1
|
Chen J, Zhang Y, Jiang C, Chen S, Zhao Y, Gao X, Guo X, Hu G, Liu P, Jin H, Zhang Y, Omar SM, Li L, Wan G, Liu P. Dichlorvos poisoning caused chicken cerebellar autophagy and changes of Caecal microflora. Poult Sci 2025; 104:104939. [PMID: 40068572 PMCID: PMC11932683 DOI: 10.1016/j.psj.2025.104939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
In order to explore the effects of acute dichlorvos exposure on cerebellar autophagy and cecal microbes in broilers and to analyze the relationship between autophagy-related genes and cecal microbes. Broilers were randomly divided into three groups (with 16 broilers in each group)and respectively given distilled water and dichlorvos (2.48 mg / kg, 11.3 mg / kg). The cecal contents and cerebellum samples were collected after poisoning symptoms of broilers, and the antioxidant indexes such as SOD and CAT in cerebellum were detected. Hematoxylin-eosin (HE) staining of cerebellum and cecum, and immunofluorescence sections of cerebellum LC3 were made. RT-PCR and western blot were used to detect the expression of oxidative stress and autophagy-related genes in cerebellar tissue. The cecal contents were analyzed by 16S rRNA high-throughput sequencing, and then the correlation between the expression of autophagy-related genes and the abundance of intestinal microbes was analyzed. It was concluded that dichlorvos exposure destroyed the normal morphological structure of the cerebellum and cecum in broilers, which induced oxidative stress and autophagy in the cerebellum of broilers, reduced the diversity of cecal microorganisms, and destroyed the steady state of the cecal microbial structure. In addition, The changes of mRNA expression of autophagy-related genes is related to some specific bacteria. In summary, this study found that dichlorone exposure can cause cerebellar oxidative stress and autophagy, and the mechanism of cerebellar injury in broilers is linked to cecal microbiota changes, potentially offering a new direction for researching dichlorone's pathogenic mechanism.
Collapse
Affiliation(s)
- Juan Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yun Zhang
- Huaihua City Maternal and Child Health Care Hospital, Huaihua, Hunan 418000, PR China
| | - Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shupeng Chen
- Jiangxi Agricultural Engineering Vocational college, Zhangshu, Jiangxi 331200, PR China
| | - Yulan Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Huibo Jin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Salma Mbarouk Omar
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Gen Wan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Lorke DE, Oz M. A review on oxidative stress in organophosphate-induced neurotoxicity. Int J Biochem Cell Biol 2025; 180:106735. [PMID: 39855621 DOI: 10.1016/j.biocel.2025.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Acetylcholinesterase inhibition, the principal mechanism of acute organophosphorus compound toxicity, cannot explain neuropsychiatric symptoms occurring after exposure to low organophosphate concentrations causing no cholinergic symptoms. Organophosphate-triggered oxidative stress has increasingly come into focus, occurring when the action of reactive oxygen species, generated from free radicals, is not compensated by antioxidant free radical scavengers. Being nucleophilic, organophosphates can easily accept an electron, thereby generating free radicals. Organophosphates inhibit the antioxidant paraoxonase, and reactive oxygen species are produced during organophosphate metabolism. Organophosphates disrupt the function of mitochondria, the principal source of free radicals. Organophosphates also induce neuroinflammation, which generates reactive oxygen species, and reactive oxygen species in turn stimulate neuroinflammation. Markers of reactive oxygen species are elevated in vitro and in vivo after exposure to organophosphates and in individuals professionally exposed to organophosphates. This most probably contributes to the pathogenesis of the intermediate syndrome, chronic organophosphate-induced neuropsychiatric disorders and neurodegeneration occurring in patients after organophosphate exposure. Evidence for beneficial effects of antioxidants in organophosphate poisoning is discussed.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, United States; Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| |
Collapse
|
3
|
Mohammed SS, Zaaqoq A, Talaat S, Abdelkader SI. A randomized, clinical trial of intravenous N-acetylcysteine as an antioxidant therapy in acute organophosphorus pesticide poisoning. Toxicol Res (Camb) 2025; 14:tfae234. [PMID: 39790357 PMCID: PMC11707534 DOI: 10.1093/toxres/tfae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
The incidence of acute organophosphate (OP) poisoning has steadily increased in developing countries. Many studies showed that oxidative stress could have a significant role in its mechanism. The current study aimed to evaluate the role of N acetylcysteine (NAC) as an antioxidant in acute OP poisoned. A randomized, controlled, parallel-group trial was conducted in the period from the beginning of January 2022 to the end of June 2022. The study included 56 acute OP poisoned patients admitted to the intensive care unit (ICU) at the Poison Control Center of Ain Shams University Hospitals within 6 h after the exposure. The patients were randomly allocated in two equal groups; group (A): received the standard treatment plus NAC in a total dose of 300 mg/kg administered intravenously (IV) while group (B) received the standard treatment. Then both groups were compared as regards clinical parameters, laboratory investigations, ECG, and outcomes. Baseline parameters were comparable between the groups. However, NAC treatment significantly elevated concentrations of both serum catalase and glutathione peroxidase levels at 24 h, it did not significantly affect the total dose of atropine required, duration of atropine and oximes treatment or need for mechanical ventilation, and length of hospital stay. Mortality was lower in the NAC group (2 out of 28) than the standard treatment-only group (5 out of 28) but the difference was not statistically significant. This trial found that NAC improved antioxidant enzyme levels including serum CAT and GPX but did not affect clinically relevant outcomes.
