1
|
Xie J, Liu H, Yang C, Shen W, Zhang J. VANGL2 downregulates HINT1 to inhibit the ATM-p53 pathway and promote cisplatin resistance in small cell lung cancer. Cell Death Discov 2025; 11:153. [PMID: 40199845 PMCID: PMC11979007 DOI: 10.1038/s41420-025-02424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 04/10/2025] Open
Abstract
Cisplatin is a first-line drug for the treatment of small cell lung cancer (SCLC). Although the majority of patients with SCLC initially respond to cisplatin therapy, cisplatin resistance readily develops, leading to tumor progression. Therefore, this study aims to elucidate the mechanisms underlying cisplatin resistance in SCLC. We found that VANGL2 is a poor prognostic factor and promotes cisplatin resistance in SCLC. Mechanistically, in cisplatin-resistant cells, VANGL2 overexpression leads to the autophagic degradation of HINT1. This reduction in HINT1 expression further reduces the phosphorylation of ATM and p53 induced by cisplatin-mediated DNA damage. The decreased phosphorylation of p53 inhibits downstream apoptotic pathways, thereby reducing cisplatin-induced apoptosis. In conclusion, VANGL2 regulates the ATM-p53 pathway-mediated apoptotic response of SCLC to cisplatin by downregulating HINT1, thereby promoting cisplatin resistance. Thus, VANGL2 may serve as a potential therapeutic target for reversing cisplatin resistance in SCLC patients.
Collapse
Affiliation(s)
- Jiayi Xie
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huiying Liu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunqian Yang
- School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Ahmad I, Zhang J, Li R, Su W, Liu W, Wu Y, Khan I, Liu X, Li LF, Li S, Zheng YH. Murine Leukemia Virus GlycoGag Antagonizes SERINC5 via ER-phagy Receptor RETREG1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641798. [PMID: 40093084 PMCID: PMC11908239 DOI: 10.1101/2025.03.06.641798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Serine incorporator 5 (SERINC5) is a host restriction factor that targets certain enveloped viruses, including human immunodeficiency virus type 1 (HIV-1) and murine leukemia virus (MLV). It integrates into the viral envelope from the cell surface, inhibiting viral entry. SERINC5 is transported to the cell surface via polyubiquitination, while a single K130R mutation retains it in the cytoplasm. Both HIV-1 Nef and MLV glycoGag proteins antagonize SERINC5 by reducing its expression in producer cells. Here, we report that MLV glycoGag employs selective autophagy to downregulate SERINC5, demonstrating a more potent mechanism for decreasing its cell surface expression. Although glycoGag is a type II integral membrane protein, it primarily localizes to the cytoplasm and undergoes rapid proteasomal degradation. Employing the K130R mutant, we show that Nef, primarily associated with the plasma membrane, downregulates SERINC5 only after it has trafficked to the cell surface, whereas glycoGag can reduce its expression before reaching the plasma membrane while still in the cytoplasm. Nonetheless, an interaction with SERINC5 stabilizes and recruits glycoGag to the plasma membrane, enabling it to downregulate SERINC5 from the cell surface. Through affinity-purified mass spectrometry analysis combined with CRISPR/Cas9 knockouts, we find that glycoGag's activity depends on reticulophagy regulator 1 (RETREG1), an ER-phagy receptor. Further knockout experiments of critical autophagy genes demonstrate that glycoGag downregulates cytoplasmic SERINC5 via micro-ER-phagy. These findings provide crucial new insights into the ongoing arms race between retroviruses and SERINC5 during infection.
