1
|
Hao X, Hu Z, Li M, Zhang S, Tang M, Hao C, Qi S, Liang Y, Almeida MF, Smith K, Zuo C, Feng Y, Guo M, Ma D, Li S, Wang Z, Sun Y, Deng Z, Mao C, Xia Z, Jiang Y, Gao Y, Xu Y, Schisler JC, Shi C. E3 ubiquitin ligase CHIP facilitates cAMP and cGMP signalling cross-talk by polyubiquitinating PDE9A. EMBO J 2025; 44:1249-1273. [PMID: 39806097 PMCID: PMC11833080 DOI: 10.1038/s44318-024-00351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The carboxyl terminus of Hsc70-interacting protein (CHIP) is pivotal for managing misfolded and aggregated proteins via chaperone networks and degradation pathways. In a preclinical rodent model of CHIP-related ataxia, we observed that CHIP mutations lead to increased levels of phosphodiesterase 9A (PDE9A), whose role in this context remains poorly understood. Here, we investigated the molecular mechanisms underlying the role of PDE9A in CHIP-related ataxia and demonstrated that CHIP binds to PDE9A, facilitating its polyubiquitination and autophagic degradation. Conversely, dysfunctional CHIP disrupts this process, resulting in PDE9A accumulation, increased cGMP hydrolysis, and impaired PKG phosphorylation of CHIP at serine 19. This cascade further amplifies PDE9A accumulation, ultimately disrupting mitophagy and triggering neuronal apoptosis. Elevated PKA levels inhibit PDE9A degradation, further exacerbating this neuronal dysfunction. Notably, pharmacological inhibition of PDE9A via Bay 73-6691 or virus-mediated CHIP expression restored the balance of cGMP/cAMP signalling. These interventions protect against cerebellar neuropathologies, particularly Purkinje neuron mitophagy dysfunction. Thus, PDE9A upregulation considerably exacerbates ataxia associated with CHIP mutations, and targeting the interaction between PDE9A and CHIP is an innovative therapeutic strategy for CHIP-related ataxia.
Collapse
Affiliation(s)
- Xiaoyan Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chenwei Hao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shasha Qi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuanyuan Liang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Michael F Almeida
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kaitlan Smith
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chunyan Zuo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yanmei Feng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Mengnan Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Dongrui Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Shuangjie Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhiyun Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yuemeng Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zhifen Deng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Zongping Xia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Yong Jiang
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
| | - Yanxia Gao
- State Key Laboratory of Antiviral Drugs, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Henan Key Laboratory of Critical Care Medicine, Department of Emergency Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450000, China
- Institute of Infection and Immunity, Henan Academy of Innovations in Medical Science, Zhengzhou, 450000, China
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Medical Key Laboratory of Poisoning Diseases of Henan Province, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Jonathan C Schisler
- McAllister Heart Institute and the Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, Henan, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Kamarulzaman NT, Makpol S. The link between Mitochondria and Sarcopenia. J Physiol Biochem 2025; 81:1-20. [PMID: 39969761 PMCID: PMC11958477 DOI: 10.1007/s13105-024-01062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 02/20/2025]
Abstract
Sarcopenia, a widespread condition, is characterized by a variety of factors influencing its development. The causes of sarcopenia differ depending on the age of the individual. It is defined as the combination of decreased muscle mass and impaired muscle function, primarily observed in association with ageing. As people age from 20 to 80 years old, there is an approximate 30% reduction in muscle mass and a 20% decline in cross-sectional area. This decline is attributed to a decrease in the size and number of muscle fibres. The regression of muscle mass and strength increases the risk of fractures, frailty, reduced quality of life, and loss of independence. Muscle cells, fibres, and tissues shrink, resulting in diminished muscle power, volume, and strength in major muscle groups. One prominent theory of cellular ageing posits a strong positive relationship between age and oxidative damage. Heightened oxidative stress leads to early-onset sarcopenia, characterized by neuromuscular innervation breakdown, muscle atrophy, and dysfunctional mitochondrial muscles. Ageing muscles generate more reactive oxygen species (ROS), and experience decreased oxygen consumption and ATP synthesis compared to younger muscles. Additionally, changes in mitochondrial protein interactions, cristae structure, and networks may contribute to ADP insensitivity, which ultimately leads to sarcopenia. Within this framework, this review provides a comprehensive summary of our current understanding of the role of mitochondria in sarcopenia and other muscle degenerative diseases, highlighting the crucial need for further research in these areas.
Collapse
Affiliation(s)
- Nurul Tihani Kamarulzaman
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
3
|
Jagtap YA, Kumar P, Dubey AR, Kinger S, Choudhary A, Karmakar S, Lal G, Kumar A, Kumar A, Prasad A, Mishra A. Acetaminophen induces mitochondrial apoptosis through proteasome dysfunctions. Life Sci 2024; 349:122732. [PMID: 38768775 DOI: 10.1016/j.lfs.2024.122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Acetaminophen is a known antipyretic and non-opioid analgesic for mild pain and fever. Numerous studies uncover their hidden chemotherapeutics applications, including chronic cancer pain management. Acetaminophen also represents an anti-proliferative effect in some cancer cells. Few studies also suggest that the use of Acetaminophen can trigger apoptosis and impede cellular growth. However, Acetaminophen's molecular potential and precise mechanism against improper cellular proliferation and use as an effective anti-proliferative agent still need to be better understood. Here, our current findings show that Acetaminophen induces proteasomal dysfunctions, resulting in aberrant protein accumulation and mitochondrial abnormalities, and consequently induces cell apoptosis. We observed that the Acetaminophen treatment leads to improper aggregation of ubiquitylated expanded polyglutamine proteins, which may be due to the dysfunctions of proteasome activities. Our in-silico analysis suggests the interaction of Acetaminophen and proteasome. Furthermore, we demonstrated the accumulation of proteasome substrates and the depletion of proteasome activities after treating Acetaminophen in cells. Acetaminophen induces proteasome dysfunctions and mitochondrial abnormalities, leading to pro-apoptotic morphological changes and apoptosis successively. These results suggest that Acetaminophen can induce cell death and may retain a promising anti-proliferative effect. These observations can open new possible molecular strategies in the near future for developing and designing specific and effective proteasome inhibitors, which can be helpful in conjugation with other anti-tumor drugs for their better efficiency.