Collapse
Affiliation(s)
- Sarah S Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 1181, Egypt
| | - Ayman Zaaqoq
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 1181, Egypt
| | - Shimaa Talaat
- Biochemistry Department, Poison Control Center, Ain Shams University, Abbassia Cairo 1181, Egypt
| | - Salma I Abdelkader
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo 1181, Egypt
| |
Collapse
|
4
|
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int J Mol Sci 2024; 25:12248. [PMID: 39596313 PMCID: PMC11594717 DOI: 10.3390/ijms252212248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary neurotoxicity induced by severe organophosphorus (OP) poisoning, including paraoxon (POX), is associated with cognitive impairments in survivors, who, despite receiving appropriate emergency treatments, may still experience lasting neurological deficits. Thus, the present study provides a survival mouse model of acute and severe POX poisoning to examine secondary neurotoxicity. Swiss CD-1 male mice were injected with POX (4 mg/kg, s.c.) followed by atropine (4 mg/kg, i.p.), pralidoxime (2-PAM; Pyridine-2-aldoxime methochloride) (25 mg/kg, i.p., twice, 1 h apart) and diazepam (5 mg/kg, i.p.), resulting in a survival rate >90% and Racine score of 5-6. Our results demonstrated that the model showed increased lipid peroxidation, downregulation of antioxidant enzymes and astrogliosis in the mouse hippocampus (HP) and prefrontal cortex (PFC), brain areas involved in cognitive functions. Moreover, dopamine (DA) levels were reduced in the hp, but increased in the PFC. Furthermore, the survival mouse model of acute POX intoxication did not exhibit phenotypic manifestations of depression, anxiety or motor incoordination. However, our results demonstrated long-term recognition memory impairments, which are in accordance with the molecular and neurochemical effects observed. In conclusion, this mouse model can aid in researching POX exposure's effects on memory and developing potential countermeasures against the secondary neurotoxicity induced by severe OP poisoning.
Collapse
Affiliation(s)
- Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Selma Paratusic
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Berta Fumàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| |
Collapse
|
5
|
Ragab HE, El-Banna A, Elshaer NS, Azzaz O. L-carnitine: A novel approach in management of acute cholinesterase inhibitor insecticide poisoning. Toxicol Res (Camb) 2024; 13:tfae104. [PMID: 38993484 PMCID: PMC11234197 DOI: 10.1093/toxres/tfae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
Cholinesterase inhibitors (ChEIs) insecticide poisoning is a serious global health concern that results in hundreds of thousands of fatalities each year. Although inhibition of the cholinesterase enzyme is the main mechanism of ChEI poisoning, oxidative stress is considered the mechanism underlying the related complications. The study aimed to assess the oxidative status of the patients with ChEI insecticide poisoning and the role of L-carnitine as adjuvant therapy in their management. Human studies on the efficacy and safety of L-carnitine in treating insecticide poisoning are limited despite its growing research interest as a safe antioxidant. This prospective study was conducted on eighty patients with acute ChEIs insecticide poisoning admitted to Alexandria Poison Center, Alexandria Main University Hospital, Egypt. Patients were allocated into two equal groups randomly. The L-carnitine (LC) group received the conventional treatment (atropine & toxogonin) and LC and the standard treatment (ST) group received the standard treatment only. Outcome measures were fatality rate, the total administered dose of atropine & toxogonin, length of hospital stay, and the requirement for ICU admission or mechanical ventilation. The study results revealed that malondialdehyde (MDA) significantly decreased in the LC group. Cholinesterase enzyme levels increased significantly after treatment in the LC group than in the ST group. The LC group needed lower dosages of atropine and toxogonin than the ST group. Also, the LC group showed no need for ICU admission or mechanical ventilation. The study concluded that LC can be considered a promising adjuvant antioxidant treatment in acute ChEIs pesticide poisoning.
