1
|
Dilawar M, Yu X, Jin Y, Yang J, Lin S, Liao J, Dai Q, Zhang X, Nisar MF, Chen G. Notch signaling pathway in osteogenesis, bone development, metabolism, and diseases. FASEB J 2025; 39:e70417. [PMID: 39985304 DOI: 10.1096/fj.202402545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
The skeletal system provides vital importance to support organ development and functions. The Notch signaling pathway possesses well-established functions in organ development and cellular homeostasis. The Notch signaling pathway comprises five typical ligands (JAG1, JAG2, DLL1, DLL3, and DLL4), four receptors (Notch1-4), and four intracellular domains (NICD1-4). Each component of the Notch signaling pathway has been demonstrated to be fundamental in osteoblast differentiation and bone formation. The dysregulation in the Notch signaling pathway is highly linked with skeletal disorders or diseases at the developmental and postnatal stages. Recent studies have highlighted the importance of the elements of the Notch signaling pathway in the skeletal system, as well as its interaction with signaling, such as Wnt/β-catenin, BMP, TGF-β, FGF, autophagy, and hedgehog (Hh) to construct a potential gene regulatory network to orchestrate osteogenesis and ossification. Our review has provided a comprehensive summary of the Notch signaling pathway in the skeletal system, as well as the insights targeting Notch signaling for innovative potential drug discovery targets or therapeutic interventions to treat bone disorders, such as osteoporosis and osteoarthritis. An in-depth molecular mechanistic strategy to modulate the Notch signaling pathway and its associated signaling pathway will be encouraged for consideration to trigger enhanced therapeutic approaches for bone disorders by defining Notch-regulating drugs for clinical use.
Collapse
Affiliation(s)
- Muhammad Dilawar
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuan Yu
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuanyuan Jin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jing Yang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Junguang Liao
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Dai
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Muhammad Farrukh Nisar
- Department of Physiology & Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Ganji E, Leek C, Duncan W, Patra D, Ornitz DM, Killian ML. Targeted deletion of Fgf9 in tendon disrupts mineralization of the developing enthesis. FASEB J 2023; 37:e22777. [PMID: 36734881 PMCID: PMC10108073 DOI: 10.1096/fj.202201614r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/20/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023]
Abstract
The enthesis is a transitional tissue between tendon and bone that matures postnatally. The development and maturation of the enthesis involve cellular processes likened to an arrested growth plate. In this study, we explored the role of fibroblast growth factor 9 (Fgf9), a known regulator of chondrogenesis and vascularization during bone development, on the structure and function of the postnatal enthesis. First, we confirmed spatial expression of Fgf9 in the tendon and enthesis using in situ hybridization. We then used Cre-lox recombinase to conditionally knockout Fgf9 in mouse tendon and enthesis (Scx-Cre) and characterized enthesis morphology as well as mechanical properties in Fgf9ScxCre and wild-type (WT) entheses. Fgf9ScxCre mice had smaller calcaneal and humeral apophyses, thinner cortical bone at the attachment, increased cellularity, and reduced failure load in mature entheses compared to WT littermates. During postnatal development, we found reduced chondrocyte hypertrophy and disrupted type X collagen (Col X) in Fgf9ScxCre entheses. These findings support that tendon-derived Fgf9 is important for functional development of the enthesis, including its postnatal mineralization. Our findings suggest the potential role of FGF signaling during enthesis development.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Mechanical Engineering, University of Delaware, Delaware, Newark, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 61801, IL, Urbana, United States.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Connor Leek
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - William Duncan
- Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| | - Debabrata Patra
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, Missouri, St Louis, USA
| | - Megan L Killian
- Department of Orthopaedic Surgery, Michigan Medicine, Michigan, Ann Arbor, USA.,Department of Biomedical Engineering, University of Delaware, Delaware, Newark, USA
| |
Collapse
|
3
|
Majidinia M, Sadeghpour A, Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 2017; 233:2937-2948. [DOI: 10.1002/jcp.26042] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Maryam Majidinia
- Solid Tumor Research Center; Urmia University of Medical Sciences; Urmia Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital; Tabriz University of Medical Sciences; Tabriz Iran
- Drug Applied Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahman Yousefi
- Immunology Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Molecular Targeting Therapy Research Group; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Stem cell and Regenerative Medicine Institute; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
4
|
Wilkie AOM, Patey SJ, Kan SH, van den Ouweland AMW, Hamel BCJ. FGFs, their receptors, and human limb malformations: clinical and molecular correlations. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 112:266-78. [PMID: 12357470 DOI: 10.1002/ajmg.10775] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors (FGFs) comprise a family of 22 distinct proteins with pleiotropic signaling functions in development and homeostasis. These functions are mediated principally by four fibroblast growth factor receptors (FGFRs), members of the receptor tyrosine kinase family, with heparin glycosaminoglycan as an important cofactor. Developmental studies in chick and mouse highlight the critical role of FGF-receptor signaling in multiple phases of limb development, including the positioning of the limb buds, the maintenance of limb bud outgrowth, the detailed patterning of the limb elements, and the growth of the long bones. Corroborating these important roles, mutations of two members of the FGFR family (FGFR1 and FGFR2) are associated with human disorders of limb patterning; in addition, mutations of FGFR3 and FGF23 affect growth of the limb bones. Analysis of FGFR2 mutations in particular reveals a complex pattern of genotype/phenotype correlation, which will be reviewed in detail. Circumstantial evidence suggests that the more severe patterning abnormalities are mediated by illegitimate paracrine signaling in the mesoderm, mediated by FGF10 or by a related FGF, and this is beginning to gain some experimental support. A further test of this hypothesis is provided by a unique family segregating two FGFR2 mutations in cis (S252L; A315S), in which severe syndactyly occurs in the absence of the craniosynostosis that typically accompanies FGFR2 mutations.
Collapse
Affiliation(s)
- Andrew O M Wilkie
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | |
Collapse
|