Collapse
Affiliation(s)
- Yuvraj Anandrao Jagtap
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Prashant Kumar
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Ankur Rakesh Dubey
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Sumit Kinger
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Akash Choudhary
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India
| | - Surojit Karmakar
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur, Chhattisgarh, 492010, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh, 453552, India
| | - Amit Prasad
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
4
|
Papanagnou ED, Gumeni S, Trougakos IP. Boosting autophagy in anti-tumor proteasome inhibition-mediated cardiotoxicity. Aging (Albany NY) 2023; 15:3226-3227. [PMID: 37166427 PMCID: PMC10449313 DOI: 10.18632/aging.204724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/21/2023] [Indexed: 05/12/2023]
Affiliation(s)
- Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| |
Collapse
|
5
|
Georgiopoulos G, Makris N, Laina A, Theodorakakou F, Briasoulis A, Trougakos IP, Dimopoulos MA, Kastritis E, Stamatelopoulos K. Cardiovascular Toxicity of Proteasome Inhibitors: Underlying Mechanisms and Management Strategies: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:1-21. [PMID: 36875897 PMCID: PMC9982226 DOI: 10.1016/j.jaccao.2022.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023] Open
Abstract
Proteasome inhibitors (PIs) are the backbone of combination treatments for patients with multiple myeloma and AL amyloidosis, while also indicated in Waldenström's macroglobulinemia and other malignancies. PIs act on proteasome peptidases, causing proteome instability due to accumulating aggregated, unfolded, and/or damaged polypeptides; sustained proteome instability then induces cell cycle arrest and/or apoptosis. Carfilzomib, an intravenous irreversible PI, exhibits a more severe cardiovascular toxicity profile as compared with the orally administered ixazomib or intravenous reversible PI such as bortezomib. Cardiovascular toxicity includes heart failure, hypertension, arrhythmias, and acute coronary syndromes. Because PIs are critical components of the treatment of hematological malignancies and amyloidosis, managing their cardiovascular toxicity involves identifying patients at risk, diagnosing toxicity early at the preclinical level, and offering cardioprotection if needed. Future research is required to elucidate underlying mechanisms, improve risk stratification, define the optimal management strategy, and develop new PIs with safe cardiovascular profiles.
Collapse
Key Words
- ACE, angiotensin-converting enzyme
- ACS, acute coronary syndrome
- AE, adverse event
- AF, atrial fibrillation
- ARB, angiotensin receptor blocker
- ASCT, autologous stem cell transplantation
- BP, blood pressure
- CVAE, cardiovascular adverse event
- ESC, European Society of Cardiology
- FMD, flow-mediated dilatation
- GLS, global longitudinal strain
- HF, heart failure
- HFpEF, heart failure with preserved ejection fraction
- IHD, ischemic heart disease
- IMiD, immunomodulatory drug
- Kd, carfilzomib and dexamethasone
- LA, left atrial
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MM, multiple myeloma
- NO, nitric oxide
- NP, natriuretic peptide
- OS, overall survival
- PBMC, peripheral blood mononuclear cell
- PFS, progression-free survival
- PH, pulmonary hypertension
- PI, proteasome inhibitor
- PWV, pulse wave velocity
- PrA, proteasome activity
- RRMM, relapse or refractory multiple myeloma
- SBP, systolic blood pressure
- TMA, thrombotic microangiopathy
- UPP, ubiquitin proteasome pathway
- VTE, venous thromboembolism
- Vd, bortezomib and dexamethasone
- WM, Waldenström’s macroglobulinemia
- bortezomib
- cardiovascular toxicity
- carfilzomib
- eNOS, endothelial nitric oxide synthase
- ixazomib
- proteasome inhibition
Collapse
Affiliation(s)
- Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, United Kingdom
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Theodorakakou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Greece
| | | | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Tian Y, Liu X, Pei X, Gao H, Pan P, Yang Y. Mechanism of Mitochondrial Homeostasis Controlling Ovarian Physiology. Endocrinology 2022; 164:6828017. [PMID: 36378567 DOI: 10.1210/endocr/bqac189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Indexed: 11/17/2022]
Abstract
Ovarian cells, including oocytes, granulosa/cumulus cells, theca cells, and stromal cells, contain abundant mitochondria, which play indispensable roles in the processes of ovarian follicle development. Ovarian function is closely controlled by mitochondrial proteostasis and mitostasis. While mitochondrial proteostasis and mitostasis are disturbed by several factors, leading to dysfunction of ovarian function and initiating the mitochondrial unfolded protein response (UPRmt) and mitophagy to maintain or recover ovarian function and mitochondrial function, clear interactions between the 2 pathways in the ovary have not been fully elucidated. Here, we comprehensively summarize the molecular networks or regulatory mechanisms behind further mitochondrial research in the ovary. This review provides novel insights into the interactions between the UPRmt and mitophagy in ovarian functions.
Collapse
Affiliation(s)
- Yuan Tian
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xinrui Liu
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuying Pei
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hui Gao
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanzhou Yang
- Clinical Medical College, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
7
|
Papanagnou E, Gumeni S, Sklirou AD, Rafeletou A, Terpos E, Keklikoglou K, Kastritis E, Stamatelopoulos K, Sykiotis GP, Dimopoulos MA, Trougakos IP. Autophagy activation can partially rescue proteasome dysfunction-mediated cardiac toxicity. Aging Cell 2022; 21:e13715. [PMID: 36259256 PMCID: PMC9649605 DOI: 10.1111/acel.13715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
The ubiquitin-proteasome pathway and its functional interplay with other proteostatic and/or mitostatic modules are crucial for cell viability, especially in post-mitotic cells like cardiomyocytes, which are constantly exposed to proteotoxic, metabolic, and mechanical stress. Consistently, treatment of multiple myeloma patients with therapeutic proteasome inhibitors may induce cardiac failure; yet the effects promoted by heart-targeted proteasome dysfunction are not completely understood. We report here that heart-targeted proteasome knockdown in the fly experimental model results in increased proteome instability and defective mitostasis, leading to disrupted cardiac activity, systemic toxicity, and reduced longevity. These phenotypes were partially rescued by either heart targeted- or by dietary restriction-mediated activation of autophagy. Supportively, activation of autophagy by Rapamycin or Metformin administration in flies treated with proteasome inhibitors reduced proteome instability, partially restored mitochondrial function, mitigated cardiotoxicity, and improved flies' longevity. These findings suggest that autophagic inducers represent a novel promising intervention against proteasome inhibitor-induced cardiovascular complications.
