1
|
Shen XY, Cao XT, Huang XB, Zhuo L, Yang HM, Fan L, Hou CL. Mitochondrial genome and transcription of Shiraia-like species reveal evolutionary aspects in protein-coding genes. IMA Fungus 2025; 16:e138572. [PMID: 40052076 PMCID: PMC11881002 DOI: 10.3897/imafungus.16.138572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
Shiraia-related species are well-known bambusicolous fungi in Dothideomycetes class, with high value in traditional medicine for producing hypocrellin, as an anticipated photosensitiser. The complete mitogenomes of hypocrellin-producing Pseudoshiraiaconidialis strains were analysed in the present study, with functional gene variations through comparative genomics and transcriptomics. Five strains (ZZZ816, CNUCC1353PR, JAP103846, CNUCC C72, CNUCC C151) were sequenced, which indicated similar genome characteristics. Two of them possess an extra atp6 gene, and the associated variable fragment "HSP1-HSP2-atp6_2" correlates closely with hypocrellin production capacity. Therefore, these five strains were divided into three groups: ZZZ816 and CNUCC1353PR possessing high production efficiency, CNUCC C72 and JAP103846 with low yield and CNUCC C151 as a transition type. The gene expression changes were screened under various conditions. ZZZ816-related species showed significant changes in mitochondrial genes, especially HSP1, HSP2 and atp6_2, linked closely to hypocrellin synthesis and stress response; rps3 expression also consistently correlated with hypocrellin production. JAP103846 group showed a stable expression pattern divergently, except for rps3 suppression by blue light. These findings would provide new insights into secondary metabolite regulation and ROS resistance. Above all, this study conducted the comprehensive analysis of Shiraia-like fungi mitogenomes and functional gene expression, which can update the understanding of fungal evolution and potential for improved hypocrellin production.
Collapse
Affiliation(s)
- Xiao-Ye Shen
- College of Life Science, Capital Normal University, Beijing, Xisanhuanbeilu 105, Haidian, Beijing100048, ChinaCapital Normal UniversityBeijingChina
| | - Xue-Ting Cao
- College of Life Science, Capital Normal University, Beijing, Xisanhuanbeilu 105, Haidian, Beijing100048, ChinaCapital Normal UniversityBeijingChina
| | - Xiao-Bo Huang
- College of Life Science, Capital Normal University, Beijing, Xisanhuanbeilu 105, Haidian, Beijing100048, ChinaCapital Normal UniversityBeijingChina
| | - Lan Zhuo
- College of Life Science, Capital Normal University, Beijing, Xisanhuanbeilu 105, Haidian, Beijing100048, ChinaCapital Normal UniversityBeijingChina
| | - Hui-Meng Yang
- College of Life Science, Capital Normal University, Beijing, Xisanhuanbeilu 105, Haidian, Beijing100048, ChinaCapital Normal UniversityBeijingChina
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, Xisanhuanbeilu 105, Haidian, Beijing100048, ChinaCapital Normal UniversityBeijingChina
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Beijing, Xisanhuanbeilu 105, Haidian, Beijing100048, ChinaCapital Normal UniversityBeijingChina
| |
Collapse
|
2
|
Cai G, Scofield SR. Mitochondrial genome sequence of Phytophthora sansomeana and comparative analysis of Phytophthora mitochondrial genomes. PLoS One 2020; 15:e0231296. [PMID: 32407378 PMCID: PMC7224479 DOI: 10.1371/journal.pone.0231296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Phytophthora sansomeana infects soybean and causes root rot. It was recently separated from the species complex P. megasperma sensu lato. In this study, we sequenced and annotated its complete mitochondrial genome and compared it to that of nine other Phytophthora species. The genome was assembled into a circular molecule of 39,618 bp with a 22.03% G+C content. Forty-two protein coding genes, 25 tRNA genes and two rRNA genes were annotated in this genome. The protein coding genes include 14 genes in the respiratory complexes, four ATP synthase genes, 16 ribosomal proteins genes, a tatC translocase gene, six conserved ORFs and a unique orf402. The tRNA genes encode tRNAs for 19 amino acids. Comparison among mitochondrial genomes of 10 Phytophthora species revealed three inversions, each covering multiple genes. These genomes were conserved in gene content with few exceptions. A 3' truncated atp9 gene was found in P. nicotianae. All 10 Phytophthora species, as well as other oomycetes and stramenopiles, lacked tRNA genes for threonine in their mitochondria. Phylogenomic analysis using the mitochondrial genomes supported or enhanced previous findings of the phylogeny of Phytophthora spp.
