNA halves. By performing cP-RNA-seq, which selectively captures cP-containing RNAs, we identified Ang-generated tRNA halves and the specific cleavage positions within tRNA anticodon-loops responsible for their generation. Our results provide insights into the anticodon-loop cleavage and the selective production of a specific subset of tRNA halves by Ang.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryuma Matsubara
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Justin Gumas
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Liu X, Zhang J, Liang Y, Chen X, Xu S, Lin S, Dai Y, Chen X, Zhou Y, Bai Y, Chen C. tiRNA-Gly-GCC-002 promotes epithelial-mesenchymal transition and fibrosis in lupus nephritis via FKBP5-mediated activation of Smad. Br J Pharmacol 2025; 182:616-632. [PMID: 39419630 DOI: 10.1111/bph.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Renal interstitial fibrosis is a frequent pathological manifestation of lupus nephritis (LN). tRNA halves (tiRNAs) are acquired from tRNA-derived small non-coding RNAs (sncRNAs) and are associated with fibrosis. Our previous study indicated enhanced tiRNA-Gly-GCC-002 (tiRNA002) levels in kidneys were positively related to LN-related fibrosis. However, the precise molecular mechanism remains unclear. EXPERIMENTAL APPROACH The mimic and agomiR of tiRNA002 were introduced into tubular epithelial cells (TECs) and MRL/lpr mice by transfection. The levels of gene and protein expressions were quantified using real-time quantitative polymerase chain reaction (RT-qPCR), Western blot and immunofluorescence assays. KEY RESULTS In TECs treated with LN serum, as well as in the kidneys of MRL/lpr mice, high levels of tiRNA002 directly influenced the epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. Furthermore, tiRNA002 overexpression promoted EMT in TECs and accelerated renal interstitial fibrosis in MRL/lpr mice via Smad signalling. The target gene of tiRNA002, FKBP prolyl isomerase 5 (FKBP5), improved Smad signalling by interacting with phosphorylated Smad2/3. Silencing FKBP5 alleviated LN serum- or tiRNA002-mimic-induced EMT in TECs. In addition, FKBP5 overexpression reversed the tiRNA002 knockdown-mediated reduction of EMT and ECM accumulation. CONCLUSIONS AND IMPLICATIONS These findings indicated that tiRNA002 is markedly increased in LN, which facilitates renal fibrosis by promoting EMT via FKBP5-mediated Smad signalling. Therefore, targeting tiRNA002 may be an innovative approach to treat renal interstitial fibrosis in LN.
Collapse
Affiliation(s)
- Xueting Liu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ji Zhang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yan Liang
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xuanwen Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Shungang Xu
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Sishi Lin
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yuanting Dai
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Xinxin Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Chronic Nephropathy, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Shigematsu M, Gumas J, Kirino Y. cP-RNA-seq for tRNA half sequencing. Methods Enzymol 2024; 711:135-153. [PMID: 39952701 PMCID: PMC11938272 DOI: 10.1016/bs.mie.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Although RNA-seq data are becoming more widely available for biomedical research, most datasets for short non-coding RNAs (sncRNAs) primarily focus on microRNA analysis using standard RNA-seq, which captures only sncRNAs with 5'-phosphate (5'-P) and 3'-hydroxyl (3'-OH) ends. Standard RNA-seq fails to sequence sncRNAs with different terminal phosphate states, including tRNA halves, the most abundant class of tRNA-derived sncRNAs that play diverse roles in various biological processes. tRNA halves are produced through the endoribonucleolytic cleavage of mature tRNA anticodon loops. The responsible endoribonucleases, such as Angiogenin, commonly leave a 2',3'-cyclic phosphate (cP) at the 3'-end of 5'-tRNA halves and forms a 5'-OH end of 3'-tRNA halves, making them incompatible with standard RNA-seq. We developed a method named "cP-RNA-seq" that selectively amplifies and sequences tRNA halves and other cP-containing sncRNAs. Here we describe a detailed and recently updated cP-RNA-seq protocol. In this method, the 3'-end of all sncRNAs, except those containing a cP, are cleaved through periodate treatment after phosphatase treatment. Consequently, adaptor ligation and cDNA amplification steps are exclusively applied to cP-containing sncRNAs. Our cP-RNA-seq only requires commercially available reagents and is broadly applicable for the global identification of tRNA halves and other cP-containing sncRNA repertoires in various transcriptomes.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Justin Gumas