Collapse
Affiliation(s)
- Eleni‐Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Alexandra Rafeletou
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Kleoniki Keklikoglou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR)CreteGreece,Biology DepartmentUniversity of CreteHeraklionGreece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Gerasimos P. Sykiotis
- Service of Endocrinology, Diabetology and MetabolismLausanne University Hospital and University of LausanneLausanneSwitzerland
| | - Meletios A. Dimopoulos
- Department of Clinical Therapeutics, School of MedicineNational and Kapodistrian University of AthensAthensGreece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of BiologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
8
|
Carrella S, Di Guida M, Brillante S, Piccolo D, Ciampi L, Guadagnino I, Garcia Piqueras J, Pizzo M, Marrocco E, Molinari M, Petrogiannakis G, Barbato S, Ezhova Y, Auricchio A, Franco B, De Leonibus E, Surace EM, Indrieri A, Banfi S. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases. EMBO Mol Med 2022; 14:e15941. [PMID: 36194668 DOI: 10.15252/emmm.202215941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited retinal diseases (IRDs) are a group of diseases whose common landmark is progressive photoreceptor loss. The development of gene-specific therapies for IRDs is hampered by their wide genetic heterogeneity. Mitochondrial dysfunction is proving to constitute one of the key pathogenic events in IRDs; hence, approaches that enhance mitochondrial activities have a promising therapeutic potential for these conditions. We previously reported that miR-181a/b downregulation boosts mitochondrial turnover in models of primary retinal mitochondrial diseases. Here, we show that miR-181a/b silencing has a beneficial effect also in IRDs. In particular, the injection in the subretinal space of an adeno-associated viral vector (AAV) that harbors a miR-181a/b inhibitor (sponge) sequence (AAV2/8-GFP-Sponge-miR-181a/b) improves retinal morphology and visual function both in models of autosomal dominant (RHO-P347S) and of autosomal recessive (rd10) retinitis pigmentosa. Moreover, we demonstrate that miR-181a/b downregulation modulates the level of the mitochondrial fission-related protein Drp1 and rescues the mitochondrial fragmentation in RHO-P347S photoreceptors. Overall, these data support the potential use of miR-181a/b downregulation as an innovative mutation-independent therapeutic strategy for IRDs, which can be effective both to delay disease progression and to aid gene-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sabrina Carrella
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Martina Di Guida
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Simona Brillante
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Davide Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Ludovica Ciampi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Irene Guadagnino
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Jorge Garcia Piqueras
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| | - Mariateresa Pizzo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Elena Marrocco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Marta Molinari
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Georgios Petrogiannakis
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sara Barbato
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Yulia Ezhova
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Molecular Life Science, Department of Science and Environmental, Biological and Farmaceutical Technologies, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alberto Auricchio
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Advanced Biomedicine, University of Naples "Federico II", Naples, Italy
| | - Brunella Franco
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy.,Scuola Superiore Meridionale, School of Advanced Studies, Naples, Italy
| | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute of Biochemistry and Cellular Biology (IBBC), National Research Council (CNR), Monterotondo, Rome, Italy
| | - Enrico Maria Surace
- Medical Genetics, Department of Translational Medical Science, University of Naples "Federico II", Naples, Italy
| | - Alessia Indrieri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Institute for Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.,Medical Genetics, Department of Precision Medicine, University of Campania "L. Vanvitelli", Naples, Italy
| |
Collapse
|
9
|
Wang X, Yu J, Liu X, Luo D, Li Y, Song L, Jiang X, Yin X, Wang Y, Chai L, Luo T, Jing J, Shi H. PSMG2-controlled proteasome-autophagy balance mediates the tolerance for MEK-targeted therapy in triple-negative breast cancer. Cell Rep Med 2022; 3:100741. [PMID: 36099919 PMCID: PMC9512673 DOI: 10.1016/j.xcrm.2022.100741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/21/2022] [Accepted: 08/23/2022] [Indexed: 05/29/2023]
Abstract
Although the MAPK pathway is aberrantly activated in triple-negative breast cancers (TNBCs), the clinical outcome of MEK-targeted therapy is still poor. Through a genome-wide CRISPR-Cas9 library screening, we find that inhibition of PSMG2 sensitizes TNBC cells BT549 and MB468 to the MEK inhibitor AZD6244. Mechanistically, PSMG2 knockdown impairs proteasome function, which in turn activates autophagy-mediated PDPK1 degradation. The PDPK1 degradation significantly enhances AZD6244-induced tumor cell growth inhibition by interrupting the negative feedback signals toward the AKT pathway. Consistently, co-targeting proteasomes and MEK with inhibitors synergistically suppresses tumor cell growth. The autophagy inhibitor chloroquine partially relieves the PDPK1 degradation and reverses the growth inhibition induced by combinatorial inhibition of MEK and proteasome. The combination regimen with the proteasome inhibitor MG132 plus AZD6244 synergistically inhibits tumor growth in a 4T1 xenograft mouse model. In summary, our study not only unravels the mechanism of MEK inhibitor resistance but also provides a combinatorial therapeutic strategy for TNBC in clinics.
Collapse
Affiliation(s)
- Xueyan Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jing Yu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaowei Liu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Yanchu Li
- West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Linlin Song
- Department of Ultrasound and Laboratory of Ultrasound Medicine, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xian Jiang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Xiaomeng Yin
- Department of Biotherapy, West China Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Chai
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ting Luo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China
| | - Jing Jing
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| | - Hubing Shi
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Fan P, Sha F, Ma C, Wei Q, Zhou Y, Shi J, Fu J, Zhang L, Han B, Li J. 10-Hydroxydec-2-Enoic Acid Reduces Hydroxyl Free Radical-Induced Damage to Vascular Smooth Muscle Cells by Rescuing Protein and Energy Metabolism. Front Nutr 2022; 9:873892. [PMID: 35711556 PMCID: PMC9196250 DOI: 10.3389/fnut.2022.873892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
10-Hydroxydec-2-enoic acid (10-HDA), an unsaturated hydroxyl fatty acid from the natural food royal jelly, can protect against cell and tissue damage, yet the underlying mechanisms are still unexplored. We hypothesized that the neutralization of the hydroxyl free radical (•OH), the most reactive oxygen species, is an important factor underlying the cytoprotective effect of 10-HDA. In this study, we found that the •OH scavenging rate by 10-HDA (2%, g/ml) was more than 20%, which was achieved through multiple-step oxidization of the -OH group and C=C bond of 10-HDA. Moreover, 10-HDA significantly enhanced the viability of vascular smooth muscle cells (VSMCs) damaged by •OH (P < 0.01), significantly attenuated •OH-derived malondialdehyde production that represents cellular lipid peroxidation (P < 0.05), and significantly increased the glutathione levels in •OH-stressed VSMCs (P < 0.05), indicating the role of 10-HDA in reducing •OH-induced cytotoxicity. Further proteomic analyses of VSMCs identified 195 proteins with decreased expression by •OH challenge that were upregulated by 10-HDA rescue and were primarily involved in protein synthesis (such as translation, protein transport, ribosome, and RNA binding) and energy metabolism (such as fatty acid degradation and glycolysis/gluconeogenesis). Taken together, these findings indicate that 10-HDA can effectively promote cell survival by antagonizing •OH-induced injury in VSMCs. To the best of our knowledge, our results provide the first concrete evidence that 10-HDA-scavenged •OH could be a potential pharmacological application for maintaining vascular health.