Collapse
Affiliation(s)
- Guohong Cai
- Crop Production and Pest Control Research Unit, Agricultural Research Service, USDA, and College of Agriculture, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| | - Steven R. Scofield
- Crop Production and Pest Control Research Unit, Agricultural Research Service, USDA, and College of Agriculture, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
3
|
Abstract
The oomycetes are a class of ubiquitous, filamentous microorganisms that include some of the biggest threats to global food security and natural ecosystems. Within the oomycete class are highly diverse species that infect a broad range of animals and plants. Some of the most destructive plant pathogens are oomycetes, such as Phytophthora infestans, the agent of potato late blight and the cause of the Irish famine. Recent years have seen a dramatic increase in the number of sequenced oomycete genomes. Here we review the latest developments in oomycete genomics and some of the important insights that have been gained. Coupled with proteomic and transcriptomic analyses, oomycete genome sequences have revealed tremendous insights into oomycete biology, evolution, genome organization, mechanisms of infection, and metabolism. We also present an updated phylogeny of the oomycete class using a phylogenomic approach based on the 65 oomycete genomes that are currently available.
Collapse
Affiliation(s)
- Jamie McGowan
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland
| | - David A Fitzpatrick
- Genome Evolution Laboratory, Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, County Kildare, Ireland.
| |
Collapse
|
4
|
Rahman A, Góngora-Castillo E, Bowman MJ, Childs KL, Gent DH, Martin FN, Quesada-Ocampo LM. Genome Sequencing and Transcriptome Analysis of the Hop Downy Mildew Pathogen Pseudoperonospora humuli Reveal Species-Specific Genes for Molecular Detection. PHYTOPATHOLOGY 2019; 109:1354-1366. [PMID: 30939079 DOI: 10.1094/phyto-11-18-0431-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudoperonospora humuli is an obligate oomycete pathogen of hop (Humulus lupulus) that causes downy mildew, an important disease in most production regions in the Northern Hemisphere. The pathogen can cause a systemic infection in hop, overwinter in the root system, and infect propagation material. Substantial yield loss may occur owing to P. humuli infection of strobiles (seed cones), shoots, and cone-bearing branches. Fungicide application and cultural practices are the primary methods to manage hop downy mildew. However, effective, sustainable, and cost-effective management of downy mildew can be improved by developing early detection systems to inform on disease risk and timely fungicide application. However, no species-specific diagnostic assays or genomic resources are available for P. humuli. The genome of the P. humuli OR502AA isolate was partially sequenced using Illumina technology and assembled with ABySS. The assembly had a minimum scaffold length of 500 bp and an N50 (median scaffold length of the assembled genome) of 19.2 kbp. A total number of 18,656 genes were identified using MAKER standard gene predictions. Additionally, transcriptome assemblies were generated using RNA-seq and Trinity for seven additional P. humuli isolates. Bioinformatics analyses of next generation sequencing reads of P. humuli and P. cubensis (a closely related sister species) identified 242 candidate species-specific P. humuli genes that could be used as diagnostic molecular markers. These candidate genes were validated using polymerase chain reaction against a diverse collection of isolates from P. humuli, P. cubensis, and other oomycetes. Overall, four diagnostic markers were found to be uniquely present in P. humuli. These candidate markers identified through comparative genomics can be used for pathogen diagnostics in propagation material, such as rhizomes and vegetative cuttings, or adapted for biosurveillance of airborne sporangia, an important source of inoculum in hop downy mildew epidemics.