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
4
|
Shigematsu M, Kawamura T, Kirino Y. TaqMan RT-qPCR for tRNA half quantification. Methods Enzymol 2024; 711:155-170. [PMID: 39952703 PMCID: PMC11947946 DOI: 10.1016/bs.mie.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
When quantifying tRNA-derived short non-coding RNAs (sncRNAs), two key considerations must be addressed. First, sequencing analyses have revealed significant heterogeneity in the lengths and terminal sequences of tRNA-derived sncRNAs. Second, within the total RNA fraction, these sncRNAs coexist with more abundant mature tRNAs and their precursors (pre-tRNAs), which share identical sequences with the sncRNAs. While accurate quantification of individual tRNA-derived sncRNAs is crucial for research on these molecules, these two factors make it challenging to achieve with standard RT-qPCR, stem-loop RT-qPCR, and northern blot. We have developed a TaqMan RT-qPCR method that specifically quantifies tRNA half molecules. Here we describe a detailed and recently updated protocol in which an adaptor is ligated to the target tRNA half, and the TaqMan probe targets the boundaries of the tRNA half and adaptor, ensuring specific quantification without cross-reacting with corresponding mature tRNA or pre-tRNA. Our method utilizes only commercially available reagents and is broadly applicable for quantifying tRNA halves and other sncRNAs in diverse samples, including clinical specimens such as human plasma.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102285. [PMID: 39220268 PMCID: PMC11364045 DOI: 10.1016/j.omtn.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA sequencing (RNA-seq) method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNAValCAC in plasma from COPD patients, whereas the 5'-tRNAGlyGCC half is predominant in healthy donors. Further, the 5'-tRNAValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Deepak A. Deshpande
- Center for Translational Medicine, Jane and Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
6
|
Cui Q, Liu Z, Bai G. Friend or foe: The role of stress granule in neurodegenerative disease. Neuron 2024; 112:2464-2485. [PMID: 38744273 DOI: 10.1016/j.neuron.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/12/2024] [Accepted: 04/19/2024] [Indexed: 05/16/2024]
Abstract
Stress granules (SGs) are dynamic membraneless organelles that form in response to cellular stress. SGs are predominantly composed of RNA and RNA-binding proteins that assemble through liquid-liquid phase separation. Although the formation of SGs is considered a transient and protective response to cellular stress, their dysregulation or persistence may contribute to various neurodegenerative diseases. This review aims to provide a comprehensive overview of SG physiology and pathology. It covers the formation, composition, regulation, and functions of SGs, along with their crosstalk with other membrane-bound and membraneless organelles. Furthermore, this review discusses the dual roles of SGs as both friends and foes in neurodegenerative diseases and explores potential therapeutic approaches targeting SGs. The challenges and future perspectives in this field are also highlighted. A more profound comprehension of the intricate relationship between SGs and neurodegenerative diseases could inspire the development of innovative therapeutic interventions against these devastating diseases.
Collapse
Affiliation(s)
- Qinqin Cui
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China.
| | - Zongyu Liu
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ge Bai
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Hangzhou 311121, China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Shigematsu M, Kawamura T, Deshpande DA, Kirino Y. Immunoactive signatures of circulating tRNA- and rRNA-derived RNAs in chronic obstructive pulmonary disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599707. [PMID: 38948719 PMCID: PMC11212963 DOI: 10.1101/2024.06.19.599707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA-seq method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNA ValCAC in plasma from COPD patients, whereas the 5'-tRNA GlyGCC half is predominant in healthy donors. Further, the 5'-tRNA ValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.