Collapse
Affiliation(s)
- Pei Fan
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Fangfang Sha
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaohong Wei
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqi Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jing Shi
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Jiaojiao Fu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Lu Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Chen Y, Hamidu S, Yang X, Yan Y, Wang Q, Li L, Oduro PK, Li Y. Dietary Supplements and Natural Products: An Update on Their Clinical Effectiveness and Molecular Mechanisms of Action During Accelerated Biological Aging. Front Genet 2022; 13:880421. [PMID: 35571015 PMCID: PMC9096086 DOI: 10.3389/fgene.2022.880421] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022] Open
Abstract
Accelerated biological aging, which involves the gradual decline of organ or tissue functions and the distortion of physiological processes, underlies several human diseases. Away from the earlier free radical concept, telomere attrition, cellular senescence, proteostasis loss, mitochondrial dysfunction, stem cell exhaustion, and epigenetic and genomic alterations have emerged as biological hallmarks of aging. Moreover, nutrient-sensing metabolic pathways are critical to an organism's ability to sense and respond to nutrient levels. Pharmaceutical, genetic, and nutritional interventions reverting physiological declines by targeting nutrient-sensing metabolic pathways can promote healthy aging and increase lifespan. On this basis, biological aging hallmarks and nutrient-sensing dependent and independent pathways represent evolving drug targets for many age-linked diseases. Here, we discuss and update the scientific community on contemporary advances in how dietary supplements and natural products beneficially revert accelerated biological aging processes to retrograde human aging and age-dependent human diseases, both from the clinical and preclinical studies point-of-view. Overall, our review suggests that dietary/natural products increase healthspan-rather than lifespan-effectively minimizing the period of frailty at the end of life. However, real-world setting clinical trials and basic studies on dietary supplements and natural products are further required to decisively demonstrate whether dietary/natural products could promote human lifespan.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Sherif Hamidu
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Xintong Yang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiqi Yan
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qilong Wang
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pathology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Yuhong Li
- State Key Laboratory of Pharmacology of Modern Chinese Medicine, Department of Pharmacology and Toxicology, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Kong Q, Yan X, Cheng M, Jiang X, Xu L, Shen L, Yu H, Sun L. p62 Promotes the Mitochondrial Localization of p53 through Its UBA Domain and Participates in Regulating the Sensitivity of Ovarian Cancer Cells to Cisplatin. Int J Mol Sci 2022; 23:ijms23063290. [PMID: 35328718 PMCID: PMC8949157 DOI: 10.3390/ijms23063290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Chemotherapeutic drug-induced p53-dependent crosstalk among tumor cells affects the sensitivity of tumor cells to chemotherapeutic drugs, contributing to chemoresistance. Therefore, pharmacological targeting of p53 may contribute to overcoming drug resistance. The localization of p53 is closely related to its function. Thus, we assessed the effect of p62 on the coordination of p53 mitochondrial localization under chemotherapeutic drug treatment in ovarian cancer cells. We found that the combined use of the proteasome inhibitor epoxomicin and cisplatin led to the accumulation of p53 and sequestosome1(p62) in the mitochondria, downregulated mitochondrial DNA (mtDNA) transcription, inhibited mitochondrial functions, and ultimately promoted apoptosis by enhancing cisplatin sensitivity in ovarian cancer cells. Moreover, the ubiquitin-associated (UBA) domain of p62 was involved in regulating the mitochondrial localization of p53. Our findings suggest that the interaction between p62 and p53 may be a mechanism that determines the fate of tumor cells. In conclusion, p62 coordinated the mitochondrial localization of p53 through its UBA domain, inhibited mtDNA transcription, downregulated mitochondrial function, and promoted ovarian cancer cell death. Our study demonstrates the important role of p53 localization in tumor cell survival and apoptosis, and provides new insights into understanding the anti-tumor mechanism of targeting the ubiquitin–proteasome system in tumor cells.
Collapse
Affiliation(s)
- Qinghuan Kong
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Xiaoyu Yan
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Meiyu Cheng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Xin Jiang
- Department of Biochemistry, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Long Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Luyan Shen
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
| | - Huimei Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0-431-8561-9485 or +86-0-431-8561-9110 (H.Y. & L.S.)
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (Q.K.); (X.Y.); (M.C.); (L.X.); (L.S.)
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0-431-8561-9485 or +86-0-431-8561-9110 (H.Y. & L.S.)
| |
Collapse
|
13
|
Louka XP, Sklirou AD, Le Goff G, Lopes P, Papanagnou ED, Manola MS, Benayahu Y, Ouazzani J, Trougakos IP. Isolation of an Extract from the Soft Coral Symbiotic Microorganism Salinispora arenicola Exerting Cytoprotective and Anti-Aging Effects. Curr Issues Mol Biol 2021; 44:14-30. [PMID: 35723381 PMCID: PMC8928968 DOI: 10.3390/cimb44010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 01/10/2023] Open
Abstract
Cells have developed a highly integrated system responsible for proteome stability, namely the proteostasis network (PN). As loss of proteostasis is a hallmark of aging and age-related diseases, the activation of PN modules can likely extend healthspan. Here, we present data on the bioactivity of an extract (SA223-S2BM) purified from the strain Salinispora arenicola TM223-S2 that was isolated from the soft coral Scleronephthya lewinsohni; this coral was collected at a depth of 65 m from the mesophotic Red Sea ecosystem EAPC (south Eilat, Israel). Treatment of human cells with SA223-S2BM activated proteostatic modules, decreased oxidative load, and conferred protection against oxidative and genotoxic stress. Furthermore, SA223-S2BM enhanced proteasome and lysosomal-cathepsins activities in Drosophila flies and exhibited skin protective effects as evidenced by effective inhibition of the skin aging-related enzymes, elastase and tyrosinase. We suggest that the SA223-S2BM extract constitutes a likely promising source for prioritizing molecules with anti-aging properties.
Collapse
Affiliation(s)
- Xanthippi P. Louka
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Aimilia D. Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Géraldine Le Goff
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91190 Gif-sur-Yvette, France; (G.L.G.); (P.L.); (J.O.)
| | - Philippe Lopes
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91190 Gif-sur-Yvette, France; (G.L.G.); (P.L.); (J.O.)