Collapse
Affiliation(s)
- A Rahman
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| | - E Góngora-Castillo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
- 2Department of Biotechnology, Yucatan Center for Scientific Research, 97205 Mérida, Yucatán, México
| | - M J Bowman
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - K L Childs
- 3Department of Plant Biology, Michigan State University, East Lansing, MI 48823, U.S.A
| | - D H Gent
- 4Forage Seed and Cereal Research Unit, U.S. Department of Agriculture-Agricultural Research Service and Oregon State University, Corvallis 97331, OR, U.S.A
| | - F N Martin
- 5Crop Improvement and Protection Research Station, U.S. Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, U.S.A
| | - L M Quesada-Ocampo
- 1Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, U.S.A
| |
Collapse
|
5
|
Fletcher K, Klosterman SJ, Derevnina L, Martin F, Bertier LD, Koike S, Reyes-Chin-Wo S, Mou B, Michelmore R. Comparative genomics of downy mildews reveals potential adaptations to biotrophy. BMC Genomics 2018; 19:851. [PMID: 30486780 PMCID: PMC6264045 DOI: 10.1186/s12864-018-5214-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/31/2018] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Spinach downy mildew caused by the oomycete Peronospora effusa is a significant burden on the expanding spinach production industry, especially for organic farms where synthetic fungicides cannot be deployed to control the pathogen. P. effusa is highly variable and 15 new races have been recognized in the past 30 years. RESULTS We virulence phenotyped, sequenced, and assembled two isolates of P. effusa from the Salinas Valley, California, U.S.A. that were identified as race 13 and 14. These assemblies are high quality in comparison to assemblies of other downy mildews having low total scaffold count (784 & 880), high contig N50s (48 kb & 52 kb), high BUSCO completion and low BUSCO duplication scores and share many syntenic blocks with Phytophthora species. Comparative analysis of four downy mildew and three Phytophthora species revealed parallel absences of genes encoding conserved domains linked to transporters, pathogenesis, and carbohydrate activity in the biotrophic species. Downy mildews surveyed that have lost the ability to produce zoospores have a common loss of flagella/motor and calcium domain encoding genes. Our phylogenomic data support multiple origins of downy mildews from hemibiotrophic progenitors and suggest that common gene losses in these downy mildews may be of genes involved in the necrotrophic stages of Phytophthora spp. CONCLUSIONS We present a high-quality draft genome of Peronospora effusa that will serve as a reference for Peronospora spp. We identified several Pfam domains as under-represented in the downy mildews consistent with the loss of zoosporegenesis and necrotrophy. Phylogenomics provides further support for a polyphyletic origin of downy mildews.
Collapse
Affiliation(s)
- Kyle Fletcher
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Lida Derevnina
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
- Present Address: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH UK
| | - Frank Martin
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Lien D. Bertier
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Steven Koike
- UC Davis Cooperative Extension Monterey County, Salinas, CA 93901 USA
- Present Address: TriCal Diagnostics, Hollister, CA 95023 USA
| | - Sebastian Reyes-Chin-Wo
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
| | - Beiquan Mou
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA 93905 USA
| | - Richard Michelmore
- The Genome Center, Genome and Biomedical Sciences Facility, University of California, 451 East Health Sciences Drive, Davis, CA 95616 USA
- Departments of Plant Sciences, Molecular & Cellular Biology, Medical Microbiology & Immunology, University of California, Davis, 95616 USA
| |
Collapse
|
6
|
Yuan X, Feng C, Zhang Z, Zhang C. Complete Mitochondrial Genome of Phytophthora nicotianae and Identification of Molecular Markers for the Oomycetes. Front Microbiol 2017; 8:1484. [PMID: 28848506 PMCID: PMC5550686 DOI: 10.3389/fmicb.2017.01484] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/24/2017] [Indexed: 11/13/2022] Open
