1
|
Urakawa T, Soejima H, Yamoto K, Hara-Isono K, Nakamura A, Kawashima S, Narusawa H, Kosaki R, Nishimura Y, Yamazawa K, Hattori T, Muramatsu Y, Inoue T, Matsubara K, Fukami M, Saitoh S, Ogata T, Kagami M. Comprehensive molecular and clinical findings in 29 patients with multi-locus imprinting disturbance. Clin Epigenetics 2024; 16:138. [PMID: 39369220 PMCID: PMC11452994 DOI: 10.1186/s13148-024-01744-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Multi-locus imprinting disturbance (MLID) with methylation defects in various differentially methylated regions (DMRs) has recently been identified in approximately 150 cases with imprinting disorders (IDs), and deleterious variants have been found in genes related to methylation maintenance of DMRs, such as those encoding proteins constructing the subcortical maternal complex (SCMC), in a small fraction of patients and/or their mothers. However, integrated methylation analysis for DMRs and sequence analysis for MLID-causative genes in MLID cases and their mothers have been performed only in a single study focusing on Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) phenotypes. RESULTS Of 783 patients with various IDs we have identified to date, we examined a total of 386 patients with confirmed epimutation and 71 patients with epimutation or uniparental disomy. Consequently, we identified MLID in 29 patients with epimutation confirmed by methylation analysis for multiple ID-associated DMRs using pyrosequencing and/or methylation-specific multiple ligation-dependent probe amplification. MLID was detected in approximately 12% of patients with BWS phenotype and approximately 5% of patients with SRS phenotype, but not in patients with Kagami-Ogata syndrome, Prader-Willi syndrome, or Angelman syndrome phenotypes. We next conducted array-based methylation analysis for 78 DMRs and whole-exome sequencing in the 29 patients, revealing hypomethylation-dominant aberrant methylation patterns in various DMRs of all the patients, eight probably deleterious variants in genes for SCMC in the mothers of patients, and one homozygous deleterious variant in ZNF445 in one patient. These variants did not show gene-specific methylation disturbance patterns. Clinically, neurodevelopmental delay and/or intellectual developmental disorder (ND/IDD) was observed in about half of the MLID patients, with no association with the identified methylation disturbance patterns and genetic variants. Notably, seven patients with BWS phenotype were conceived by assisted reproductive technology (ART). CONCLUSIONS The frequency of MLID was 7.5% (29/386) in IDs caused by confirmed epimutation. Furthermore, we revealed diverse patterns of hypomethylation-dominant methylation defects, nine deleterious variants, ND/IDD complications in about half of the MLID patients, and a high frequency of MLID in ART-conceived patients.
Collapse
Affiliation(s)
- Tatsuki Urakawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-0937, Japan
| | - Kaori Yamoto
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
| | - Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Akie Nakamura
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Hiromune Narusawa
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Rika Kosaki
- Department of Medical Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Yutaka Nishimura
- Department of Neonatology, Hiroshima City Hiroshima Citizens Hospital, 7-33 Motomachi, Naka-Ku, Hiroshima, 730-8518, Japan
| | - Kazuki Yamazawa
- Medical Genetics Center, NHO Tokyo Medical Center, 2-5-1 Higashigaoka, Meguro-Ku, Tokyo, 152-8902, Japan
| | - Tetsuo Hattori
- Department of Pediatrics, Anjo Kosei Hospital, 28 Higashihirokute, Anjo, 446-8602, Japan
| | - Yukako Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Shouwa‑ku, Nagoya, 466‑8560, Japan
| | - Takanobu Inoue
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Center for Medical Genetics, Chiba Children's Hospital, 579-1 Heta, Midori-Ku, Chiba, 266-0007, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
- Division of Diversity Research, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Cho, Mizuho-Ku, Nagoya, 467-8601, Japan
| | - Tsutomu Ogata
- Department of Biochemistry, Hamamatsu University School of Medicine, 1‑20‑1 Handayama, Higashi‑ku, Hamamatsu, 431‑3192, Japan
- Department of Pediatrics, Hamamatsu Medical Center, 328 Tomizuka-Cho, Chuo-Ku, Hamamatsu, 432-8580, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-Ku, Tokyo, 157-8535, Japan.
| |
Collapse
|
2
|
Kurup U, Lim DBN, Palau H, Maharaj AV, Ishida M, Davies JH, Storr HL. Approach to the Patient With Suspected Silver-Russell Syndrome. J Clin Endocrinol Metab 2024; 109:e1889-e1901. [PMID: 38888172 PMCID: PMC11403326 DOI: 10.1210/clinem/dgae423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Silver-Russell syndrome (SRS) is a clinical diagnosis requiring the fulfillment of ≥ 4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥ 4/6 NH-CSS (or ≥ 3/6 with strong clinical suspicion) warrants (epi)genetic confirmation, identifiable in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The most common etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify more common molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest that NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfill NH-CSS criteria but have distinct genetic etiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystemic disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation, and highlight the differences in clinical management strategies.