Collapse
Affiliation(s)
- Iqbal Ahmad
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Rongrong Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wenqiang Su
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Weiqi Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - You Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ilyas Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaomeng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lian-Feng Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Sunan Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yong-Hui Zheng
- Department of Microbiology and Immunology, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Schimmich C, Vabret A, Zientara S, Valle-Casuso JC. Equine Infectious Anemia Virus Cellular Partners Along the Viral Cycle. Viruses 2024; 17:5. [PMID: 39861793 PMCID: PMC11769393 DOI: 10.3390/v17010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/21/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
Equine infectious anemia virus (EIAV) is the simplest described lentivirus within the Retroviridae family, related to the human immunodeficiency viruses (HIV-1 and HIV-2). There is an important interplay between host cells and viruses. Viruses need to hijack cellular proteins for their viral cycle completion and some cellular proteins are antiviral agents interfering with viral replication. HIV cellular partners have been extensively studied and described, with a special attention to host proteins able to inhibit specific steps of the viral cycle, called restriction factors. Viruses develop countermeasures against these restriction factors. Here, we aim to describe host cellular protein partners of EIAV viral replication, being proviral or antiviral. A comprehensive vision of the interactions between the virus and specific host's proteins can help with the discovery of new targets for the design of therapeutics. Studies performed on HIV-1 can provide insights into the functioning of EIAV, as well as differences, as both types of virus research can benefit from each other.
Collapse
Affiliation(s)
- Cécile Schimmich
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
| | - Astrid Vabret
- Department of Virology, University of Caen Normandy, Dynamicure INSERM UMR 1311, Centre Hospitalo Universitaire (CHU) Caen, 14000 Caen, France;
| | - Stéphan Zientara
- UMR VIROLOGIE, INRAE, École Nationale Vétérinaire d’Alfort, ANSES Laboratoire de Santé Animale, Université Paris-Est, 94700 Maisons-Alfort, France;
| | - José Carlos Valle-Casuso
- ANSES Animal Health Laboratory, PhEED Unit, 14430 Goustranville, France;
- Mixed Technological Unit “Equine Health and Welfare—Organisation and Traceability of the Equine Industry” (UMT SABOT), 14430 Goustranville, France
| |
Collapse
|
4
|
Feng C, Huang C, Shi Y, Gao X, Lu Z, Tang R, Qi Q, Shen Y, Li G, Shi Y, Liu P, Guo X. Preparation of polyclonal antibodies to the chicken Beclin1 protein and its application in the detection of nephropathogenic infectious bronchitis virus. Int J Biol Macromol 2023; 253:127635. [PMID: 37884239 DOI: 10.1016/j.ijbiomac.2023.127635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/30/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Beclin1, also known as ATG6, has been shown to be closely related to coronavirus, however, the link between Beclin1 and nephropathogenic infectious bronchitis virus (NIBV) has been poorly investigated and there are no available antibodies specifically targeting the chicken Beclin1 protein. The study aimed to prepare and assay a polyclonal antibody to Beclin1, enabling a deeper understanding of the mechanism of action of Beclin1 in NIBV. In this study, we amplified the chicken Beclin1 target gene and constructed a recombinant plasmid using prokaryotic expression techniques, then obtained the recombinant target protein by induced expression. Finally, the serum is obtained by immunizing rabbits with the purified and concentrated protein. The results show that the antiserum potency of the ELISA assay was >1:204800. By western blotting and immunofluorescence, the antibodies we prepared specifically recognized the chicken Beclin1 protein, which is mainly found in the nucleus of trachea, lung, kidney, spleen and fabricant cells. NIBV infection significantly decreased the expression of Beclin1 in the trachea, but increased in others. We have successfully prepared specific rabbit anti-chicken Beclin1 polyclonal antibodies, and detected changes in tissues of diseased chickens infected with NIBV, laying the foundation for further studies on the role of Beclin1 in avian diseases.
Collapse
Affiliation(s)
- Chenlu Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zhihua Lu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ruoyun Tang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qiurong Qi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yufan Shen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yun Shi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
5
|
Wang XF, Zhang X, Ma W, Li J, Wang X. Host cell restriction factors of equine infectious anemia virus. Virol Sin 2023; 38:485-496. [PMID: 37419416 PMCID: PMC10436108 DOI: 10.1016/j.virs.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an animal model for HIV/AIDS research. An attenuated EIAV vaccine, which was successfully developed in the 1970s by classical serial passage techniques, is the first and only lentivirus vaccine that has been widely used to date. Restriction factors are cellular proteins that provide an early line of defense against viral replication and spread by interfering with various critical steps in the viral replication cycle. However, viruses have evolved specific mechanisms to overcome these host barriers through adaptation. The battle between the viruses and restriction factors is actually a natural part of the viral replication process, which has been well studied in human immunodeficiency virus type 1 (HIV-1). EIAV has the simplest genome composition of all lentiviruses, making it an intriguing subject for understanding how the virus employs its limited viral proteins to overcome restriction factors. In this review, we summarize the current literature on the interactions between equine restriction factors and EIAV. The features of equine restriction factors and the mechanisms by which the EIAV counteract the restriction suggest that lentiviruses employ diverse strategies to counteract innate immune restrictions. In addition, we present our insights on whether restriction factors induce alterations in the phenotype of the attenuated EIAV vaccine.