Abstract
Phytophthora nicotianae is one of the most destructive plant pathogens affecting a variety of plants, causing black shank of tobacco, among several other devastating diseases. Herein, we assembled the mitochondrial genome of P. nicotianae and analyzed its gene content and genome structure, performed comparative mitochondrial genomics analysis, and assessed phylogenetic relationships among oomycetes species. The circular mitogenome is 37,561 bp long, with 38 protein-coding genes, 25 transfer RNA (tRNA) genes, and 2 ribosomal RNA genes (rrnl and rrns). The mitochondrial genome showed a biased A/T usage versus G/C. The overall gene content and size of the P. nicotianae mitogenome are identical to those of other published Phytophthora mitogenomes. Interestingly, collinearity analysis using an existing ∼10 k inversion region (including 11 genes and 8 tRNAs) revealed that Phytophthora andina, Phytophthora infestans, Phytophthora mirabilis, Phytophthora ipomoeae, and Phytophthora phaseoli differed from Phytophthora nicotianae, Phytophthora sojae, Phytophthora ramorum, and Phytophthora polonica. Moreover, inverted repeat regions were found to be absent among species of the Peronosporales when compared with species from the Pythiales and Saprolegniales. A phylogenomic investigation based on 29 protein-coding genes demonstrated that Phytophthora is monophyletic, and placed P. nicotianae close to the clade including P. mirabilis, P. ipomoeae, P. andina, P. infestans, and P. phaseoli. Furthermore, we discovered six new candidate DNA molecular markers (rpl6, atp8, nad11, rps2, rps3, and rps4) based on these mitogenomes that would be suitable for species identification in the oomycetes, which have the same identification level as the whole mitogenome and ribosomal DNA sequences. These new molecular markers can not only provide a quick preview of the species without mitogenome information, but will also help to gain better understanding of the oomycetes pathogens and developing treatment or monitoring strategies.
Collapse
Affiliation(s)
- Xiaolong Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao, China
| | - Chao Feng
- Tobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao, China
- Tobacco Pest Integrated Management Key Laboratory of China TobaccoQingdao, China
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao, China
| | - Chengsheng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural SciencesQingdao, China
| |
Collapse
|
7
|
Makkonen J, Vesterbacka A, Martin F, Jussila J, Diéguez-Uribeondo J, Kortet R, Kokko H. Mitochondrial genomes and comparative genomics of Aphanomyces astaci and Aphanomyces invadans. Sci Rep 2016; 6:36089. [PMID: 27808238 PMCID: PMC5093560 DOI: 10.1038/srep36089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/10/2016] [Indexed: 11/11/2022] Open
Abstract
The genus Aphanomyces (Saprolegniales, Oomycetes) includes species with a variety of ecologies from saprotrophs to plant and animal parasites. Two important species in this genus are A. astaci, the cause of crayfish plague and its close relative, A. invadans, which causes the epizootic ulcerative syndrome on fish. In this study, we have assembled and annotated the mitochondrial (mt) genomes of A. astaci and A. invadans from the whole genome shotgun sequence reads (PRJNA187372; PRJNA258292, respectively). The assembly was generated from A. astaci Pc-genotype strain APO3 and A. invadans strain NJM9701. The sizes of the mtDNAs were 49,489 bp and 49,061 bp for A. astaci and A. invadans, respectively. The species shared similar genetic content and organization encoding 35 proteins, two ribosomal RNAs, three putative open reading frames and 33 transfer RNAs of 19 amino acids for peptide synthesis. Both species also had a large inverted repeat region (LIR) of approximately 12 kb, the LIR contained large and small ribosomal RNAs and eight protein coding genes. These annotated mt genomes serve as a valuable genetic backbone for further development of diagnostic methods and phylogenetic and migration studies of the animal parasitic species of Aphanomyces.