Collapse
Affiliation(s)
- Hisham Elsayed Ragab
- Professor of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University Champollion street, Al Mesallah Sharq, Qesm Al Attarin, Alexandria 21521, Egypt
| | - Asmaa El-Banna
- Professor of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Alexandria University Champollion street, Al Mesallah Sharq, Qesm Al Attarin, Alexandria 21521, Egypt
| | - Noha Selim Elshaer
- Assistant Professor of Industrial Medicine and Occupational Health, Department of Community Medicine, Faculty of Medicine, Alexandria University Champollion street, Al Mesallah Sharq, Qesm Al Attarin, Alexandria 21521, Egypt
| | - Omnia Azzaz
- Assistant Lecturer in Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Alexandria University Champollion street, Al Mesallah Sharq, Qesm Al Attarin, Alexandria 21521, Egypt
| |
Collapse
|
6
|
Piotr A, Konrad J, Hubert B, Krzysztof Ł, Grzegorz R. N-acetylcysteine as a potentially safe adjuvant in the treatment of neurotoxicity due to pirimiphos-methyl poisoning. Basic Clin Pharmacol Toxicol 2024; 135:164-172. [PMID: 38897728 DOI: 10.1111/bcpt.14044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Exogenous, well-established antioxidant N-acetylcysteine can reduce or prevent the deleterious effects of pesticides. In this study, utilizing a mouse model of daily single dose of N-acetylcysteine administration, we investigated the impact of this adjuvant on the treatment with atropine and/or obidoxime as well as oxidative stress response in pyrimiphos-methyl-induced toxicity. We found that N-acetylcysteine significantly reduces the oxidative stress generated by pyrimiphos-methyl. The therapy consisting of atropine and/or obidoxime routinely used in organophosphorous insecticide poisonings, including pyrimiphos-methyl, had no effect on the antioxidant properties of N-acetylcysteine. Adjunctive treatment offered by N-acetylcysteine fills therapeutic gap and may provide the full potential against pyrimiphos-methyl-induced toxicity.
Collapse
Affiliation(s)
- Adamczuk Piotr
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| | - Jamka Konrad
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| | - Bojar Hubert
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| | - Łukawski Krzysztof
- Department of Physiopathology, Institute of Rural Health, Lublin, Poland
| | - Raszewski Grzegorz
- Department of Toxicology and Food Safety, Institute of Rural Health, Lublin, Poland
| |
Collapse
|
7
|
El-Baz MAH, Amin AF, Mohany KM. Exposure to pesticide components causes recurrent pregnancy loss by increasing placental oxidative stress and apoptosis: a case-control study. Sci Rep 2023; 13:9147. [PMID: 37277462 PMCID: PMC10241831 DOI: 10.1038/s41598-023-36363-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
We investigated the plasma levels of pesticides components namely polychlorinated biphenyls (PCBs), dieldrin, dichlorodiphenyldichloroethylene (DDE), ethion, malathion, and chlorpyrifos in recurrent pregnancy loss (RPL) cases, and tested their associations with placental oxidative stress (OS) biomarkers [nitric oxide (NO.), thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), and superoxide dismutase (SOD)] and with placental apoptotic/antiapoptotic indices (Bcl-2 and caspase-3), and evaluated their possible cut-off points to distinguish RPL cases. The study recruited 101 pregnant women divided into; G1 [n = 49, control, normal 1st-trimester pregnancy, normal obstetric history with at least one previous normal live birth], G2 [n = 26, cases with missed abortion (< 3 abortions) before 24 weeks of gestation], and G3 [n = 26, cases with missed abortion (≥ 3 abortions) before 24 weeks of gestation]. The plasma pesticide levels were analyzed by gas chromatography-mass spectrometry. Plasma human chorionic gonadotrophin (HCG), placental OS, Bcl-2, and caspase-3, were analyzed by their corresponding methods and kits. Plasma PCBs, DDE, dieldrin, and ethion levels were significantly higher in RPL cases than in normal pregnancies (p ≤ 0.001). These levels correlated positively with placental OS and apoptosis and negatively with plasma HCG levels. Also, these levels were reliable markers of risk to RPL. Malathion and chlorpyrifos were not detected in any of the study's participants. Pesticides may be risk factors in cases of spontaneous RPL cases. They are associated with an increasing placental OS and placental apoptosis. Specific measures should be taken to decrease maternal exposure to these pollutants' sources, especially in underdeveloped and developing countries.
