1
|
Phongsuwichetsak C, Suksrichavalit T, Chatupheeraphat C, Eiamphungporn W, Yainoy S, Yamkamon V. Diospyros rhodocalyx Kurz induces mitochondrial-mediated apoptosis via BAX, Bcl-2, and caspase-3 pathways in LNCaP human prostate cancer cell line. PeerJ 2024; 12:e17637. [PMID: 38966207 PMCID: PMC11223595 DOI: 10.7717/peerj.17637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the causes of death in men worldwide. Although treatment strategies have been developed, the recurrence of the disease and consequential side effects remain an essential concern. Diospyros rhodocalyx Kurz, a traditional Thai medicine, exhibits diverse therapeutic properties, including anti-cancer activity. However, its anti-cancer activity against prostate cancer has not been thoroughly explored. This study aims to evaluate the anti-cancer activity and underlying mechanisms of the ethyl acetate extract of D. rhodocalyx Kurz (EADR) related to apoptosis induction in the LNCaP human prostate cancer cell line. Methods Ethyl acetate was employed to extract the dried bark of D. rhodocalyx Kurz. The cytotoxicity of EADR on both LNCaP and WPMY-1 cells (normal human prostatic myofibroblast cell line) was evaluated using MTS assay. The effect of EADR on the cell cycle, apoptosis induction, and alteration in mitochondrial membrane potential (MMP) was assessed by the staining with propidium iodide (PI), Annexin V-FITC/PI, and JC-1 dye, respectively. Subsequent analysis was conducted using flow cytometry. The expression of cleaved caspase-3, BAX, and Bcl-2 was examined by Western blotting. The phytochemical profiling of the EADR was performed using gas chromatography-mass spectrometry (GC-MS). Results EADR exhibited a dose-dependent manner cytotoxic effect on LNCaP cells, with IC50 values of 15.43 and 12.35 µg/mL after 24 and 48 h, respectively. Although it also exhibited a cytotoxic effect on WPMY-1 cells, the effect was comparatively lower, with the IC50 values of 34.61 and 19.93 µg/mL after 24 and 48 h of exposure, respectively. Cell cycle analysis demonstrated that EADR did not induce cell cycle arrest in either LNCaP or WPMY-1 cells. However, it significantly increased the sub-G1 population in LNCaP cells, indicating a potential induction of apoptosis. The Annexin V-FITC/PI staining indicated that EADR significantly induced apoptosis in LNCaP cells. Subsequent investigation into the underlying mechanism of EADR-induced apoptosis revealed a reduction in MMP as evidenced by JC-1 staining. Moreover, Western blotting demonstrated that EADR treatment resulted in the upregulation of BAX, downregulation of BCL-2, and elevation of caspase-3 cleavage in LNCaP cells. Notably, the epilupeol was a prominent compound in EADR as identified by GC-MS. Conclusion The EADR exhibits anti-cancer activity against the LNCaP human prostate cancer cell line by inducing cytotoxicity and apoptosis. Our findings suggest that EADR promotes apoptosis by upregulating pro-apoptotic BAX, whereas downregulation of anti-apoptotic Bcl-2 results in the reduction of MMP and the activation of caspase-3. Of particular interest is the presence of epilupeol, a major compound identified in EADR, which may hold promise as a candidate for the development of therapeutic agents for prostate cancer.
Collapse
Affiliation(s)
- Chayisara Phongsuwichetsak
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thummaruk Suksrichavalit
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Information, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Trakulsrichai S, Satsue N, Tansuwannarat P, Krongvorakul J, Sueajai J, Santanirand P, Wananukul W. Poisoning from Ingestion of Fungus-Infected Cicada Nymphs: Characteristics and Clinical Outcomes of Patients in Thailand. Toxins (Basel) 2023; 16:22. [PMID: 38251239 PMCID: PMC10818818 DOI: 10.3390/toxins16010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The current data regarding poisoning associated with ingestion of fungus-infected cicada nymphs are limited. We performed a retrospective cohort study of patients who ingested fungus-infected cicada nymphs and were referred to the Ramathibodi Poison Center for consultation from June 2010 to June 2022. Thirty-nine patients were included for analysis. Most were men (53.8%). Mean age was 40.2 ± 15.0 years. All nymphs were ingested as a health/food supplement. Thirty-one patients (79.5%) reported gastrointestinal symptoms. Median time from ingestion to symptom onset was 5 h. Twenty-nine patients (74.4%) reported neurological symptoms, including tremor, myoclonus, muscle rigidity, nystagmus/ocular clonus, drowsiness, dysarthria, seizure, and confusion. Some complained of dizziness, urinary retention, and jaw stiffness. Most patients (94.9%) were admitted to the hospital. Median hospital stay was 3 days. Ibotenic acid was detected in the blood and urine samples of one patient. All received supportive care. Four patients developed infectious complications. No deaths occurred. Consuming fungus-infected cicada nymphs may cause poisoning in humans. Gastrointestinal and neurological symptoms were common. Ibotenic acid might be the underlying cause. The main treatment is supportive care and appropriate management of complications. Education of the general public is advocated to prevent the incidence of this type of poisoning.
Collapse
Affiliation(s)
- Satariya Trakulsrichai
- Department of Emergency Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.S.); (P.T.); (W.W.)
| | - Nattapon Satsue
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.S.); (P.T.); (W.W.)
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Phantakan Tansuwannarat
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.S.); (P.T.); (W.W.)
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Jatupon Krongvorakul
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (J.K.); (J.S.); (P.S.)
| | - Jetjamnong Sueajai
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (J.K.); (J.S.); (P.S.)
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (J.K.); (J.S.); (P.S.)
| | - Winai Wananukul
- Ramathibodi Poison Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.S.); (P.T.); (W.W.)