Collapse
Affiliation(s)
- Jenny Makkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Arto Vesterbacka
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Frank Martin
- United States Department of Agriculture, ARS, 1636 E. Alisal St., CA-93905 Salinas, USA
| | - Japo Jussila
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | | | - Raine Kortet
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland
- Department of Biology, Biological & Geological Sciences, University of Western Ontario, 1151 Richmond St N, London, Ontario N6A 5B7, Canada
| | - Harri Kokko
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
8
|
Derevnina L, Chin-Wo-Reyes S, Martin F, Wood K, Froenicke L, Spring O, Michelmore R. Genome Sequence and Architecture of the Tobacco Downy Mildew Pathogen Peronospora tabacina. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:1198-215. [PMID: 26196322 DOI: 10.1094/mpmi-05-15-0112-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Peronospora tabacina is an obligate biotrophic oomycete that causes blue mold or downy mildew on tobacco (Nicotiana tabacum). It is an economically important disease occurring frequently in tobacco-growing regions worldwide. We sequenced and characterized the genomes of two P. tabacina isolates and mined them for pathogenicity-related proteins and effector-encoding genes. De novo assembly of the genomes using Illumina reads resulted in 4,016 (63.1 Mb, N50 = 79 kb) and 3,245 (55.3 Mb, N50 = 61 kb) scaffolds for isolates 968-J2 and 968-S26, respectively, with an estimated genome size of 68 Mb. The mitochondrial genome has a similar size (approximately 43 kb) and structure to those of other oomycetes, plus several minor unique features. Repetitive elements, primarily retrotransposons, make up approximately 24% of the nuclear genome. Approximately 18,000 protein-coding gene models were predicted. Mining the secretome revealed approximately 120 candidate RxLR, six CRN (candidate effectors that elicit crinkling and necrosis), and 61 WY domain-containing proteins. Candidate RxLR effectors were shown to be predominantly undergoing diversifying selection, with approximately 57% located in variable gene-sparse regions of the genome. Aligning the P. tabacina genome to Hyaloperonospora arabidopsidis and Phytophthora spp. revealed a high level of synteny. Blocks of synteny show gene inversions and instances of expansion in intergenic regions. Extensive rearrangements of the gene-rich genomic regions do not appear to have occurred during the evolution of these highly variable pathogens. These assemblies provide the basis for studies of virulence in this and other downy mildew pathogens.
Collapse
Affiliation(s)
- Lida Derevnina
- 1 Genome Center, University of California Davis, Davis, CA, U.S.A
| | | | - Frank Martin
- 2 United States Department of Agriculture-Agricultural Research Service, Salinas, CA U.S.A
| | - Kelsey Wood
- 1 Genome Center, University of California Davis, Davis, CA, U.S.A
| | - Lutz Froenicke
- 1 Genome Center, University of California Davis, Davis, CA, U.S.A
| | - Otmar Spring
- 3 Institute of Botany, University of Hohenheim, Germany
| | | |
Collapse
|
9
|
Lu WJ, Hu WG, Wang GP. Complete mitochondrial genome of Pseudoperonospora cubensis. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3487-8. [PMID: 26186306 DOI: 10.3109/19401736.2015.1066361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pseudoperonospora cubensis is a species of water mould known for causing downy mildew on cucurbits. 454 GS FLX Titanium sequencing data was used to obtain its complete mitochondrial genome (38 553 bp). The mitogenome contains 60 genes, including two ribosomal RNA, 25 transfer RNA, 15 ribosomal proteins, five open reading frames (ORFs). The rps3 and rpl16 overlapped each other by 14 bp. The gene order and composition of P. cubensis was similar to that of most other oomycetes, and its GC content was 22.4%. It is the first report of the complete mitochondrial genome in the genus Pseudoperonospora. Phylogeny analysis indicates that P. cubensis has a close genetic relationship with genus Phytophthora.