Collapse
Affiliation(s)
- Mona A H El-Baz
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut City, 71515, Egypt
| | - Ahmed F Amin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Women Health Hospital, Assiut University, Assiut City, 71515, Egypt
| | - Khalid M Mohany
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Assiut University, EL Gammaa Street, Assiut City, 71515, Egypt.
| |
Collapse
|
8
|
Djekkoun N, Depeint F, Guibourdenche M, Sabbouri HEKE, Corona A, Rhazi L, Gay-Queheillard J, Rouabah L, Biendo M, Al-Salameh A, Lalau JD, Bach V, Khorsi-Cauet H. Perigestational exposure of a combination of a high-fat diet and pesticide impacts the metabolic and microbiotic status of dams and pups; a preventive strategy based on prebiotics. Eur J Nutr 2023; 62:1253-1265. [PMID: 36510012 DOI: 10.1007/s00394-022-03063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Metabolic changes during the perinatal period are known to promote obesity and type-2 diabetes in adulthood via perturbation of the microbiota. The risk factors for metabolic disorders include a high-fat diet (HFD) and exposure to pesticide residues. The objective of the present study was to evaluate the effects of perigestational exposure to a HFD and chlorpyrifos (CPF) on glycemia, lipid profiles, and microbial populations in Wistar dams and their female offspring. We also tested a preventive strategy based on treatment with the prebiotic inulin. METHODS From 4 months before gestation to the end of the lactation period, six groups of dams were exposed to either a standard diet, a HFD alone, CPF alone, a combination of a HFD and CPF, and/or inulin supplementation. All female offspring were fed a standard diet from weaning to adulthood. We measured the impacts of these exposures on glycemia, the lipid profile, and the microbiota (composition, metabolite production, and translocation into tissues). RESULTS HFD exposure and CPF + HFD co-exposure induced dysmetabolism and an imbalance in the gut flora in both the dams and the female offspring. Inulin mitigated the impact of exposure to a HFD alone but not that of CPF + HFD co-exposure. CONCLUSION Our results provide a better understanding of the complex interactions between environmental pollutants and diet in early life, including in the context of metabolic diseases.
Collapse
Affiliation(s)
- Narimane Djekkoun
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Flore Depeint
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Marion Guibourdenche
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hiba El Khayat Et Sabbouri
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Aurélie Corona
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Larbi Rhazi
- Transformations Et Agro-Ressources ULR7519, Institut Polytechnique UniLaSalle - Université d'Artois, 60026, Beauvais, France
| | - Jerome Gay-Queheillard
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Leila Rouabah
- Laboratoire de Biologie Cellulaire Et Moléculaire, Mentouri Brothers University of Constantine 1, 2500, Constantine, Algeria
| | - Maurice Biendo
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Abdallah Al-Salameh
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Jean-Daniel Lalau
- Service Endocrinologie-Diabétologie et Nutrition, CHU Amiens-Picardie, 80000, Amiens, France
| | - Véronique Bach
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France
| | - Hafida Khorsi-Cauet
- Laboratoire PeriTox UMR_I 01, Centre Universitaire de Recherche en Santé, CURS-UPJV, University of Picardy Jules Verne, 80054, Amiens cedex 1, France.
