1
|
Pascariu P, Cojocaru C, Samoila P, Romanitan C. Nd-Doped ZnO Nanostructures with Enhanced Photocatalytic Performance for Environmental Protection. Int J Mol Sci 2023; 24:ijms24076436. [PMID: 37047409 PMCID: PMC10094349 DOI: 10.3390/ijms24076436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Neodymium (Nd)-doped ZnO nanostructures with different amounts of Nd were obtained by the electrospinning-calcination method. X-ray diffraction measurements indicated that the prepared nanostructures have a wurtzite structure without undesirable impurities. Nd doping changes the mean crystallite size as well the lattice strain, as proved by Williamson-Hall plots. The ZnO-based nanostructures were tested as photocatalysts for methylene blue (MB) dye and ciprofloxacin (CIP) drug pollutant degradations under visible light irradiation. Corroborating the obtained results, it was found that the reaction rate constant increased almost linearly with the mean crystallite size (from 2.235 × 10-2 to 3.482 × 10-2 min-1) with a variation in the mean crystallite size from 24.2 to 42.1 nm. Furthermore, the best catalyst sample (0.1% Nd-doped ZnO) was used to optimize the photodegradation process of ciprofloxacin, taking into account the pollutant concentration as well as the catalyst dose. The removal efficiency after 120 min was about 100%, with the rate constant of k = 5.291·10-2 min-1 (CIP) and k = 4.780·10-2 min-1 (MB) for the established optimal conditions. Considering the value of the rate constant, the half-life of the reaction (τ1/2 = ln2/k) was evaluated to be about τ1/2 =13 min for CIP and 14.5 min corresponding to MB. Several catalytic cycles were successfully performed without any loss of photocatalytic activity using these nanostructures, demonstrating that the obtained nanostructures have good stability in the leaching processes.
Collapse
Affiliation(s)
- Petronela Pascariu
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Corneliu Cojocaru
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
- Department of Chemistry, Institute for Research, Innovation and Technological Transfer of the State Pedagogical University "Ion Creanga", MD-2069 Chisinau, Moldova
| | - Petrisor Samoila
- "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Cosmin Romanitan
- National Institute for Research and Development in Microtechnologies (IMT-Bucharest), 023573 Bucharest, Romania
| |
Collapse
|
2
|
Scroccarello A, Della Pelle F, Del Carlo M, Compagnone D. Optical plasmonic sensing based on nanomaterials integrated in solid supports. A critical review. Anal Chim Acta 2022; 1237:340594. [DOI: 10.1016/j.aca.2022.340594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
3
|
Papaphilippou PC, Marinica OM, Tanasă E, Mpekris F, Stylianopoulos T, Socoliuc V, Krasia-Christoforou T. Ofloxacin Removal from Aqueous Media by Means of Magnetoactive Electrospun Fibrous Adsorbents. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3648. [PMID: 36296838 PMCID: PMC9608509 DOI: 10.3390/nano12203648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Functionalized electrospun polymer microfibrous membranes were fabricated by electrospinning and further surface-functionalized with magnetic iron oxide (FexOy) nanoparticles to yield magnetoactive nanocomposite fibrous adsorbents. The latter were characterized in respect to their morphology, mechanical properties and magnetic properties while they were further evaluated as substrates for removing Ofloxacin (OFL) from synthetic aqueous media and secondary urban wastewater (UWW) under varying physicochemical parameters, including the concentration of the pharmaceutical pollutant, the solution pH and the membranes' magnetic content. The magnetic-functionalized fibrous adsorbents demonstrated significantly enhanced adsorption efficacy in comparison to their non-functionalized fibrous analogues while their magnetic properties enabled their magnetic recovery and regeneration.
Collapse
Affiliation(s)
- Petri Ch. Papaphilippou
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Cyprus, Nicosia 1678, Cyprus
- Department of Life Sciences, School of Science, European University Cyprus, Nicosia 2404, Cyprus
| | - Oana Maria Marinica
- Research Center for Engineering of Systems with Complex Fluids, Politehnica University Timisoara, 300222 Timisoara, Romania
| | - Eugenia Tanasă
- Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 060042 Bucharest, Romania
| | - Fotios Mpekris
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romania Academy—Timisoara Branch, 300223 Timisoara, Romania
| | - Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, School of Engineering, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
4
|
Sanjeev Kumar, Jain G, Kumar K, Singh BP, Dhakate SR. A Review on Polymeric Photoluminiscent Nanofibers: Inorganic, Organic and Perovskites Additives for Solid-State Lighting Application. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x22700213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
A Study on the Applicability of NiFe2O4 Nanoparticles as the Basis of Catalysts for the Purification of Aqueous Media from Pollutants. Catalysts 2021. [DOI: 10.3390/catal11111393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this work is to evaluate the application of NiFe2O4 nanoparticles with spinel structures as the basis of catalysts for the purification of aqueous media from pollutants such as manganese and arsenic. The interest in these catalysts is due to their ease of production and high absorption efficiency, which, together with their magnetic properties, allow the use of nanoparticles for a long time. The sol–gel method, followed by thermal annealing of the samples at different temperatures, was proposed as a method for the synthesis of spinel nanoparticles. The choice of the annealing temperature range of 200–1000 °C is caused by the possibility of estimating changes in the structural properties and the degree of nanoparticles crystallinity. During the study of structural changes in nanoparticles depending on the annealing temperature, it was found that in the temperature range of 200–800 °C, there is an ordering of structural parameters, while for samples obtained at annealing temperatures above 800 °C, there is a partial disorder caused by the agglomeration of nanoparticles with a subsequent increase in their size. According to the results of the studies on the purification of aqueous media from pollutants, it was found that the greatest absorption efficiency belongs to nanoparticles annealed at 500–700 °C, with the purification efficiency of 70–85%, depending on the type of pollutant. The results obtained from the use of nanoparticles as catalysts for the purification of aqueous media show great prospects for their further application on an industrial scale.