Collapse
|
8
|
Pawar K, Kawamura T, Kirino Y. The tRNA Val half: A strong endogenous Toll-like receptor 7 ligand with a 5'-terminal universal sequence signature. Proc Natl Acad Sci U S A 2024; 121:e2319569121. [PMID: 38683985 PMCID: PMC11087793 DOI: 10.1073/pnas.2319569121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are crucial components of the innate immune system. Endosomal TLR7 recognizes single-stranded RNAs, yet its endogenous ssRNA ligands are not fully understood. We previously showed that extracellular (ex-) 5'-half molecules of tRNAHisGUG (the 5'-tRNAHisGUG half) in extracellular vesicles (EVs) of human macrophages activate TLR7 when delivered into endosomes of recipient macrophages. Here, we fully explored immunostimulatory ex-5'-tRNA half molecules and identified the 5'-tRNAValCAC/AAC half, the most abundant tRNA-derived RNA in macrophage EVs, as another 5'-tRNA half molecule with strong TLR7 activation capacity. Levels of the ex-5'-tRNAValCAC/AAC half were highly up-regulated in macrophage EVs upon exposure to lipopolysaccharide and in the plasma of patients infected with Mycobacterium tuberculosis. The 5'-tRNAValCAC/AAC half-mediated activation of TLR7 effectively eradicated bacteria infected in macrophages. Mutation analyses of the 5'-tRNAValCAC/AAC half identified the terminal GUUU sequence as a determinant for TLR7 activation. We confirmed that GUUU is the optimal ratio of guanosine and uridine for TLR7 activation; microRNAs or other RNAs with the terminal GUUU motif can indeed stimulate TLR7, establishing the motif as a universal signature for TLR7 activation. These results advance our understanding of endogenous ssRNA ligands of TLR7 and offer insights into diverse TLR7-involved pathologies and their therapeutic strategies.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
- Department of Life Sciences, School of Natural Science, Shiv Nadar Institution of Eminence Deemed to be University, Delhi National Capital Region, Greater Noida201314, India
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107
| |
Collapse
|
9
|
Gumas J, Kawamura T, Shigematsu M, Kirino Y. Immunostimulatory short non-coding RNAs in the circulation of patients with tuberculosis infection. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102156. [PMID: 38481936 PMCID: PMC10933579 DOI: 10.1016/j.omtn.2024.102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Mycobacterium tuberculosis (Mtb) infection is among the world's deadliest infectious diseases. Developing effective treatments and biomarkers for tuberculosis requires a deeper understanding of its pathobiology and host responses. Here, we report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma samples from Mtb-infected patients. We achieved this by pre-treating plasma RNAs with T4 polynucleotide kinase to convert all RNA ends to those compatible with sncRNA sequencing. We discovered a global and drastic upregulation of plasma sncRNAs in Mtb-infected patients, with tRNA-derived sncRNAs representing the most dramatically elevated class. Most of these tRNA-derived sncRNAs originated from a limited subset of tRNAs, specifically from three tRNA isoacceptors, and exhibited skewed patterns to 5'-derived fragments, such as 5' halves, 5' tRNA fragments (tRFs), and internal tRFs (i-tRFs) from the 5' regions. Further, Mtb-infected patients displayed markedly upregulated and distinct profiles of both rRNA- and mRNA-derived sncRNAs. Some of these sncRNAs, which are abundant and specific to Mtb-infected patients, robustly activated human macrophages via Toll-like receptor 7 and induced cytokine production. This drastic accumulation of circulating, immunostimulatory sncRNAs in the plasma of Mtb-infected patients offers insights into the sncRNA-driven aspects of host immune response against infectious diseases and suggests a pool of potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Justin Gumas
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Kolberg T, von Löhneysen S, Ozerova I, Wellner K, Hartmann R, Stadler P, Mörl M. Led-Seq: ligation-enhanced double-end sequence-based structure analysis of RNA. Nucleic Acids Res 2023; 51:e63. [PMID: 37114986 PMCID: PMC10287922 DOI: 10.1093/nar/gkad312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Structural analysis of RNA is an important and versatile tool to investigate the function of this type of molecules in the cell as well as in vitro. Several robust and reliable procedures are available, relying on chemical modification inducing RT stops or nucleotide misincorporations during reverse transcription. Others are based on cleavage reactions and RT stop signals. However, these methods address only one side of the RT stop or misincorporation position. Here, we describe Led-Seq, a new approach based on lead-induced cleavage of unpaired RNA positions, where both resulting cleavage products are investigated. The RNA fragments carrying 2', 3'-cyclic phosphate or 5'-OH ends are selectively ligated to oligonucleotide adapters by specific RNA ligases. In a deep sequencing analysis, the cleavage sites are identified as ligation positions, avoiding possible false positive signals based on premature RT stops. With a benchmark set of transcripts in Escherichia coli, we show that Led-Seq is an improved and reliable approach based on metal ion-induced phosphodiester hydrolysis to investigate RNA structures in vivo.