| |
Collapse
|
9
|
Mitra JK, Hansda U, Bandyopadhyay D, Sarkar S, Sahoo J. The role of a combination of N-acetylcysteine and magnesium sulfate as adjuvants to standard therapy in acute organophosphate poisoning: A randomized controlled trial. Heliyon 2023; 9:e15376. [PMID: 37123961 PMCID: PMC10133766 DOI: 10.1016/j.heliyon.2023.e15376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Background Mortality in acute organophosphate (OP) poisoning remains high despite current standard therapy with atropine and oximes. Due to dose-limiting side effects of atropine, novel therapies are targeting other putative mechanisms of injury, including oxidative damage, to reduce atropine dosage. Objectives N-acetylcysteine (NAC) and magnesium sulfate (MgSO4) have different mechanisms of actions and should act synergistically in OP poisoning. In this study, we wanted to evaluate whether this novel combination, used as an adjuvant to standard care, could improve clinical outcomes. Methods The study was conducted in the Emergency Department and ICU of AIIMS Bhubaneswar (a tertiary care center and government teaching institute) between July 2019 and July 2021. Eighty-eight adult patients with history and clinical features of acute OP poisoning were randomly allocated (1:1) into two groups. The Study group received 600 mg NAC via nasogastric tube thrice daily for 3 days plus a single dose of 4 g Inj. MgSO4 IV on first day and the Control group received suitably matched placebo (double-blinding) - in addition to standard care in both the groups. The primary outcome measure was to compare the total dose of Inj. Atropine required (cumulative over the entire treatment duration) between the control group and the study group receiving NAC and MgSO4. The secondary outcome measures were lengths of ICU and hospital stays, need and duration of mechanical ventilation, the differences in BuChE activity, oxidative stress biomarkers - MDA and GSH levels, the incidences of adverse effects including delayed sequalae like intermediate syndrome and OPIDN, and comparison of mortality between the two groups. Results Data from 43 patients in Control and 42 patients in Study group was finally analyzed. The baseline parameters were comparable. Total atropine requirements were lower in the Study group [175.33 ± 81.25 mg (150.01-200.65)] compared to the Control [210.63 ± 102.29 mg (179.15-242.11)] [Mean ± SD (95% CI)], but was not statistically significant. No significant differences in any of the other clinical or biochemical parameters were noted. Conclusion The N-acetylcysteine and MgSO4 combination as adjuvants failed to significantly reduce atropine requirements, ICU/hospital stay, mechanical ventilatory requirements, mortality and did not offer protection against oxidative damage.
Collapse
Affiliation(s)
- Jayanta Kumar Mitra
- Department of Anesthesiology & Critical Care, AIIMS Bhubaneswar, Sijua, Patrapada, Bhubaneswar, Odisha, 751019, India
- Corresponding author.
| | - Upendra Hansda
- Department of Trauma & Emergency, AIIMS Bhubaneswar, Sijua, Patrapada, Bhubaneswar, Odisha, 751019, India
| | - Debapriya Bandyopadhyay
- Department of Biochemistry, AIIMS Bhubaneswar, Sijua, Patrapada, Bhubaneswar, Odisha, 751019, India
| | - Satyaki Sarkar
- Department of Anesthesiology & Critical Care, AIIMS Bhubaneswar, Sijua, Patrapada, Bhubaneswar, Odisha, 751019, India
| | - Joshna Sahoo
- Department of Anesthesiology & Critical Care, AIIMS Bhubaneswar, Sijua, Patrapada, Bhubaneswar, Odisha, 751019, India
| |
Collapse
|
10
|
Hosseini SM, Rahimi M, Afrash MR, Ziaeefar P, Yousefzadeh P, Pashapour S, Evini PET, Mostafazadeh B, Shadnia S. Prediction of acute organophosphate poisoning severity using machine learning techniques. Toxicology 2023; 486:153431. [PMID: 36682461 DOI: 10.1016/j.tox.2023.153431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Poisoning with organophosphate compounds is a significant public health risk, especially in developing countries. Considering the importance of early and accurate prediction of organophosphate poisoning prognosis, the aim of this study was to develop a machine learning-based prediction model to predict the severity of organophosphate poisoning. The data of patients with organophosphate poisoning were retrospectively extracted and split into training and test sets in a ratio of 70:30. The feature selection was done by least absolute shrinkage and selection operator method. Selected features were fed into five machine learning techniques, including Histogram Boosting Gradient, eXtreme Gradient Boosting, K-Nearest Neighborhood, Support Vector Machine (SVM) (kernel = linear), and Random Forest. The Scikit-learn library in Python programming language was used to implement the models. Finally, the performance of developed models was measured using ten-fold cross-validation methods and some evaluation criteria with 95 % confidence intervals. A total of 1237 patients were used to train and test the machine learning models. According to the criteria determining severe organophosphate poisoning, 732 patients were assigned to group 1 (patients with mild to moderate poisoning) and 505 patients were assigned to group 2 (patients with severe poisoning). With an AUC value of 0.907 (95 % CI 0.89-0.92), the model developed using XGBoost outperformed other models. Feature importance evaluation found that venous blood gas-pH, white blood cells, and plasma cholinesterase activity were the top three variables that contribute the most to the prediction performance of the prognosis in patients with organophosphate poisoning. XGBoost model yield an accuracy of 90.1 % (95 % CI 0.891-0.918), specificity of 91.4 % (95 % CI 0.90-0.92), a sensitivity of 89.5 % (95 % CI 0.87-0.91), F-measure of 91.2 % (95 % CI 0.90-0.921), and Kappa statistic of 91.2 % (95 % CI 0.90-0.92). The machine learning-based prediction models can accurately predict the severity of organophosphate poisoning. Based on feature selection techniques, the most important predictors of organophosphate poisoning were VBG-pH, white blood cell count, plasma cholinesterase activity, VBG-BE, and age. The best algorithm with the highest predictive performance was the XGBoost classifier.