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Grujić-Milanović J, Rajković J, Milanović S, Jaćević V, Miloradović Z, Nežić L, Novaković R. Natural Substances vs. Approved Drugs in the Treatment of Main Cardiovascular Disorders-Is There a Breakthrough? Antioxidants (Basel) 2023; 12:2088. [PMID: 38136208 PMCID: PMC10740850 DOI: 10.3390/antiox12122088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases with a very high rate of morbidity and mortality. The clinical presentation of CVDs can vary from asymptomatic to classic symptoms such as chest pain in patients with myocardial infarction. Current therapeutics for CVDs mainly target disease symptoms. The most common CVDs are coronary artery disease, acute myocardial infarction, atrial fibrillation, chronic heart failure, arterial hypertension, and valvular heart disease. In their treatment, conventional therapies and pharmacological therapies are used. However, the use of herbal medicines in the therapy of these diseases has also been reported in the literature, resulting in a need for critical evaluation of advances related to their use. Therefore, we carried out a narrative review of pharmacological and herbal therapeutic effects reported for these diseases. Data for this comprehensive review were obtained from electronic databases such as MedLine, PubMed, Web of Science, Scopus, and Google Scholar. Conventional therapy requires an individual approach to the patients, as when patients do not respond well, this often causes allergic effects or various other unwanted effects. Nowadays, medicinal plants as therapeutics are frequently used in different parts of the world. Preclinical/clinical pharmacology studies have confirmed that some bioactive compounds may have beneficial therapeutic effects in some common CVDs. The natural products analyzed in this review are promising phytochemicals for adjuvant and complementary drug candidates in CVDs pharmacotherapy, and some of them have already been approved by the FDA. There are insufficient clinical studies to compare the effectiveness of natural products compared to approved therapeutics for the treatment of CVDs. Further long-term studies are needed to accelerate the potential of using natural products for these diseases. Despite this undoubted beneficence on CVDs, there are no strong breakthroughs supporting the implementation of natural products in clinical practice. Nevertheless, they are promising agents in the supplementation and co-therapy of CVDs.
Collapse
Affiliation(s)
- Jelica Grujić-Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Jovana Rajković
- Institute for Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia
| | - Sladjan Milanović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department for Biomechanics, Biomedical Engineering and Physics of Complex Systems, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Vesna Jaćević
- Department for Experimental Toxicology and Pharmacology, National Poison Control Centre, Military Medical Academy, 11 000 Belgrade, Serbia;
- Medical Faculty of the Military Medical Academy, University of Defense, 11 000 Belgrade, Serbia
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 500 002 Hradec Kralove, Czech Republic
| | - Zoran Miloradović
- Institute for Medical Research, National Institute of the Republic of Serbia, Department of Cardiovascular Research, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Radmila Novaković
- Institute of Molecular Genetics and Genetic Engineering, Center for Genome Sequencing and Bioinformatics, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
4
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
5
|
Research Progress on Natural Products’ Therapeutic Effects on Atrial Fibrillation by Regulating Ion Channels. Cardiovasc Ther 2022; 2022:4559809. [PMID: 35387267 PMCID: PMC8964196 DOI: 10.1155/2022/4559809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 11/18/2022] Open
Abstract
Antiarrhythmic drugs (AADs) have a therapeutic effect on atrial fibrillation (AF) by regulating the function of ion channels. However, several adverse effects and high recurrence rates after drug withdrawal seriously affect patients’ medication compliance and clinical prognosis. Thus, safer and more effective drugs are urgently needed. Active components extracted from natural products are potential choices for AF therapy. Natural products like Panax notoginseng (Burk.) F.H. Chen, Sophora flavescens Ait., Stephania tetrandra S. Moore., Pueraria lobata (Willd.) Ohwi var. thomsonii (Benth.) Vaniot der Maesen., and Coptis chinensis Franch. have a long history in the treatment of arrhythmia, myocardial infarction, stroke, and heart failure in China. Based on the classification of chemical structures, this article discussed the natural product components’ therapeutic effects on atrial fibrillation by regulating ion channels, connexins, and expression of related genes, in order to provide a reference for development of therapeutic drugs for atrial fibrillation.
Collapse
|
6
|
Somwong P, Theanphong O. Quantitative analysis of triterpene lupeol and anti-inflammatory potential of the extracts of traditional pain-relieving medicinal plants Derris scandens, Albizia procera, and Diospyros rhodocalyx. J Adv Pharm Technol Res 2021; 12:147-151. [PMID: 34159145 PMCID: PMC8177155 DOI: 10.4103/japtr.japtr_13_21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Derris scandens, Albizia procera, and Diospyros rhodocalyx have traditionally been used as herbal remedies for pain relief in Thailand. The ethanolic extracts of these plants obtained by Soxhlet extraction were analyzed by the developed high-performance liquid chromatography-diode-array detection method. Lupeol, the anti-inflammatory triterpene, was selected as a chemical marker for this investigation. All extracts together with that compound were further evaluated for their potential on anti-inflammatory activity using 5-lipoxygenase inhibition assay. Lupeol in each extract was quantified and expressed in the range of 21.44 ± 0.89–40.72 ± 0.40 mg per 100 g of crude drug and the enzyme inhibitory activity of all tested extracts presented as half-maximal inhibitory concentration values ranged between 63.71 ± 2.09 and 91.09 ± 1.40 μg/mL. This study shows that the developed analytical method is effective for analyzing triterpene lupeol in these plants and also reveals the relationship between a lupeol content and the anti-inflammatory effect.
Collapse
Affiliation(s)
- Pathom Somwong
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Orawan Theanphong
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| |
Collapse
|