Collapse
Affiliation(s)
- Uttara Kurup
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - David B N Lim
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Helena Palau
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Avinaash V Maharaj
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Miho Ishida
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| | - Justin H Davies
- Paediatric Endocrinology, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute (WHRI), Charterhouse Square, Barts and the London School of Medicine, London EC1M 6BQ, UK
| |
Collapse
|
3
|
Mackay DJG, Gazdagh G, Monk D, Brioude F, Giabicani E, Krzyzewska IM, Kalish JM, Maas SM, Kagami M, Beygo J, Kahre T, Tenorio-Castano J, Ambrozaitytė L, Burnytė B, Cerrato F, Davies JH, Ferrero GB, Fjodorova O, Manero-Azua A, Pereda A, Russo S, Tannorella P, Temple KI, Õunap K, Riccio A, de Nanclares GP, Maher ER, Lapunzina P, Netchine I, Eggermann T, Bliek J, Tümer Z. Multi-locus imprinting disturbance (MLID): interim joint statement for clinical and molecular diagnosis. Clin Epigenetics 2024; 16:99. [PMID: 39090763 PMCID: PMC11295890 DOI: 10.1186/s13148-024-01713-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Collapse
Affiliation(s)
| | - Gabriella Gazdagh
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Frederic Brioude
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Eloise Giabicani
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Izabela M Krzyzewska
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Saskia M Maas
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Jasmin Beygo
- Institut Für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Tiina Kahre
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Jair Tenorio-Castano
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Laima Ambrozaitytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Birutė Burnytė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Flavia Cerrato
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Justin H Davies
- Faculty of Medicine, University of Southampton, Southampton, UK
- Regional Centre for Paediatric Endocrinology, Faculty of Medicine, Southampton Children's Hospital, University of Southampton, Southampton, UK
| | - Giovanni Battista Ferrero
- Department of Clinical and Biological Science, School of Medicine, Centre for Hemoglobinopathies, AOU San Luigi Gonzaga, University of Turin, Turin, Italy
| | - Olga Fjodorova
- Department of Laboratory Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Africa Manero-Azua
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Arrate Pereda
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Silvia Russo
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Pierpaola Tannorella
- IRCCS Research Laboratory of Medical Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - Karen I Temple
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Trust, Southampton, UK
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Clinical Genetics, Genetics and Personalized Medicine Clinic, Tartu University Hospital, Tartu, Estonia
| | - Andrea Riccio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
- Institute of Genetics and Biophysics (IGB),"Adriano Buzzati-Traverso", Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Araba, Spain
| | - Eamonn R Maher
- Aston Medical School, Aston University, Birmingham, UK
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Institute of Medical and Molecular Genetics, INGEMM-Idipaz, Madrid, Spain
| | - Irène Netchine
- Centre de Recherche Saint Antoine, Endocrinologie Moléculaire et Pathologies d'empreinte, INSERMSorbonne Université, Hôpital Armand TrousseauAPHP, 75012, Paris, France
| | - Thomas Eggermann
- Institute for Human Genetics and Genome Medicine. Faculty of Medicine, RWTH University Aachen, Aachen, Germany
| | - Jet Bliek
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Zeynep Tümer