Collapse
Affiliation(s)
- Tim Kolberg
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Sarah von Löhneysen
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Iuliia Ozerova
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
| | - Karolin Wellner
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| | - Roland K Hartmann
- Institute for Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg 6, 35037 Marburg, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Härtelstr. 16–18, 04107 Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany
| |
Collapse
|
11
|
Hou J, Li Q, Wang J, Lu W. tRFs and tRNA Halves: Novel Cellular Defenders in Multiple Biological Processes. Curr Issues Mol Biol 2022; 44:5949-5962. [PMID: 36547066 PMCID: PMC9777342 DOI: 10.3390/cimb44120405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
tRNA fragments derived from angiogenin or Dicer cleavage are referred to as tRNA-derived fragments (tRFs) and tRNA halves. tRFs and tRNA halves have been identified in both eukaryotes and prokaryotes and are precisely cleaved at specific sites on either precursor or mature tRNA transcripts rather than via random degradation. tRFs and tRNA halves are highly involved in regulating transcription and translation in a canonical or non-canonical manner in response to cellular stress. In this review, we summarize the biogenesis and types of tRFs and tRNA halves, clarify the biological functions and molecular mechanisms of tRNA fragments in both physiological and pathological processes with a particular focus on their cytoprotective roles in defending against oxidation and apoptosis, and highlight their potential application as biomarkers in determining cell fate.
Collapse
Affiliation(s)
- Jiani Hou
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Qianqing Li
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.W.); (W.L.); Tel.: +86-0431-84533525; Fax: +861-0431-84533525
| | - Wenfa Lu
- Jilin Provincial International Joint Research Center of Animal Breeding & Reproduction Technology, Jilin Agricultural University, Changchun 130118, China
- Key Lab of the Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.W.); (W.L.); Tel.: +86-0431-84533525; Fax: +861-0431-84533525
| |
Collapse
|
12
|
Small Noncoding RNAs Contribute to Sperm Oxidative Stress-Induced Programming of Behavioral and Metabolic Phenotypes in Offspring. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6877283. [PMID: 35707281 PMCID: PMC9192199 DOI: 10.1155/2022/6877283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
There is growing evidence that paternal environmental information alters small noncoding RNAs (sncRNAs) in sperm and in turn can induce alterations of metabolic and behavioral phenotypes of the next generation. However, the potential mediators of the effects remain to be elucidated. A great diversity of environmental insults and stresses can convergently induce the elevation of reactive oxygen species (ROS) in sperm; nonetheless, it remains unclear whether ROS mediates the biogenesis of sncRNAs in sperm and participates in the reprogramming of offspring phenotypes. Here, we show that ROS could induce the alteration of sncRNA profiles in sperm, especially for transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-derived small RNAs (rsRNAs). Zygotic injection of 29-34 nt RNA fractions (predominantly tsRNAs and rsRNAs) from oxidative stress (OS) sperm could induce depressive-like and anxiety-like behaviors in male offspring. Moreover, zygotic injection with synthetic RNAs partially resembled OS sperm-induced depressive-like and anxiety-like behaviors in offspring. Male offspring maintained on a chow diet was found to develop impaired glucose tolerance and hyperactive hepatic gluconeogenesis, accompanied by the upregulation of hepatic gluconeogenic and lipolytic genes. Together, our results have shown that ROS-induced alteration of sncRNA profiles in sperm contributes to the alterations of behavioral and metabolic phenotypes of the offspring.