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Maria S. Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel;
| | - Jamal Ouazzani
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91190 Gif-sur-Yvette, France; (G.L.G.); (P.L.); (J.O.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (X.P.L.); (A.D.S.); (E.-D.P.); (M.S.M.)
| |
Collapse
|
14
|
Dina E, Sklirou AD, Chatzigeorgiou S, Manola MS, Cheilari A, Louka XP, Argyropoulou A, Xynos N, Skaltsounis AL, Aligiannis N, Trougakos IP. An enriched polyphenolic extract obtained from the by-product of Rosa damascena hydrodistillation activates antioxidant and proteostatic modules. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153757. [PMID: 34619431 DOI: 10.1016/j.phymed.2021.153757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/14/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Prolonged maintenance of proteome stability and functionality (proteostasis) is of emerging significance in aging retardation and healthspan. PURPOSE An enriched polyphenolic extract obtained from the hydrodistillation of rose petals was tested for its capacity to activate the proteostasis network modules, and thus modulate health- and/or lifespan at the cellular and whole organism level. METHODS The aqueous extract that remained after the hydrodistillation of Rosa damascena petals, was processed with a polystyrene-FPX66 adsorption resin and sequentially fractionated by FCPC. NMR and UHPLC-HRMS analyses revealed the presence of 28 metabolites, mainly glycosides of kaempferol and quercetin. RESULTS The extract showed high in vitro antioxidant activity and was not toxic in normal human skin fibroblasts, while it promoted the upregulation of NRF2-induced antioxidant genes and main proteostatic modules. Consistently, supplementation of this extract in Drosophila flies' culture medium induced a cncC/NRF2-mediated upregulation of antioxidant and proteostatic modules. Prolonged administration of the extract in flies' culture medium was not toxic and did not affect food intake rate or fecundity; also, it delayed the age-related decline of stress tolerance and locomotion performance (neuromuscular functionality) and dose-dependently extended flies' lifespan. CONCLUSION Our findings indicate that the enriched polyphenolic extract obtained from the residue of R. damascena hydrodistillation activates cytoprotective cellular modules that, likely, contribute to its potential anti-aging properties.
Collapse
Affiliation(s)
- Evanthia Dina
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Aimilia D Sklirou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sofia Chatzigeorgiou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Antigoni Cheilari
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Xanthippi P Louka
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Nikos Xynos
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
15
|
Jenkins EC, Chattopadhyay M, Germain D. Folding Mitochondrial-Mediated Cytosolic Proteostasis Into the Mitochondrial Unfolded Protein Response. Front Cell Dev Biol 2021; 9:715923. [PMID: 34631705 PMCID: PMC8495152 DOI: 10.3389/fcell.2021.715923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Several studies reported that mitochondrial stress induces cytosolic proteostasis. How mitochondrial stress activates proteostasis in the cytosol remains unclear. However, the cross-talk between the mitochondria and cytosolic proteostasis has far reaching implications for treatment of proteopathies including neurodegenerative diseases. This possibility appears within reach since selected drugs have begun to emerge as being able to stimulate mitochondrial-mediated cytosolic proteostasis. In this review, we focus on studies describing how mitochondrial stress activates proteostasis in the cytosol across multiple model organisms. A model is proposed linking mitochondrial-mediated regulation of cytosolic translation, folding capacity, ubiquitination, and proteasome degradation and autophagy as a multi layered control of cytosolic proteostasis that overlaps with the integrated stress response (ISR) and the mitochondrial unfolded protein response (UPRmt). By analogy to the conductor in an orchestra managing multiple instrumental sections into a dynamically integrated musical piece, the cross-talk between these signaling cascades places the mitochondria as a major conductor of cellular integrity.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| | - Mrittika Chattopadhyay
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| |
Collapse
|
16
|
Nrf2 activation induces mitophagy and reverses Parkin/Pink1 knock down-mediated neuronal and muscle degeneration phenotypes. Cell Death Dis 2021; 12:671. [PMID: 34218254 PMCID: PMC8254809 DOI: 10.1038/s41419-021-03952-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
The balanced functionality of cellular proteostatic modules is central to both proteome stability and mitochondrial physiology; thus, the age-related decline of proteostasis also triggers mitochondrial dysfunction, which marks multiple degenerative disorders. Non-functional mitochondria are removed by mitophagy, including Parkin/Pink1-mediated mitophagy. A common feature of neuronal or muscle degenerative diseases, is the accumulation of damaged mitochondria due to disrupted mitophagy rates. Here, we exploit Drosophila as a model organism to investigate the functional role of Parkin/Pink1 in regulating mitophagy and proteostatic responses, as well as in suppressing degenerative phenotypes at the whole organism level. We found that Parkin or Pink1 knock down in young flies modulated proteostatic components in a tissue-dependent manner, increased cell oxidative load, and suppressed mitophagy in neuronal and muscle tissues, causing mitochondrial aggregation and neuromuscular degeneration. Concomitant to Parkin or Pink1 knock down cncC/Nrf2 overexpression, induced the proteostasis network, suppressed oxidative stress, restored mitochondrial function, and elevated mitophagy rates in flies' tissues; it also, largely rescued Parkin or Pink1 knock down-mediated neuromuscular degenerative phenotypes. Our in vivo findings highlight the critical role of the Parkin/Pink1 pathway in mitophagy, and support the therapeutic potency of Nrf2 (a druggable pathway) activation in age-related degenerative diseases.
Collapse
|
17
|
Gu H, Yang K, Wu Q, Shen Z, Li X, Sun C. A link between protein acetylation and mitochondrial dynamics under energy metabolism: A comprehensive overview. J Cell Physiol 2021; 236:7926-7937. [PMID: 34101176 DOI: 10.1002/jcp.30461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/06/2021] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
Abstract
Cells adjust mitochondrial morphologies to coordinate between the cellular demand for energy and the availability of resources. Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. Fission and fusion are dynamic and reversible processes that depend on the coordination of a number of proteins and are primarily regulated by posttranslational modifications. In the mitochondria, more than 20% of proteins are acetylated in proteomic surveys, partly involved in the dynamic regulation of mitochondrial fusion and fission. This article focuses on the molecular mechanism of the mitochondrial dynamics of fusion and fission, and summarizes the related mechanisms and targets of mitochondrial protein acetylation to regulate the mitochondrial dynamics of fusion and fission in energy metabolism.