Collapse
|
6
|
Photocatalytic-Fenton Process under Simulated Solar Radiation Promoted by a Suitable Catalyst Selection. Catalysts 2021. [DOI: 10.3390/catal11080885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Considering water scarcity, photo-based processes have been presented as a depollution technique, which should be optimized in order to be applied in the future. For that, the addition of an active photocatalyst and the usage of solar radiation are mandatory steps. Thus, Fe3O4–SiO2–TiO2 was synthesized, and its performance was evaluated using simulated solar radiation and methylene blue as a model pollutant. Under optimal conditions, 86% degradation was attained in 1 h. These results were compared to recent published data, and the better performance can be attributed to both the operational conditions selection and the higher photocatalyst activity. Indeed, Fe3O4–SiO2–TiO2 was physico-chemically characterized with techniques such as XRD, N2 isotherms, spectrophotometry, FTIR, electrochemical assays and TEM.
Collapse
|
7
|
Kazemi F, Naghib SM, Zare Y, Rhee KY. Biosensing Applications of Polyaniline (PANI)-Based Nanocomposites: A Review. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1858871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Fatemeh Kazemi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
8
|
Li D, Shen Y, Wang L, Liu F, Deng B, Liu Q. Hierarchical Structured Polyimide-Silica Hybrid Nano/Microfiber Filters Welded by Solvent Vapor for Air Filtration. Polymers (Basel) 2020; 12:polym12112494. [PMID: 33120971 PMCID: PMC7693890 DOI: 10.3390/polym12112494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 11/23/2022] Open
Abstract
Electrospun polymer membranes were considered to be promising materials for fine particulate matter (PM) filtration. However, the poor mechanical properties of the electrospun membrane restricted their application for pressure-driven air filtration. Herein, strength-enhanced electrospun polyimide (PI) membranes were demonstrated via a synergistic approach. Solvent-vapor treatment was utilized to introduce extra bonding at the cross points of PI nanofiber, while SiO2 nanoparticles (SiO2 NPs) were used to reinforce the body of nanofibers. The mechanical strength and filtration performance of hybrid membranes could be regulated by adjusting the quantity of SiO2 NPs. The tensile strength of the pure PI membrane was increased by 33% via adding 1.5% SiO2 NPs, which was further promoted by 70% after solvent-vapor treatment. With a slight reduction in pressure drop (6.5%), the filtration efficiency was not greatly suppressed by welding the SiO2 NP hybrid PI nanofibers. Moreover, the welded composite filter showed high particulate (0.3–1.0 μm) filtration efficiency (up to nearly 100%) and stable pressure drop throughout the 20 tested filtration cycles.
Collapse
|
9
|
Aman Mohammadi M, Hosseini SM, Yousefi M. Application of electrospinning technique in development of intelligent food packaging: A short review of recent trends. Food Sci Nutr 2020; 8:4656-4665. [PMID: 32994928 PMCID: PMC7500774 DOI: 10.1002/fsn3.1781] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022] Open
Abstract
Intelligent food packaging refers to packages with the ability to sense foodstuff changes and to inform customers of the packaging content variations. They are often accompanied by smart detecting devices. Providing a suitable platform to include these devices into packaging polymers has always been discussing. Electrospun nanofibers produced through the electrospinning have been recently utilized as an outstanding and novel platforms for this purpose. Thus, the main aim of this study is to investigate recent trends in producing intelligent food packaging using electrospinning technique. In this regard, this paper was categorized into two chief sections, including (a) the principal of electrospinning technique to fabricate fine nanofibers and the parameters affecting the quality of electrospun fibers, and (b) the role of nanofibers as a platform to cover pH indicators in intelligent food packaging.
Collapse
Affiliation(s)
- Masoud Aman Mohammadi
- Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Seyede Marzieh Hosseini
- Student Research Committee Department of Food Science and Technology National Nutrition and Food Technology Research Institute Faculty of Nutrition Sciences Food Science and Technology Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad Yousefi
- Department of Food Science and Technology Faculty of Nutrition and Food Science Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|