Collapse
Affiliation(s)
- Xue-Feng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiangmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Weiwei Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiwei Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xiaojun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
6
|
Identification of a Novel Post-transcriptional Transactivator from the Equine Infectious Anemia Virus. J Virol 2022; 96:e0121022. [PMID: 36448796 PMCID: PMC9769392 DOI: 10.1128/jvi.01210-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
All lentiviruses encode a post-transcriptional transactivator, Rev, which mediates the export of viral mRNA from the nucleus to the cytoplasm and which is required for viral gene expression and viral replication. In the current study, we demonstrate that equine infectious anemia virus (EIAV), an equine lentivirus, encodes a second post-transcriptional transactivator that we designate Grev. Grev is encoded by a novel transcript with a single splicing event that was identified using reverse transcription-PCR (RT-PCR) and RNA-seq in EIAV-infected horse tissues and cells. Grev is about 18 kDa in size, comprises the first 18 amino acids (aa) of Gag protein together with the last 82 aa of Rev, and was detected in EIAV-infected cells. Similar to Rev, Grev is localized to the nucleus, and both are able to mediate the expression of Mat (a recently identified viral protein of unknown function from EIAV), but Rev can mediate the expression of EIAV Gag/Pol, while Grev cannot. We also demonstrate that Grev, similar to Rev, specifically binds to rev-responsive element 2 (RRE-2, located in the first exon of mat mRNAs) to promote nuclear export of mat mRNA via the chromosome region maintenance 1 (CRM1) pathway. However, unlike Rev, whose function depends on its multimerization, we could not detect multimerization of Grev using coimmunoprecipitation (co-IP) or bimolecular fluorescence complementation (BiFC) assays. Together, these data suggest that EIAV encodes two post-transcriptional transactivators, Rev and Grev, with similar, but not identical, functions. IMPORTANCE Nuclear export of viral transcripts is a crucial step for viral gene expression and viral replication in lentiviruses, and this export is regulated by a post-transcriptional transactivator, Rev, that is shared by all lentiviruses. Here, we report that the equine infectious anemia virus (EIAV) encodes a novel viral protein, Grev, and demonstrated that Grev, like Rev, mediates the expression of the viral protein Mat by binding to the first exon of mat mRNAs via the chromosome region maintenance 1 (CRM1) pathway. Grev is encoded by a single-spliced transcript containing two exons, whereas Rev is encoded by a multiple-spliced transcript containing four exons. Moreover, Rev is able to mediate EIAV Gag/Pol expression by binding to rev-responsive element (RRE) located within the Env-coding region, while Grev cannot. Therefore, the present study demonstrates that EIAV encodes two post-transcriptional regulators, Grev and Rev, suggesting that post-transcriptional regulation patterns in lentivirus are diverse and complex.