Collapse
Affiliation(s)
- Sayed Masoud Hosseini
- Toxicological Research Center, Loghman-Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Rahimi
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Afrash
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Pardis Ziaeefar
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parsa Yousefzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Pashapour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Peyman Erfan Talab Evini
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Mostafazadeh
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Shadnia
- Toxicological Research Center, Excellence Center of Clinical Toxicology, Department of Clinical Toxicology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Neurotoxicity evoked by organophosphates and available countermeasures. Arch Toxicol 2023; 97:39-72. [PMID: 36335468 DOI: 10.1007/s00204-022-03397-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
Organophosphorus compounds (OP) are a constant problem, both in the military and in the civilian field, not only in the form of acute poisoning but also for their long-lasting consequences. No antidote has been found that satisfactorily protects against the toxic effects of organophosphates. Likewise, there is no universal cure to avert damage after poisoning. The key mechanism of organophosphate toxicity is the inhibition of acetylcholinesterase. The overstimulation of nicotinic or muscarinic receptors by accumulated acetylcholine on a synaptic cleft leads to activation of the glutamatergic system and the development of seizures. Further consequences include generation of reactive oxygen species (ROS), neuroinflammation, and the formation of various other neuropathologists. In this review, we present neuroprotection strategies which can slow down the secondary nerve cell damage and alleviate neurological and neuropsychiatric disturbance. In our opinion, there is no unequivocal approach to ensure neuroprotection, however, sooner the neurotoxicity pathway is targeted, the better the results which can be expected. It seems crucial to target the key propagation pathways, i.e., to block cholinergic and, foremostly, glutamatergic cascades. Currently, the privileged approach oriented to stimulating GABAAR by benzodiazepines is of limited efficacy, so that antagonizing the hyperactivity of the glutamatergic system could provide an even more efficacious approach for terminating OP-induced seizures and protecting the brain from permanent damage. Encouraging results have been reported for tezampanel, an antagonist of GluK1 kainate and AMPA receptors, especially in combination with caramiphen, an anticholinergic and anti-glutamatergic agent. On the other hand, targeting ROS by antioxidants cannot or already developed neuroinflammation does not seem to be very productive as other processes are also involved.
Collapse
|
12
|
Sokolova MO, Sobolev VE, Goncharov NV. Ultrastructural Changes in the Kidneys and Biochemical Parameters of Blood and Urine in Rats under Acute Intoxication with O,O-Diethyl O-(4-nitrophenyl) Phosphate. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Molecular Mechanisms of Acute Organophosphate Nephrotoxicity. Int J Mol Sci 2022; 23:ijms23168855. [PMID: 36012118 PMCID: PMC9407954 DOI: 10.3390/ijms23168855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Organophosphates (OPs) are toxic chemicals produced by an esterification process and some other routes. They are the main components of herbicides, pesticides, and insecticides and are also widely used in the production of plastics and solvents. Acute or chronic exposure to OPs can manifest in various levels of toxicity to humans, animals, plants, and insects. OPs containing insecticides were widely used in many countries during the 20th century, and some of them continue to be used today. In particular, 36 OPs have been registered in the USA, and all of them have the potential to cause acute and sub-acute toxicity. Renal damage and impairment of kidney function after exposure to OPs, accompanied by the development of clinical manifestations of poisoning back in the early 1990s of the last century, was considered a rare manifestation of their toxicity. However, since the beginning of the 21st century, nephrotoxicity of OPs as a manifestation of delayed toxicity is the subject of greater attention of researchers. In this article, we present a modern view on the molecular pathophysiological mechanisms of acute nephrotoxicity of organophosphate compounds.