Collapse
Affiliation(s)
- Wei-Jia Lu
- a Lanzhou Institute of Biological Products Co., Ltd. , Chengguan District , Lanzhou , China
| | - Wen-Guo Hu
- b Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University , Lanzhou , Gansu , People's Republic of China , and
| | - Guang-Peng Wang
- c Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
10
|
O'Brien MA, Misner I, Lane CE. Mitochondrial genome sequences and comparative genomics of Achlya hypogyna and Thraustotheca clavata. J Eukaryot Microbiol 2013; 61:146-54. [PMID: 24252096 DOI: 10.1111/jeu.12092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/12/2013] [Accepted: 10/17/2013] [Indexed: 01/08/2023]
Abstract
As a lineage, oomycetes have adapted to a wide range of lifestyles. Although the common ancestor of the group was likely a marine pathogen, extant members inhabit a spectrum from free-living saprobes to obligate biotrophs. The mitochondrial genomes of Achlya hypogyna and Thraustotheca clavata were sequenced to directly compare a facultative parasitic species (A. hypogyna) to a closely related free living saprobe (T. clavata). Both sequenced mitochondrial genomes are circular, with sizes of 46,869 bp for A. hypogyna and 47,381 bp for T. clavata. They share 63 common genes, indicating little influence of lifestyle on gene content, but small differences in total number and order of genes. Achlya hypogyna has a single copy of nad2, whereas T. clavata has one pseudogene (rps7) and two duplicated genes (nad5 and nad2), each with one full and one truncated copy. The genomes encode a total of 29 or 30 tRNAs (A. hypogyna and T. clavata, respectively) for 19 amino acids. Three unidentified open reading frames are conserved, and one is unique to T. clavata. Comparisons of these genomes with published sequences of the closely related Saprolegnia ferax mitochondrial genome, and four other more distantly related oomycetes, reveals no correlation in genome content or architecture with lifestyle.
Collapse
Affiliation(s)
- Megan A O'Brien
- Department of Biology, The University of Rhode Island, Kingston, RI, 02881
| | | | | |
Collapse
|
11
|
Grünwald NJ, Goss EM, Press CM. Phytophthora ramorum: a pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. MOLECULAR PLANT PATHOLOGY 2008; 9:729-40. [PMID: 19019002 PMCID: PMC6640315 DOI: 10.1111/j.1364-3703.2008.00500.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
UNLABELLED Phytophthora ramorum is an oomycete plant pathogen classified in the kingdom Stramenopila. P. ramorum is the causal agent of sudden oak death on coast live oak and tanoak as well as ramorum blight on woody ornamental and forest understorey plants. It causes stem cankers on trees, and leaf blight or stem dieback on ornamentals and understorey forest species. This pathogen is managed in the USA and Europe by eradication where feasible, by containment elsewhere and by quarantine in many parts of the world. Genomic resources provide information on genes of interest to disease management and have improved tremendously since sequencing the genome in 2004. This review provides a current overview of the pathogenicity, population genetics, evolution and genomics of P. ramorum. TAXONOMY Phytophthora ramorum (Werres, De Cock & Man in't Veld): kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. HOST RANGE The host range is very large and the list of known hosts continues to expand at the time of writing. Coast live oak and tanoak are ecologically, economically and culturally important forest hosts in the USA. Rhododendron, Viburnum, Pieris, Syringa and Camellia are key ornamental hosts on which P. ramorum has been found repeatedly, some of which have been involved in moving the pathogen via nursery shipments. Disease symptoms: P. ramorum causes two different diseases with differing symptoms: sudden oak death (bleeding lesions, stem cankers) on oaks and ramorum blight (twig dieback and/or foliar lesions) on tree and woody ornamental hosts. USEFUL WEBSITES http://nature.berkeley.edu/comtf/, http://rapra.csl.gov.uk/, http://www.aphis.usda.gov/plant_health/plant_pest_info/pram/index.shtml, http://genome.jgi-psf.org/Phyra1_1/Phyra1_1.home.html, http://pamgo.vbi.vt.edu/, http://pmgn.vbi.vt.edu/, http://vmd.vbi.vt.edu./, http://web.science.oregonstate.edu/bpp/labs/grunwald/resources.htm, http://www.defra.gov.uk/planth/pramorum.htm, http://www.invasive.org/browse/subject.cfm?sub=4603, http://www.forestry.gov.uk/forestry/WCAS-4Z5JLL.