Collapse
Affiliation(s)
- Huihui Gu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Qiong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Pathophysiology, Qinghai University Medical College, Xining, Qinghai, China
| | - Zhentong Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chao Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Rai M, Coleman Z, Curley M, Nityanandam A, Platt A, Robles-Murguia M, Jiao J, Finkelstein D, Wang YD, Xu B, Fan Y, Demontis F. Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging. Cell Metab 2021; 33:1137-1154.e9. [PMID: 33773104 PMCID: PMC8172468 DOI: 10.1016/j.cmet.2021.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/21/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zane Coleman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Stem Cell Core, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anna Platt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
19
|
Tsakiri EN, Gumeni S, Manola MS, Trougakos IP. Amyloid toxicity in a Drosophila Alzheimer's model is ameliorated by autophagy activation. Neurobiol Aging 2021; 105:137-147. [PMID: 34062489 DOI: 10.1016/j.neurobiolaging.2021.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the prevailing form of dementia. Protein degradation and antioxidant pathways have a critical role in preventing the accumulation of protein aggregation; thus, failure of proteostasis in neurons along with redox imbalance mark AD. Herein, we exploited an AD Drosophila model expressing human amyloid precursor (hAPP) and beta-secretase 1 (hBACE1) proteins, to better understand the role of proteostatic or antioxidant pathways in AD. Ubiquitous expression of hAPP, hBACE1 in flies caused more severe degenerative phenotypes versus neuronal targeted expression; it also, suppressed proteasome activity, increased oxidative stress and significantly enhanced stress-sensitivity. Overexpression of Prosβ5 proteasomal subunit or Nrf2 transcription factor in AD Drosophila flies partially restored proteasomal activity but did not rescue hAPP, hBACE1 induced neurodegeneration. On the other hand, expression of autophagy-related Atg8a in AD flies decelerated neurodegeneration, increased stress-resistance, and improved flies' health-/lifespan. Overall, our data suggest that the noxious effects of amyloid-beta aggregates can be alleviated by enhanced autophagy, thus dietary or pharmacological interventions that target autophagy should be considered in AD therapeutic approaches.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
20
|
Cheimonidi C, Grivas IN, Sesti F, Kavrochorianou N, Gianniou DD, Taoufik E, Badounas F, Papassideri I, Rizzi F, Tsitsilonis OE, Haralambous S, Trougakos IP. Clusterin overexpression in mice exacerbates diabetic phenotypes but suppresses tumor progression in a mouse melanoma model. Aging (Albany NY) 2021; 13:6485-6505. [PMID: 33744871 PMCID: PMC7993736 DOI: 10.18632/aging.202788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/13/2021] [Indexed: 04/24/2023]
Abstract
Clusterin (CLU) is an ATP-independent small heat shock protein-like chaperone, which functions both intra- and extra-cellularly. Consequently, it has been functionally involved in several physiological (including aging), as well as in pathological conditions and most age-related diseases, e.g., cancer, neurodegeneration, and metabolic syndrome. To address CLU function at an in vivo model we established CLU transgenic (Tg) mice bearing ubiquitous or pancreas-targeted CLU overexpression (OE). Our downstream analyses in established Tg lines showed that ubiquitous or pancreas-targeted CLU OE in mice affected antioxidant, proteostatic and metabolic pathways. Targeted OE of CLU in the pancreas, which also resulted in CLU upregulation in the liver likely via systemic effects, increased basal glucose levels in the circulation and exacerbated diabetic phenotypes. Furthermore, by establishing a syngeneic melanoma mouse tumor model we found that ubiquitous CLU OE suppressed melanoma cells growth, indicating a likely tumor suppressor function in early phases of tumorigenesis. Our observations provide in vivo evidence corroborating the notion that CLU is a potential modulator of metabolic and/or proteostatic pathways playing an important role in diabetes and tumorigenesis.
Collapse
Affiliation(s)
- Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Ioannis N. Grivas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fabiola Sesti
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Nadia Kavrochorianou
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fotis Badounas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Federica Rizzi
- Dipartimento di Medicina e Chirurgia, Universita di Parma, Parma 43125, Italy
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Roma 00136, Italy
| | - Ourania E. Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sylva Haralambous
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| |
Collapse
|
21
|
Kastritis E, Laina A, Georgiopoulos G, Gavriatopoulou M, Papanagnou ED, Eleutherakis-Papaiakovou E, Fotiou D, Kanellias N, Dialoupi I, Makris N, Manios E, Migkou M, Roussou M, Kotsopoulou M, Stellos K, Terpos E, Trougakos IP, Stamatelopoulos K, Dimopoulos MA. Carfilzomib-induced endothelial dysfunction, recovery of proteasome activity, and prediction of cardiovascular complications: a prospective study. Leukemia 2021; 35:1418-1427. [PMID: 33589757 DOI: 10.1038/s41375-021-01141-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023]
Abstract
Carfilzomib (CFZ) improves survival in relapsed/refractory multiple myeloma but is associated with cardiovascular adverse events (CVAEs). We prospectively investigated the effect of CFZ on endothelial function and associations with CVAEs. Forty-eight patients treated with Kd (CFZ 20/56 mg/m2 and dexamethasone) underwent serial endothelial function evaluation, using brachial artery flow-mediated dilatation (FMD) and 26S proteasome activity (PrA) measurement in PBMCs; patients were followed until disease progression or cycle 6 for a median of 10 months. FMD and PrA decreased acutely after the first dose (p < 0.01) and FMD decreased at cycles 3 and 6 compared to baseline (p ≤ 0.05). FMD changes were associated with CFZ-induced PrA changes (p < 0.05) and lower PrA recovery during first cycle was associated with more prominent FMD decrease (p = 0.034 for group interaction). During treatment, 25 patients developed Grade ≥3 CVAEs. Low baseline FMD (HR 2.57 lowest vs. higher tertiles, 95% CI 1.081-6.1) was an independent predictor of CVAEs. During treatment, an acute FMD decrease >40% at the end of first cycle was also independently associated with CVAEs (HR = 3.91, 95% CI 1.29-11.83). Kd treatment impairs endothelial function which is associated with PrA inhibition and recovery. Both pre- and posttreatment FMD predicted CFZ-related CVAEs supporting its role as a possible cardiovascular toxicity biomarker.
Collapse
Affiliation(s)
- Efstathios Kastritis
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ageliki Laina
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Despina Fotiou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kanellias
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dialoupi
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Makris
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Manios
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Magdalini Migkou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Roussou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Kotsopoulou
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stellos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Kimon Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece. .,Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, United Kingdom.
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
22
|
Dong X, Zuo Y, Zhou M, Sun J, Xu P, Chen B. Bortezomib activation of mTORC1 pathway mediated by NOX2-drived reactive oxygen species results in apoptosis in primary dorsal root ganglion neurons. Exp Cell Res 2021; 400:112494. [PMID: 33515593 DOI: 10.1016/j.yexcr.2021.112494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Bortezomib (Bort), a chemotherapeutic agent, is widely used for the clinical treatment of cancers. However, Bort-induced peripheral neurotoxicity (BIPN) significantly restricts its clinical application, which is difficult to deal with since the underlying mechanisms of BIPN are unclear. Here, we showed that Bort activates mTORC1 pathway leading to dorsal root ganglion (DRG) neuronal apoptosis. Inhibition of mTORC1 with rapamycin or knockdown of raptor, regulatory-associated protein of mTORC1, with shRNA dramatically rescued the cells from Bort-caused apoptosis. In addition, we found that Bort-activated mTORC1 pathway was attributed to Bort elevation of reactive oxygen species (ROS). This is supported by the evidence that using ROS scavenger N-acetyl cysteine (NAC) significantly alleviated Bort-activated mTORC1 pathway. Furthermore, we revealed that upregulation of NOX2 contributed to Bort-elicited ROS overproduction, leading to mTORC1 pathway-dependent apoptosis in DRG neurons. Inhibition of NOX2 with apocynin remarkably diminished Bort-induced overgeneration of ROS, activation of mTORC1 pathway and apoptosis in the cells. Taken together, these results indicate that Bort activation of mTORC1 pathway mediated by NOX2-drived ROS leads to apoptotic death in DRG neurons. Our findings highlight that manipulation of intracellular ROS level or NOX2 or mTORC1 activity may be exploited for prevention of BIPN.