Collapse
|
14
|
Yu G, Li Y, Jian T, Shi L, Cui S, Zhao L, Jian X, Kan B. Clinical Analysis of Acute Organophosphorus Pesticide Poisoning and Successful Cardiopulmonary Resuscitation: A Case Series. Front Public Health 2022; 10:866376. [PMID: 35712275 PMCID: PMC9196733 DOI: 10.3389/fpubh.2022.866376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Acute organophosphorus pesticide poisoning (AOPP) with cardiac arrest has an extremely high mortality rate, and corresponding therapeutic strategies have rarely been reported. Therefore, this study aimed to explore the prognostic factors and effective treatments of AOPP-related cardiac arrest. This retrospective study was conducted in our department in the years 2018–2021. We conducted a descriptive analysis of the clinical manifestations, rescue strategies, and prognosis of patients with AOPP who had experienced cardiac arrest and successful cardiopulmonary resuscitation. This study included six cases of patients with AOPP in addition to cardiac arrest; in four cases, cardiac arrest occurred <12 h after ingestion, and in two, cardiac arrest occurred more than 48 h after ingestion. Five patients had not undergone hemoperfusion therapy before cardiac arrest, and all six were treated with atropine during cardiopulmonary resuscitation and subsequent pralidoxine. Four patients recovered and were discharged from the hospital, one died in our department, and one was transferred to a local hospital and died there 2 h later. The last two patients had severe pancreatic injuries and disseminated intravascular coagulation. This, along with their death, might have been related to their prognosis. Cardiac arrest can occur in patients with severe AOPP for whom antidote administration was insufficient or not timely. Application of atropine and pralidoxine in a timely manner after cardiac arrest following AOPP is the key to successful treatment. This study provides useful guidelines for the treatment of similar cases in the future.
Collapse
Affiliation(s)
- Guangcai Yu
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yaqian Li
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Tianzi Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- Department of Digestive Internal Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Longke Shi
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Siqi Cui
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liwen Zhao
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Xiangdong Jian
| | - Baotian Kan
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- Department of Geriatric Medicine, School of Nursing, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, China
- Baotian Kan
| |
Collapse
|
15
|
Faro LRF, Costas-Ferreira C, Pantoja AA, Durán R. Protective effects of antioxidants on striatal dopamine release induced by organophosphorus pesticides. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 182:105035. [PMID: 35249645 DOI: 10.1016/j.pestbp.2022.105035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/08/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Although the toxic effects of organophosphorus (OP) pesticides have been classically attributed to inhibition of the acetylcholinesterase, other neurotoxic mechanisms, as oxidative stress can also occur. Here we evaluated if antioxidants prevent the excessive dopamine release induced by OP pesticides in conscious and freely moving rats, using cerebral microdialysis technique. Intrastriatal infusion of paraoxon (5 mM), glufosinate (10 mM) or glyphosate (5 mM) significantly increased the dopamine release (1006 ± 106%, 991 ± 142%, and 1164 ± 128%, relative to baseline, respectively). To evaluate if these increased dopamine release could be related to oxidative stress, we pretreated animals with antioxidants glutathione (GSH, 400 or 800 μM), dithiothreitol (DTT, 5 or 10 μM), trolox (1 or 3 mM), and α-lipoic acid (ALA, 400 or 800 μM) before administration of OP pesticides. Intrastriatal administration of the antioxidants GSH, DTT, trolox, and ALA was highly effective in preventing the glyphosate and glufosinate-induced dopamine overflow. However, only GSH (800 μM) significantly decreased the effect of paraoxon on dopamine levels. The high toxicity of this pesticide and the low concentrations used could explain this lack of effect in our experimental conditions. The fact that ROS scavengers prevent the excessive dopamine release induced by OP pesticides, further supports the view that dopamine overflow can cause neuronal damage mediated, at least in part, by oxidative stress.
Collapse
Affiliation(s)
- L R F Faro
- Department of Functional Biology and Health Sciences, University of Vigo, Spain.
| | - C Costas-Ferreira
- Department of Functional Biology and Health Sciences, University of Vigo, Spain
| | - A A Pantoja
- Department of Functional Biology and Health Sciences, University of Vigo, Spain
| | - R Durán
- Department of Functional Biology and Health Sciences, University of Vigo, Spain
| |
Collapse
|
16
|
Huang L, Guo X, Liu P, Zhao Y, Wu C, Zhou C, Huang C, Li G, Zhuang Y, Cheng S, Cao H, Zhang C, Xu Z, Liu X, Hu G, Liu P. Correlation between acute brain injury and brain metabonomics in dichlorvos-poisoned broilers. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126849. [PMID: 34416688 DOI: 10.1016/j.jhazmat.2021.126849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 07/17/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Dichlorvos (DDVP) is an insecticide with neurotoxicity that is widely used in agricultural production and life. However, the effects of acute DDVP poisoning on brain tissue remain underinvestigated. The purpose of this study was to evaluate the differences within 15 min-6 h in plasma biochemical indexes, brain histology and metabolites among three groups of commercial broilers orally administered different dosages of DDVP one time: (1) high-dose group (11.3 mg/kg), (2) low-dose group (2.48 mg/kg) and (3) control group (0 mg/kg). The results of biochemical indexes showed that acute DDVP poisoning could cause hyperglycemia and oxidative stress in poisoned broilers. Histological examination showed that DDVP could induce brain edema, abnormal expression of glial fibrillary acidic protein (GFAP) and neuronal mitochondrial damage in broilers. Whole-brain metabolism showed that DDVP could significantly change the secretion of neurotransmitters, energy metabolism, amino acid metabolism and nucleotide metabolism. Correlation analysis showed that metabolites such as hypoxanthine, acetylcarnitine and glucose 6-phosphate were significantly correlated with blood glucose, biomarkers of oxidative stress and brain injury pathology. The results of this study provide new insights into the molecular mechanism of brain tissue responses to acute DDVP exposure in broilers and deliver important information for clinical research on neurodegenerative diseases caused by acute DDVP poisoning.