- Department of Clinical Genetics, Kennedy Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Anvar Z, Jochum MD, Chakchouk I, Sharif M, Demond H, To AK, Kraushaar DC, Wan YW, Andrews S, Kelsey G, Veyver IB. Maternal loss-of-function of Nlrp2 results in failure of epigenetic reprogramming in mouse oocytes. RESEARCH SQUARE 2024:rs.3.rs-4457414. [PMID: 38883732 PMCID: PMC11177987 DOI: 10.21203/rs.3.rs-4457414/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background NLRP2 belongs to the subcortical maternal complex (SCMC) of mammalian oocytes and preimplantation embryos. This multiprotein complex, encoded by maternal-effect genes, plays a pivotal role in the zygote-to-embryo transition, early embryogenesis, and epigenetic (re)programming. The maternal inactivation of genes encoding SCMC proteins has been linked to infertility and subfertility in mice and humans. However, the underlying molecular mechanisms for the diverse functions of the SCMC, particularly how this cytoplasmic structure influences DNA methylation, which is a nuclear process, are not fully understood. Results We undertook joint transcriptome and DNA methylome profiling of pre-ovulatory germinal-vesicle oocytes from Nlrp2-null, heterozygous (Het), and wild-type (WT) female mice. We identified numerous differentially expressed genes (DEGs) in Het and Nlrp2-null when compared to WT oocytes. The genes for several crucial factors involved in oocyte transcriptome modulation and epigenetic reprogramming, such as DNMT1, UHRF1, KDM1B and ZFP57 were overexpressed in Het and Nlrp2-null oocytes. Absence or reduction of Nlrp2, did not alter the distinctive global DNA methylation landscape of oocytes, including the bimodal pattern of the oocyte methylome. Additionally, although the methylation profile of germline differentially methylated regions (gDMRs) of imprinted genes was preserved in oocytes of Het and Nlrp2-null mice, we found altered methylation in oocytes of both genotypes at a small percentage of the oocyte-characteristic hyper- and hypomethylated domains. Through a tiling approach, we identified specific DNA methylation differences between the genotypes, with approximately 1.3% of examined tiles exhibiting differential methylation in Het and Nlrp2-null compared to WT oocytes. Conclusions Surprisingly, considering the well-known correlation between transcription and DNA methylation in developing oocytes, we observed no correlation between gene expression differences and gene-body DNA methylation differences in Nlrp2-null versus WT oocytes or Het versus WT oocytes. We therefore conclude that post-transcriptional changes in the stability of transcripts rather than altered transcription is primarily responsible for transcriptome differences in Nlrp2-null and Het oocytes.
Collapse
|
5
|
Kim HY, Shin CH, Shin CH, Ko JM. Uncovering the phenotypic consequences of multi-locus imprinting disturbances using genome-wide methylation analysis in genomic imprinting disorders. PLoS One 2023; 18:e0290450. [PMID: 37594968 PMCID: PMC10437897 DOI: 10.1371/journal.pone.0290450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Imprinted genes are regulated by DNA methylation of imprinted differentially methylated regions (iDMRs). An increasing number of patients with congenital imprinting disorders (IDs) exhibit aberrant methylation at multiple imprinted loci, multi-locus imprinting disturbance (MLID). We examined MLID and its possible impact on clinical features in patients with IDs. Genome-wide DNA methylation analysis (GWMA) using blood leukocyte DNA was performed on 13 patients with Beckwith-Wiedemann syndrome (BWS), two patients with Silver-Russell syndrome (SRS), and four controls. HumanMethylation850 BeadChip analysis for 77 iDMRs (809 CpG sites) identified three patients with BWS and one patient with SRS showing additional hypomethylation, other than the disease-related iDMRs, suggestive of MLID. Two regions were aberrantly methylated in at least two patients with BWS showing MLID: PPIEL locus (chromosome 1: 39559298 to 39559744), and FAM50B locus (chromosome 6: 3849096 to 3849469). All patients with BWS- and SRS-MLID did not show any other clinical characteristics associated with additional involved iDMRs. Exome analysis in three patients with BWS who exhibited multiple hypomethylation did not identify any causative variant related to MLID. This study indicates that a genome-wide approach can unravel MLID in patients with an apparently isolated ID. Patients with MLID showed only clinical features related to the original IDs. Long-term follow-up studies in larger cohorts are warranted to evaluate any possible phenotypic consequences of other disturbed imprinted loci.