Collapse
Affiliation(s)
- Xiaoqing Dong
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Yifan Zuo
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Min Zhou
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Jingjing Sun
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Peipei Xu
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Bing Chen
- Department of Hematology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China; Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
23
|
Barili V, Boni C, Rossi M, Vecchi A, Zecca A, Penna A, Missale G, Ferrari C, Fisicaro P. Metabolic regulation of the HBV-specific T cell function. Antiviral Res 2020; 185:104989. [PMID: 33248194 DOI: 10.1016/j.antiviral.2020.104989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Chronically HBV infected subjects are more than 260 million worldwide; cirrhosis and liver cancer represent possible outcomes which affect around 700,000 patients per year. Both innate and adaptive immune responses are necessary for viral control and both have been shown to be defective in chronic patients. Metabolic remodeling is an essential process in T cell biology, particularly for T cell activation, differentiation and survival. Cellular metabolism relies on the conversion of nutrients into energy to support intracellular processes, and to generate fundamental intermediate components for cell proliferation and growth. Adaptive immune responses are the central mechanisms for the resolution of primary human infections leading to the activation of pathogen-specific B and T cell functions. In chronic HBV infection the anti-viral immune response fails to contain the virus and leads to persistent hepatic tissue damage which may finally result in liver cirrhosis and cancer. This T cell failure is associated with metabolic alterations suggesting that control of nutrient uptake and intracellular utilization as well as correct regulation of intracellular metabolic pathways are strategic for T cell differentiation during persistent chronic infections. This review will discuss some of the main features of the T cell metabolic processes which are relevant to the generation of an efficient antiviral response, with specific focus on their clinical relevance in chronic HBV infection in the perspective of possible strategies to correct deregulated metabolic pathways underlying T cell dysfunction of chronic HBV patients.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
24
|
Gioran A, Chondrogianni N. Mitochondria (cross)talk with proteostatic mechanisms: Focusing on ageing and neurodegenerative diseases. Mech Ageing Dev 2020; 190:111324. [DOI: 10.1016/j.mad.2020.111324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
|
25
|
Wang M, Ren J, Chen X, Liu J, Xu X, Li X, Zhao D, Sun L. 20(S)-ginsenoside Rg3 promotes myoblast differentiation and protects against myotube atrophy via regulation of the Akt/mTOR/FoxO3 pathway. Biochem Pharmacol 2020; 180:114145. [PMID: 32653593 DOI: 10.1016/j.bcp.2020.114145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/01/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
We previously found that 20(S)-ginsenoside Rg3 (S-Rg3) promotes myoblast differentiation via an unknown mechanism. Here we measured levels of myosin heavy chain (MHC) and myogenin, markers of myoblast differentiation, using Western blot analysis and immunofluorescence staining. Notably, S-Rg3 treatment of C2C12 myoblasts led to increased muscle differentiation and protection from muscle atrophy in a dexamethasone (DEX)-treated C2C12 myotube-based muscle atrophy model. This effect was likely caused by S-Rg3 treatment-induced promotion of Akt/mTOR phosphorylation and inhibition of FoxO3 nuclear transcription. Additionally, S-Rg3 treatment also led to increased fruit fly climbing distances (Drosophila melanogaster) and prevented muscle atrophy in aged fruit flies. Our study provides a mechanistic framework for understanding how S-Rg3 enhances myoblast differentiation and inhibits myotube atrophy through activation of the Akt/mTOR/FoxO3 signaling pathway, as demonstrated in vitro in C2C12 cells and in vivo in fruit flies.
Collapse
Affiliation(s)
- Manying Wang
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province 130021, PR China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China
| | - Jixiang Ren
- Center of Preventive Treatment of Diseases, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province 130021, PR China
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province 130021, PR China; Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China
| | - Jianzeng Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China
| | - Xiaohao Xu
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province 130021, PR China
| | - Xiangyan Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China; Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, PR China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province 130021, PR China; Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, PR China.
| |
Collapse
|
26
|
Hu L, Tian K, Zhang T, Fan CH, Zhou P, Zeng D, Zhao S, Li LS, Smith HS, Li J, Ran JH. Cyanate Induces Oxidative Stress Injury and Abnormal Lipid Metabolism in Liver through Nrf2/HO-1. Molecules 2019; 24:E3231. [PMID: 31491954 PMCID: PMC6767610 DOI: 10.3390/molecules24183231] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) is problem that has become one of the major issues affecting public health. Extensive clinical data suggests that the prevalence of hyperlipidemia in CKD patients is significantly higher than in the general population. Lipid metabolism disorders can damage the renal parenchyma and promote the occurrence of cardiovascular disease (CVD). Cyanate is a uremic toxin that has attracted widespread attention in recent years. Usually, 0.8% of the molar concentration of urea is converted into cyanate, while myeloperoxidase (MPO) catalyzes the oxidation of thiocyanate to produce cyanate at the site of inflammation during smoking, inflammation, or exposure to environmental pollution. One of the important physiological functions of cyanate is protein carbonylation, a non-enzymatic post-translational protein modification. Carbamylation reactions on proteins are capable of irreversibly changing protein structure and function, resulting in pathologic molecular and cellular responses. In addition, recent studies have shown that cyanate can directly damage vascular tissue by producing large amounts of reactive oxygen species (ROS). Oxidative stress leads to the disorder of liver lipid metabolism, which is also an important mechanism leading to cirrhosis and liver fibrosis. However, the influence of cyanate on liver has remained unclear. In this research, we explored the effects of cyanate on the oxidative stress injury and abnormal lipid metabolism in mice and HL-7702 cells. In results, cyanate induced hyperlipidemia and oxidative stress by influencing the content of total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), superoxide dismutase (SOD), catalase (CAT) in liver. Cyanate inhibited NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and the phosphorylation of adenosine 5'monophosphate-activated protein kinase (AMPK), activated the mTOR pathway. Oxidative stress on the cells reduced significantly by treating with TBHQ, an antioxidant, which is also an activator of Nrf2. The activity of Nrf2 was rehabilitated and phosphorylation of mTOR decreased. In conclusion, cyanate could induce oxidative stress damage and lipid deposition by inhibiting Nrf2/HO-1 pathway, which was rescued by inhibitor of Nrf2.
Collapse
Affiliation(s)
- Ling Hu
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Kuan Tian
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Tao Zhang
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Chun-Hua Fan
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Zhou
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Di Zeng
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Shuang Zhao
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Li-Sha Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Hendrea Shaniqua Smith
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| | - Jian-Hua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China.