Collapse
Affiliation(s)
- Lujia Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yulan Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Sufang Cheng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zheng Xu
- Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, United States
| | - Xin Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
17
|
Zhang Y, Jia Q, Hu C, Han M, Guo Q, Li S, Bo C, Zhang Y, Qi X, Sai L, Peng C. Effects of chlorpyrifos exposure on liver inflammation and intestinal flora structure in mice. Toxicol Res (Camb) 2021; 10:141-149. [PMID: 33613981 DOI: 10.1093/toxres/tfaa108] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Chlorpyrifos (CPF) is an organophosphate insecticide commonly used to treat fruit and vegetable crops. CPF can cause severe adverse effects on body organs including the liver and central nervous system. This study investigated the CPF-induced inflammation in mice and explored the role of intestinal flora changes in liver inflammation. Adult C57BL/6 male mice were exposed to a CPF of 0.01-, 0.1-, 1- and 10-mg/kg bodyweight for 12 weeks. The mice in experimental group given CPF solution dissolved in corn oil vehicle by gavage, was administered by intraoral gavage for 5 days per week for 12 weeks. Histopathological examination and inflammatory factor detection were performed on mice liver tissue. Faeces were used for 16S ribosomal RNA high-throughput sequencing to explore the impact of CPF on intestinal flora structure and diversity. The results showed that 1- and 10-mg/kg CPF caused different degrees of liver focal inflammation. The structure of intestinal flora changed significantly in mice including the decreased beneficial bacteria (Akkermansia, Prevotella and Butyricimonas) and increased pathogenic bacteria (Helicobacter and Desulfovibrio). Meanwhile, the results of Q-RT-PCR showed that there was more total bacterial DNA in the liver tissue of the mice treated with 10-mg/kg groups. In conclusion, the imbalance of intestinal flora, the decreased abundance of beneficial bacteria and the increased abundance of pathogenic bacteria, as well as the increase of total bacterial DNA in the liver tissues, maybe associated with the liver focal inflammation induced by CPF.
Collapse
Affiliation(s)
- Yecui Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Chenyang Hu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Mingming Han
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Qiming Guo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Shumin Li
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Xuejie Qi
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China
| | - Cheng Peng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong 250062, China.,Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
18
|
Alozi M, Rawas-Qalaji M. Treating organophosphates poisoning: management challenges and potential solutions. Crit Rev Toxicol 2020; 50:764-779. [DOI: 10.1080/10408444.2020.1837069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria Alozi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| |
Collapse
|
19
|
Neuropathological Mechanisms Associated with Pesticides in Alzheimer's Disease. TOXICS 2020; 8:toxics8020021. [PMID: 32218337 PMCID: PMC7355712 DOI: 10.3390/toxics8020021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/14/2020] [Accepted: 03/22/2020] [Indexed: 12/12/2022]
Abstract
Environmental toxicants have been implicated in neurodegenerative diseases, and pesticide exposure is a suspected environmental risk factor for Alzheimer’s disease (AD). Several epidemiological analyses have affirmed a link between pesticides and incidence of sporadic AD. Meanwhile, in vitro and animal models of AD have shed light on potential neuropathological mechanisms. In this paper, a perspective on neuropathological mechanisms underlying pesticides’ induction of AD is provided. Proposed mechanisms range from generic oxidative stress induction in neurons to more AD-specific processes involving amyloid-beta (Aβ) and hyperphosphorylated tau (p-tau). Mechanisms that are more speculative or indirect in nature, including somatic mutation, epigenetic modulation, impairment of adult neurogenesis, and microbiota dysbiosis, are also discussed. Chronic toxicity mechanisms of environmental pesticide exposure crosstalks in complex ways and could potentially be mutually enhancing, thus making the deciphering of simplistic causal relationships difficult.
Collapse
|