Collapse
|
13
|
Shigematsu M, Kirino Y. Making Invisible RNA Visible: Discriminative Sequencing Methods for RNA Molecules with Specific Terminal Formations. Biomolecules 2022; 12:611. [PMID: 35625540 PMCID: PMC9138997 DOI: 10.3390/biom12050611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Next generation sequencing of RNA molecules (RNA-seq) has become a common tool to characterize the expression profiles of RNAs and their regulations in normal physiological processes and diseases. Although increasingly accumulating RNA-seq data are widely available through publicly accessible sites, most of the data for short non-coding RNAs (sncRNAs) have been obtained for microRNA (miRNA) analyses by standard RNA-seq, which only capture the sncRNAs with 5'-phosphate (5'-P) and 3'-hydroxyl (3'-OH) ends. The sncRNAs with other terminal formations such as those with a 5'-hydroxyl end (5'-OH), a 3'-phosphate (3'-P) end, or a 2',3'-cyclic phosphate end (2',3'-cP) cannot be efficiently amplified and sequenced by standard RNA-seq. Due to the invisibility in standard RNA-seq data, these non-miRNA-sncRNAs have been a hidden component in the transcriptome. However, as the functional significances of these sncRNAs have become increasingly apparent, specific RNA-seq methods compatible with various terminal formations of sncRNAs have been developed and started shedding light on the previously unrecognized sncRNAs that lack 5'-P/3'-OH ends. In this review, we summarize the expanding world of sncRNAs with various terminal formations and the strategic approaches of specific RNA-seq methods to distinctively characterize their expression profiles.
Collapse
Affiliation(s)
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| |
Collapse
|
14
|
Lu L, Li J, Wei R, Guidi I, Cozzuto L, Ponomarenko J, Prats-Ejarque G, Boix E. Selective cleavage of ncRNA and antiviral activity by RNase2/EDN in THP1-induced macrophages. Cell Mol Life Sci 2022; 79:209. [PMID: 35347428 PMCID: PMC8960563 DOI: 10.1007/s00018-022-04229-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
AbstractRNase2 is the member of the RNaseA family most abundant in macrophages. Here, we knocked out RNase2 in THP-1 cells and analysed the response to Respiratory Syncytial Virus (RSV). RSV induced RNase2 expression, which significantly enhanced cell survival. Next, by cP-RNAseq sequencing, which amplifies the cyclic-phosphate endonuclease products, we analysed the ncRNA population. Among the ncRNAs accumulated in WT vs KO cells, we found mostly tRNA-derived fragments (tRFs) and second miRNAs. Differential sequence coverage identified tRFs from only few parental tRNAs, revealing a predominant cleavage at anticodon and d-loops at U/C (B1) and A (B2) sites. Selective tRNA cleavage was confirmed in vitro using the recombinant protein. Likewise, only few miRNAs were significantly more abundant in WT vs RNase2-KO cells. Complementarily, by screening of a tRF & tiRNA array, we identified an enriched population associated to RNase2 expression and RSV exposure. The results confirm the protein antiviral action and provide the first evidence of its cleavage selectivity on ncRNAs.