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
27
|
Cercospora sp. as a source of anti-aging polyketides targeting 26S proteasome and scale-up production in submerged bioreactor. J Biotechnol 2019; 301:88-96. [PMID: 31152756 DOI: 10.1016/j.jbiotec.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/31/2022]
Abstract
From a large screening of microbial extracts for the discovery of proteasome modulating natural products, the fungal strain Cercospora sp. (CF-223709) was selected as the most promising for further investigation. Different liquid cultures of the strain were initially screened for their anti-oxidant activity (DPPH, ABTS) and for their cytotoxicity against the A2058, HepG2 and CCD25sk cell lines. A detailed chemical analysis and evaluation of the capacity to activate 26S-proteasome was followed for the most active extract. Three main polyketides were isolated and characterized by extensive analysis of NMR and HRMS spectra data as penialidine F (1), fulvic acid (2), and SB238569 (3). Fulvic acid showed the most significant anti-oxidant activity. Its IC50 value (8.16 μM) against the ABTS radical resulted 3-fold lower than the standard trolox. Fulvic acid also demonstrated a significant effect on proteasome by enhancing the chymotrypsin- and caspase-like activities of the 26S proteasome of human fibroblasts by 71.43% and 37.5% at 1 μM, respectively. Furthermore by scaling up the culture in a 30 L submerged bioreactor, Cercospora sp. produced up to 162.6 ± 1.3 mg of fulvic acid/L. Our findings suggest that CF-223709 can be a promising source of proteasome activating natural compounds.
Collapse
|
28
|
Affiliation(s)
- Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15784, Greece
| |
Collapse
|
29
|
Alterations in Organismal Physiology, Impaired Stress Resistance, and Accelerated Aging in Drosophila Flies Adapted to Multigenerational Proteome Instability. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7823285. [PMID: 31320986 PMCID: PMC6610734 DOI: 10.1155/2019/7823285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/17/2019] [Accepted: 02/19/2019] [Indexed: 12/31/2022]
Abstract
Being an assembly of highly sophisticated protein machines, cells depend heavily on proteostatic modules functionality and on adequate supply of energetic molecules for maintaining proteome stability. Yet, our understanding of the adaptations induced by multigenerational proteotoxic stress is limited. We report here that multigenerational (>80 generations) proteotoxic stress in OregonR flies induced by constant exposure to developmentally nonlethal doses of the proteasome inhibitor bortezomib (BTZ) (G80-BTZ flies) increased proteome instability and redox imbalance, reduced fecundity and body size, and caused neuromuscular defects; it also accelerated aging. G80-BTZ flies were mildly resistant to increased doses of BTZ and showed no age-related loss of proteasome activity; these adaptations correlated with sustained upregulation of proteostatic modules, which however occurred at the cost of minimal responses to increased BTZ doses and increased susceptibility to various types of additional proteotoxic stress, namely, autophagy inhibition or thermal stress. Multigenerational proteome instability and redox imbalance also caused metabolic reprogramming being evidenced by altered mitochondrial biogenesis and suppressed insulin/IGF-like signaling (IIS) in G80-BTZ flies. The toxic effects of multigenerational proteome instability could be partially mitigated by a low-protein diet that extended G80-BTZ flies' longevity. Overall, persistent proteotoxic stress triggers a highly conserved adaptive metabolic response mediated by the IIS pathway, which reallocates resources from growth and longevity to somatic preservation and stress tolerance. Yet, these trade-off adaptations occur at the cost of accelerated aging and/or reduced tolerance to additional stress, illustrating the limited buffering capacity of survival pathways.
Collapse
|
30
|
Gumeni S, Evangelakou Z, Tsakiri EN, Scorrano L, Trougakos IP. Functional wiring of proteostatic and mitostatic modules ensures transient organismal survival during imbalanced mitochondrial dynamics. Redox Biol 2019; 24:101219. [PMID: 31132524 PMCID: PMC6536731 DOI: 10.1016/j.redox.2019.101219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
Being an assembly of protein machines, cells depend on adequate supply of energetic molecules for retaining their homeodynamics. Consequently, mitochondria functionality is ensured by quality control systems and mitochondrial dynamics (fusion/fission). Similarly, proteome stability is maintained by the machineries of the proteostasis network. We report here that reduced mitochondrial fusion rates in Drosophila caused developmental lethality or if induced in the adult accelerated aging. Imbalanced mitochondrial dynamics were tolerable for various periods in young flies, where they caused oxidative stress and proteome instability that mobilized Nrf2 and foxo to upregulate cytoprotective antioxidant/proteostatic modules. Consistently, proteasome inhibition or Nrf2, foxo knock down in young flies exaggerated perturbed mitochondrial dynamics toxicity. Neither Nrf2 overexpression (with concomitant proteasome activation) nor Atg8a upregulation suppressed the deregulated mitochondrial dynamics toxicity, which was mildly mitigated by antioxidants. Thus, despite extensive functional wiring of mitostatic and antioxidant/proteostatic modules, sustained loss-of mitostasis exhausts adaptation responses triggering premature aging. Reduced mitochondrial fusion rates cause severe organismal toxicity and progeria. Perturbed mitostasis activates cytoprotective antioxidant and proteostatic modules. Nrf2 or Foxo KD exaggerates the imbalanced mitochondrial dynamics induced toxicity. Antioxidants mildly alleviate loss-of mitochondrial dynamics-mediated progeria.
Collapse
Affiliation(s)
- Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece
| | - Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine and Department of Biology, University of Padua, Padova, 35129, Italy
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Greece.
| |
Collapse
|
31
|
Evangelakou Z, Manola M, Gumeni S, Trougakos IP. Nutrigenomics as a tool to study the impact of diet on aging and age-related diseases: the Drosophila approach. GENES & NUTRITION 2019; 14:12. [PMID: 31073342 PMCID: PMC6498619 DOI: 10.1186/s12263-019-0638-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023]
Abstract
Aging is a complex phenomenon caused by the time-dependent loss of cellular homeodynamics and consequently of physiological organismal functions. This process is affected by both genetic and environmental (e.g., diet) factors, as well as by their constant interaction. Consistently, deregulation of nutrient sensing and signaling pathways is considered a hallmark of aging. Nutrigenomics is an emerging scientific discipline that studies changes induced by diet on the genome and thus it considers the intersection of three topics, namely health, diet, and genomics. Model organisms, such as the fruit fly Drosophila melanogaster, have been successfully used for in vivo modeling of higher metazoans aging and for nutrigenomic studies. Drosophila is a well-studied organism with sophisticated genetics and a fully annotated sequenced genome, in which ~ 75% of human disease-related genes have functional orthologs. Also, flies have organs/tissues that perform the equivalent functions of most mammalian organs, while discrete clusters of cells maintain insect carbohydrate homeostasis in a way similar to pancreatic cells. Herein, we discuss the mechanistic connections between nutrition and aging in Drosophila, and how this model organism can be used to study the effect of different diets (including natural products and/or their derivatives) on higher metazoans longevity.
Collapse
Affiliation(s)
- Zoi Evangelakou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Maria Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|