Collapse
Affiliation(s)
- Hwa Young Kim
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Seoul National University College of Medicine, Seoul, Korea
| | - Chang Ho Shin
- Department of Orthopaedics, Division of Pediatric Orthopedics, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Min Ko
- Department of Pediatrics, Division of Clinical Genetics, Seoul National University College of Medicine, Seoul, Korea
- Rare Disease Center, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
6
|
Bilo L, Ochoa E, Lee S, Dey D, Kurth I, Kraft F, Rodger F, Docquier F, Toribio A, Bottolo L, Binder G, Fekete G, Elbracht M, Maher ER, Begemann M, Eggermann T. Molecular characterisation of 36 multilocus imprinting disturbance (MLID) patients: a comprehensive approach. Clin Epigenetics 2023; 15:35. [PMID: 36859312 PMCID: PMC9979536 DOI: 10.1186/s13148-023-01453-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Imprinting disorders (ImpDis) comprise diseases which are caused by aberrant regulation of monoallelically and parent-of-origin-dependent expressed genes. A characteristic molecular change in ImpDis patients is aberrant methylation signatures at disease-specific loci, without an obvious DNA change at the specific differentially methylated region (DMR). However, there is a growing number of reports on multilocus imprinting disturbances (MLIDs), i.e. aberrant methylation at different DMRs in the same patient. These MLIDs account for a significant number of patients with specific ImpDis, and several reports indicate a central role of pathogenic maternal effect variants in their aetiology by affecting the maturation of the oocyte and the early embryo. Though several studies on the prevalence and the molecular causes of MLID have been conducted, homogeneous datasets comprising both genomic and methylation data are still lacking. RESULTS Based on a cohort of 36 MLID patients, we here present both methylation data obtained from next-generation sequencing (NGS, ImprintSeq) approaches and whole-exome sequencing (WES). The compilation of methylation data did not reveal a disease-specific MLID episignature, and a predisposition for the phenotypic modification was not obvious as well. In fact, this lack of epigenotype-phenotype correlation might be related to the mosaic distribution of imprinting defects and their functional relevance in specific tissues. CONCLUSIONS Due to the higher sensitivity of NGS-based approaches, we suggest that ImprintSeq might be offered at reference centres in case of ImpDis patients with unusual phenotypes but MLID negative by conventional tests. By WES, additional MLID causes than the already known maternal effect variants could not be identified, neither in the patients nor in the maternal exomes. In cases with negative WES results, it is currently unclear to what extent either environmental factors or undetected genetic variants contribute to MLID.
Collapse
Affiliation(s)
- Larissa Bilo
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Daniela Dey
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ingo Kurth
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Florian Kraft
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Leonardo Bottolo
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Gerhard Binder
- Pediatric Endocrinology, University Children's Hospital, Universiy of Tuebingen, Tuebingen, Germany
| | - György Fekete
- Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Miriam Elbracht
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Matthias Begemann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Thomas Eggermann
- Medical Faculty, Institute for Human Genetics and Genome Medicine, RWTH Aachen University, Pauwelsstr. 30, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Mannens MMAM, Lombardi MP, Alders M, Henneman P, Bliek J. Further Introduction of DNA Methylation (DNAm) Arrays in Regular Diagnostics. Front Genet 2022; 13:831452. [PMID: 35860466 PMCID: PMC9289263 DOI: 10.3389/fgene.2022.831452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/08/2022] [Indexed: 12/01/2022] Open
Abstract
Methylation tests have been used for decades in regular DNA diagnostics focusing primarily on Imprinting disorders or specific loci annotated to specific disease associated gene promotors. With the introduction of DNA methylation (DNAm) arrays such as the Illumina Infinium HumanMethylation450 Beadchip array or the Illumina Infinium Methylation EPIC Beadchip array (850 k), it has become feasible to study the epigenome in a timely and cost-effective way. This has led to new insights regarding the complexity of well-studied imprinting disorders such as the Beckwith Wiedemann syndrome, but it has also led to the introduction of tests such as EpiSign, implemented as a diagnostic test in which a single array experiment can be compared to databases with known episignatures of multiple genetic disorders, especially neurodevelopmental disorders. The successful use of such DNAm tests is rapidly expanding. More and more disorders are found to be associated with discrete episignatures which enables fast and definite diagnoses, as we have shown. The first examples of environmentally induced clinical disorders characterized by discrete aberrant DNAm are discussed underlining the broad application of DNAm testing in regular diagnostics. Here we discuss exemplary findings in our laboratory covering this broad range of applications and we discuss further use of DNAm tests in the near future.