Graphical abstract
Collapse
Affiliation(s)
- Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| | - Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ranlei Wei
- National Frontier Center of Disease Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Irene Guidi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Luca Cozzuto
- Bioinformatic Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain
| | - Julia Ponomarenko
- Bioinformatic Unit, Centre de Regulació Genòmica (CRG), Barcelona, Spain
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
15
|
Akiyama Y, Lyons SM, Fay MM, Tomioka Y, Abe T, Anderson PJ, Ivanov P. Selective Cleavage at CCA Ends and Anticodon Loops of tRNAs by Stress-Induced RNases. Front Mol Biosci 2022; 9:791094. [PMID: 35300117 PMCID: PMC8920990 DOI: 10.3389/fmolb.2022.791094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Stress-induced tRNA cleavage has been implicated in various cellular processes, where tRNA fragments play diverse regulatory roles. Angiogenin (ANG), a member of the RNase A superfamily, induces cleavage of tRNAs resulting in the formation of tRNA-derived stress-induced RNAs (tiRNAs) that contribute to translational reprogramming aiming at cell survival. In addition to cleaving tRNA anticodon loops, ANG has been shown to cleave 3′-CCA termini of tRNAs in vitro, although it is not known whether this process occurs in cells. It has also been suggested that tiRNAs can be generated independently of ANG, although the role of other stress-induced RNases in tRNA cleavage is poorly understood. Using gene editing and biochemical approaches, we examined the involvement of ANG in stress-induced tRNA cleavage by focusing on its cleavage of CCA-termini as well as anticodon loops. We show that ANG is not responsible for CCA-deactivation under sodium arsenite (SA) treatment in cellulo, and although ANG treatment significantly increases 3′-tiRNA levels in cells, the majority of 3′-tiRNAs retain their 3′-CCA termini. Instead, other RNases can cleave CCA-termini in cells, although with low efficiency. Moreover, in the absence of ANG, other RNases are able to promote the production of tiRNAs in cells. Depletion of RNH1 (an endogenous inhibitor of RNase A superfamily) promotes constitutively-produced tiRNAs and CCA-deactivated tRNAs in cells. Interestingly, SA treatment in RNH1-depleted cells did not increase the amount of tiRNAs or CCA-deactivated tRNAs, suggesting that RNase A superfamily enzymes are largely responsible for SA-induced tRNA cleavage. We show that interplay between stress-induced RNases cause targeting tRNAs in a stress-specific manner in cellulo.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shawn M. Lyons
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| | - Marta M. Fay
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takaaki Abe
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Paul J. Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Pavel Ivanov,
| |
Collapse
|
16
|
Polacek N, Ivanov P. The regulatory world of tRNA fragments beyond canonical tRNA biology. RNA Biol 2021; 17:1057-1059. [PMID: 32715957 DOI: 10.1080/15476286.2020.1785196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Norbert Polacek
- Department of Chemistry and Biochemistry, University of Bern , Bern, Switzerland
| | - Pavel Ivanov
- Division of Rheumatology, Immunity, and Inflammation, Brigham and Women's Hospital , Boston, MA, USA.,Department of Medicine, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
17
|
Guan L, Lam V, Grigoriev A. Large-Scale Computational Discovery of Binding Motifs in tRNA Fragments. Front Mol Biosci 2021; 8:647449. [PMID: 34239893 PMCID: PMC8258673 DOI: 10.3389/fmolb.2021.647449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/17/2021] [Indexed: 01/08/2023] Open
Abstract
Accumulating evidence has suggested that tRNA-derived fragments (tRFs) could be loaded to Argonaute proteins and function as regulatory small RNAs. However, their mode of action remains largely unknown, and investigations of their binding mechanisms have been limited, revealing little more than microRNA-like seed regions in a handful of tRFs and a few targets. Here, we identified such regions of potential interaction on a larger scale, using in vivo formed hybrids of guides and targets in crosslinked chimeric reads in two orientations. We considered "forward pairs" (with guides located on the 5' ends and targets on the 3' ends of hybrids) and "reverse pairs" (opposite orientation) and compared them as independent sets of biological constructs. We observed intriguing differences between the two chimera orientations, including the paucity of tRNA halves and abundance of polyT-containing targets in forward pairs. We found a total of 197 quality-ranked motifs supported by ∼120,000 tRF-mRNA chimeras, with 103 interacting motifs common in forward and reverse pairs. By analyzing T→C conversions in human and mouse PAR-CLIP datasets, we detected Argonaute crosslinking sites in tRFs, conserved across species. We proposed a novel model connecting the formation of asymmetric pairs in two sets to the potential binding mechanisms of tRFs, involving the identified interaction motifs and crosslinking sites to Argonaute proteins. Our results suggest the way forward for further experimental elucidation of tRF-binding mechanisms.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Vincent Lam