Collapse
Affiliation(s)
- Niklaus J Grünwald
- Horticultural Crops Research Laboratory, USDA ARS, Corvallis, OR 97330, USA
| | | | | |
Collapse
|
12
|
Martin FN. Mitochondrial haplotype determination in the oomycete plant pathogen Phytophthora ramorum. Curr Genet 2008; 54:23-34. [PMID: 18488228 DOI: 10.1007/s00294-008-0196-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 04/28/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
The mitochondrial genome of an isolate of Phytophthora ramorum from Europe (EU) was sequenced and compared to the previously published genome sequence of an isolate from California (NA). The EU mitochondrial genome had the identical gene order and encoded for the same suite of genes as the NA mitochondrial genome, but had 13 single nucleotide polymorphisms (SNPs) and at 39,494 bp was 180 bp longer. This length difference was due to an increase in the size of the spacer region between the nad5 and nad6 genes caused by a chimeric region containing duplication of the spacer sequence and additional sequences from the flanking genes. Recombination between the 1,150 bp-inverted repeats (IR) generated orientational isomers where the gene order was reversed between the IR. A total of seven primer pairs were developed for amplification of regions where the SNPs were located and two other regions where additional SNPs were encountered when a larger number of isolates were examined. Sequence data for a total of 5,743 bp for 40 isolates collected from a range of geographic areas was compared and 28 loci were found to be polymorphic. The combination of these polymorphisms revealed a total of 4 mitochondrial haplotypes; the traditional EU (haplotype I), the traditional NA (haplotype IIa), the third nuclear lineage of the pathogen recovered from a nursery in Washington State (haplotype III) and a new haplotype representing a subgroup of NA isolates from an Oregon forest (haplotype IIb). Phylogenetic analysis using the sequences generated from the haplotype analysis supported a high affinity for haplotypes IIa and IIb, both of which were distinct from haplotype I, with haplotype I basal to these and haplotype III representing the ancestral state.
Collapse
Affiliation(s)
- Frank N Martin
- U.S. Department of Agriculture-Agricultural Research Service, Crop Improvement of Protection Research Unit, 1636 E. Alisal Street, Salinas, CA 93905, USA.
| |
Collapse
|
13
|
Martin FN, Bensasson D, Tyler BM, Boore JL. Mitochondrial genome sequences and comparative genomics of Phytophthora ramorum and P. sojae. Curr Genet 2007; 51:285-96. [PMID: 17310332 DOI: 10.1007/s00294-007-0121-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/18/2007] [Accepted: 01/19/2007] [Indexed: 11/28/2022]
Abstract
The sequences of the mitochondrial genomes of the oomycetes Phytophthora ramorum and P. sojae were determined during the course of complete nuclear genome sequencing (Tyler et al., Science, 313:1261,2006). Both mitochondrial genomes are circular mapping, with sizes of 39,314 bp for P. ramorum and 42,977 bp for P. sojae. Each contains a total of 37 recognizable protein-encoding genes, 26 or 25 tRNAs (P. ramorum and P. sojae, respectively) specifying 19 amino acids, six more open reading frames (ORFs) that are conserved, presumably due to functional constraint, across Phytophthora species (P. sojae, P. ramorum, and P. infestans), six ORFs that are unique for P. sojae and one that is unique for P. ramorum. Non-coding regions comprise about 11.5 and 18.4% of the genomes of P. ramorum and P. sojae, respectively. Relative to P. sojae, there is an inverted repeat of 1,150 bp in P. ramorum that includes an unassigned unique ORF, a tRNA gene, and adjacent non-coding sequences, but otherwise the gene order in both species is identical. Comparisons of these genomes with published sequences of the P. infestans mitochondrial genome reveals a number of similarities, but the gene order in P. infestans differed in two adjacent locations due to inversions and specific regions of the genomes exhibited greater divergence than others. For example, the breakpoints for the inversions observed in P. infestans corresponded to regions of high sequence divergence in comparisons between P. ramorum and P. sojae and the location of a hypervariable microsatellite sequence (eight repeats of 24 bp) in the P. sojae genome corresponds to a site of major length variation in P. infestans. Although the overwhelming majority of each genome is conserved (81-92%), there are a number of genes that evolve more rapidly than others. Some of these rapidly evolving genes appear specific to Phytophthora, arose recently, and future evaluation of their function and the effects of their loss could prove fruitful for understanding the phylogeny of these devastating plant pathogens.
Collapse
Affiliation(s)
- Frank N Martin
- U.S. Department of Agriculture-ARS, Salinas, CA 93905, USA.
| | | | | | | |
Collapse
|
14
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2447519 DOI: 10.1002/cfg.420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|