Collapse
|
7
|
A Novel, Fully Spliced, Accessory Gene in Equine Lentivirus with Distinct Rev-Responsive Element. J Virol 2022; 96:e0098622. [PMID: 36069548 PMCID: PMC9517694 DOI: 10.1128/jvi.00986-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All lentiviruses encode the accessory protein Rev, whose main biological function is to mediate the nuclear export of unspliced and incompletely spliced viral transcripts by binding to a viral cis-acting element (termed the Rev-responsive element, RRE) within the env-encoding region. Equine infectious anemia virus (EIAV) is a member of the lentivirus genus in the Retroviridae family and is considered an important model for the study of lentivirus pathogenesis. Here, we identified a novel transcript from the EIAV genome that encoded a viral protein, named Mat, with an unknown function. The transcript mat was fully spliced and comprised parts of the coding regions of MA and TM. Interestingly, the expression of Mat depended on Rev and the chromosome region maintenance 1 (CRM1) pathway. Rev could specifically bind to Mat mRNA to promote its nuclear export. We further identified that the first exon of Mat mRNA, which was located within the Gag-encoding region, acted as an unreported RRE. Altogether, we identified a novel fully spliced transcript mat with an unusual RRE, which interacted with Rev for nuclear export through the CRM1 pathway. These findings updated the EIAV genome structure, highlighted the diversification of posttranscriptional regulation patterns in EIAV, and may help to expand the understanding of gene transcription and expression of lentivirus. IMPORTANCE In lentiviruses, the nuclear export of viral transcripts is an important step in controlling viral gene expression. Generally, the unspliced and incompletely spliced transcripts are exported via the CRM1-dependent export pathway in a process mediated by the viral Rev protein by binding to the Rev-responsive element (RRE) located within the Env-coding region. However, the completely spliced transcripts are exported via an endogenous cellular pathway, which was Rev independent. Here, we identified a novel fully spliced transcript from EIAV and demonstrated that it encoded a viral protein, termed Mat. Interestingly, we determined that the expression of Mat depended on Rev and identified that the first exon of Mat mRNA could specifically bind to Rev and be exported to the cytoplasm, which suggested that the first exon of Mat mRNA was a second RRE of EIAV. These findings provided important insights into the Rev-dependent nuclear export of completely spliced transcripts in lentiviruses.
Collapse
|
8
|
Wang Y, Ma G, Wang XF, Na L, Guo X, Zhang J, Liu C, Du C, Qi T, Lin Y, Wang X. Keap1 recognizes EIAV early accessory protein Rev to promote antiviral defense. PLoS Pathog 2022; 18:e1009986. [PMID: 35139135 PMCID: PMC8863222 DOI: 10.1371/journal.ppat.1009986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/22/2022] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
The Nrf2/Keap1 axis plays a complex role in viral susceptibility, virus-associated inflammation and immune regulation in host cells. However, whether or how the Nrf2/Keap1 axis is involved in the interactions between equine lentiviruses and their hosts remains unclear. Here, we demonstrate that the Nrf2/Keap1 axis was activated during EIAV infection. Mechanistically, EIAV-Rev competitively binds to Keap1 and releases Nrf2 from Keap1-mediated repression, leading to the accumulation of Nrf2 in the nucleus and promoting Nrf2 responsive genes transcription. Subsequently, we demonstrated that the Nrf2/Keap1 axis represses EIAV replication via two independent molecular mechanisms: directly increasing antioxidant enzymes to promote effective cellular resistance against EIAV infection, and repression of Rev-mediated RNA transport through direct interaction between Keap1 and Rev. Together, these data suggest that activation of the Nrf2/Keap1 axis mediates a passive defensive response to combat EIAV infection. The Nrf2/Keap1 axis could be a potential target for developing strategies for combating EIAV infection.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guanqin Ma
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xing Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiaqi Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ting Qi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
SAMHD1 … and Viral Ways around It. Viruses 2021; 13:v13030395. [PMID: 33801276 PMCID: PMC7999308 DOI: 10.3390/v13030395] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/19/2022] Open
Abstract
The SAM and HD domain-containing protein 1 (SAMHD1) is a dNTP triphosphohydrolase that plays a crucial role for a variety of different cellular functions. Besides balancing intracellular dNTP concentrations, facilitating DNA damage repair, and dampening excessive immune responses, SAMHD1 has been shown to act as a major restriction factor against various virus species. In addition to its well-described activity against retroviruses such as HIV-1, SAMHD1 has been identified to reduce the infectivity of different DNA viruses such as the herpesviruses CMV and EBV, the poxvirus VACV, or the hepadnavirus HBV. While some viruses are efficiently restricted by SAMHD1, others have developed evasion mechanisms that antagonize the antiviral activity of SAMHD1. Within this review, we summarize the different cellular functions of SAMHD1 and highlight the countermeasures viruses have evolved to neutralize the restriction factor SAMHD1.
Collapse
|