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
18
|
Guan L, Grigoriev A. Computational meta-analysis of ribosomal RNA fragments: potential targets and interaction mechanisms. Nucleic Acids Res 2021; 49:4085-4103. [PMID: 33772581 PMCID: PMC8053083 DOI: 10.1093/nar/gkab190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The most abundant cellular RNA species, ribosomal RNA (rRNA), appears to be a source of massive amounts of non-randomly generated fragments. We found rRNA fragments (rRFs) in immunoprecipitated Argonaute (Ago-IP) complexes in human and mouse cells and in small RNA sequencing datasets. In human Ago1-IP, guanine-rich rRFs were preferentially cut in single-stranded regions of mature rRNAs between pyrimidines and adenosine, and non-randomly paired with cellular transcripts in crosslinked chimeras. Numerous identical rRFs were found in the cytoplasm and nucleus in mouse Ago2-IP. We report specific interaction motifs enriched in rRF-target pairs. Locations of such motifs on rRFs were compatible with the Ago structural features and patterns of the Ago-RNA crosslinking in both species. Strikingly, many of these motifs may bind to double-stranded regions on target RNAs, suggesting a potential pathway for regulating translation by unwinding mRNAs. Occurring on either end of rRFs and matching intronic, untranslated or coding regions in targets, such interaction sites extend the concept of microRNA seed regions. Targeting both borders of certain short introns, rRFs may be involved in their biogenesis or function, facilitated by Ago. Frequently dismissed as noise, rRFs are poised to greatly enrich the known functional spectrum of small RNA regulation.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA
| |
Collapse
|
19
|
Kawamura T, Shigematsu M, Kirino Y. In vitro production and multiplex quantification of 2',3'-cyclic phosphate-containing 5'-tRNA half molecules. Methods 2021; 203:335-341. [PMID: 33962012 DOI: 10.1016/j.ymeth.2021.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
RNA cleavages by many ribonucleases generate RNA molecules that contain a 2',3'-cyclic phosphate (cP) at their 3'-termini, and many cP-containing RNAs (cP-RNAs) are expressed as functional molecules in cells and tissues. 5'-tRNA half molecules are representative examples of functional cP-RNAs, playing important roles in various biological processes. We here show in vitro production of cP-containing 5'-tRNA half molecules that is able to prepare abundant synthetic cP-RNAs enough for functional analyses. Furthermore, we report a multiplex TaqMan RT-qPCR method which can simultaneously quantify multiple cP-containing 5'-tRNA half species. The method enabled us to efficiently quantify 5'-tRNA halves using samples with limited amounts, such as human plasma samples, revealing drastic enhancement of 5'-tRNA half levels at approximately 1,000-fold in patients infected with Mycobacterium tuberculosis. These in vitro production and multiplex quantification methods can be applied to any cP-RNAs, and they provide cost-effective, in-house techniques to accelerate expressional and functional characterizations of 5'-tRNA halves and other cP-RNAs.
Collapse
Affiliation(s)
- Takuya Kawamura
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Pawar K, Shigematsu M, Sharbati S, Kirino Y. Infection-induced 5'-half molecules of tRNAHisGUG activate Toll-like receptor 7. PLoS Biol 2020; 18:e3000982. [PMID: 33332353 PMCID: PMC7745994 DOI: 10.1371/journal.pbio.3000982] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Toll-like receptors (TLRs) play a crucial role in the innate immune response. Although endosomal TLR7 recognizes single-stranded RNAs, their endogenous RNA ligands have not been fully explored. Here, we report 5'-tRNA half molecules as abundant activators of TLR7. Mycobacterial infection and accompanying surface TLR activation up-regulate the expression of 5'-tRNA half molecules in human monocyte-derived macrophages (HMDMs). The abundant accumulation of 5'-tRNA halves also occur in HMDM-secreted extracellular vehicles (EVs); the abundance of EV-5'-tRNAHisGUG half molecules is >200-fold higher than that of the most abundant EV-microRNA (miRNA). Sequence identification of the 5'-tRNA halves using cP-RNA-seq revealed abundant and selective packaging of specific 5'-tRNA half species into EVs. The EV-5'-tRNAHisGUG half was experimentally demonstrated to be delivered into endosomes in recipient cells and to activate endosomal TLR7. Up-regulation of the 5'-tRNA half molecules was also observed in the plasma of patients infected with Mycobacterium tuberculosis. These results unveil a novel tRNA-engaged pathway in the innate immune response and assign the role of "immune activators" to 5'-tRNA half molecules.
Collapse
Affiliation(s)
- Kamlesh Pawar
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Megumi Shigematsu
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Yohei Kirino
- Computational Medicine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|