Collapse
|
8
|
Mangiavacchi PM, Caldas-Bussiere MC, Mendonça MDS, Rumpf R, Lemos Júnior PES, Alves CS, Carneiro WDS, Dias AJB, Rios ÁFL. Multi-locus DNA methylation analysis of imprinted genes in cattle from somatic cell nuclear transfer. Theriogenology 2022; 186:95-107. [DOI: 10.1016/j.theriogenology.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
|
9
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
11
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
12
|
Pileggi S, La Vecchia M, Colombo EA, Fontana L, Colapietro P, Rovina D, Morotti A, Tabano S, Porta G, Alcalay M, Gervasini C, Miozzo M, Sirchia SM. Cohesin Mutations Induce Chromatin Conformation Perturbation of the H19/ IGF2 Imprinted Region and Gene Expression Dysregulation in Cornelia de Lange Syndrome Cell Lines. Biomolecules 2021; 11:1622. [PMID: 34827619 PMCID: PMC8615450 DOI: 10.3390/biom11111622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Traditionally, Cornelia de Lange Syndrome (CdLS) is considered a cohesinopathy caused by constitutive mutations in cohesin complex genes. Cohesin is a major regulator of chromatin architecture, including the formation of chromatin loops at the imprinted IGF2/H19 domain. We used 3C analysis on lymphoblastoid cells from CdLS patients carrying mutations in NIPBL and SMC1A genes to explore 3D chromatin structure of the IGF2/H19 locus and evaluate the influence of cohesin alterations in chromatin architecture. We also assessed quantitative expression of imprinted loci and WNT pathway genes, together with DMR methylation status of the imprinted genes. A general impairment of chromatin architecture and the emergence of new interactions were found. Moreover, imprinting alterations also involved the expression and methylation levels of imprinted genes, suggesting an association among cohesin genetic defects, chromatin architecture impairment, and imprinting network alteration. The WNT pathway resulted dysregulated: canonical WNT, cell cycle, and WNT signal negative regulation were the most significantly affected subpathways. Among the deregulated pathway nodes, the key node of the frizzled receptors was repressed. Our study provides new evidence that mutations in genes of the cohesin complex have effects on the chromatin architecture and epigenetic stability of genes commonly regulated by high order chromatin structure.
Collapse
Affiliation(s)
- Silvana Pileggi
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Marta La Vecchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Elisa Adele Colombo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Laura Fontana
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milano, Italy
| | - Patrizia Colapietro
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, 20122 Milan, Italy; (P.C.); (S.T.)
| | - Davide Rovina
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Annamaria Morotti
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Silvia Tabano
- Department of Pathophysiology and Transplantation, Medical Genetics, Università degli Studi di Milano, 20122 Milan, Italy; (P.C.); (S.T.)
- Laboratory of Medical Genetics, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Giovanni Porta
- Centro di Medicina Genomica, Department of Medicine and Surgery, Università degli Studi dell’Insubria, 21100 Varese, Italy;
| | - Myriam Alcalay
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20139 Milan, Italy;
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Cristina Gervasini
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| | - Monica Miozzo
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
- Unit of Medical Genetics, ASST Santi Paolo e Carlo, 20142 Milano, Italy
| | - Silvia Maria Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy; (S.P.); (M.L.V.); (E.A.C.); (L.F.); (D.R.); (C.G.); (S.M.S.)
| |
Collapse
|
13
|
Clinical and Molecular Diagnosis of Beckwith-Wiedemann Syndrome with Single- or Multi-Locus Imprinting Disturbance. Int J Mol Sci 2021; 22:ijms22073445. [PMID: 33810554 PMCID: PMC8036922 DOI: 10.3390/ijms22073445] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a clinically and genetically heterogeneous overgrowth disease. BWS is caused by (epi)genetic defects at the 11p15 chromosomal region, which harbors two clusters of imprinted genes, IGF2/H19 and CDKN1C/KCNQ1OT1, regulated by differential methylation of imprinting control regions, H19/IGF2:IG DMR and KCNQ1OT1:TSS DMR, respectively. A subset of BWS patients show multi-locus imprinting disturbances (MLID), with methylation defects extended to other imprinted genes in addition to the disease-specific locus. Specific (epi)genotype-phenotype correlations have been defined in order to help clinicians in the classification of patients and referring them to a timely diagnosis and a tailored follow-up. However, specific phenotypic correlations have not been identified among MLID patients, thus causing a debate on the usefulness of multi-locus testing in clinical diagnosis. Finally, the high incidence of BWS monozygotic twins with discordant phenotypes, the high frequency of BWS among babies conceived by assisted reproductive technologies, and the female prevalence among BWS-MLID cases provide new insights into the timing of imprint establishment during embryo development. In this review, we provide an overview on the clinical and molecular diagnosis of single- and multi-locus BWS in pre- and post-natal settings, and a comprehensive analysis of the literature in order to define possible (epi)genotype-phenotype correlations in MLID patients.
Collapse
|
14
|
Choufani S, Ko JM, Lou Y, Shuman C, Fishman L, Weksberg R. Paternal Uniparental Disomy of the Entire Chromosome 20 in a Child with Beckwith-Wiedemann Syndrome. Genes (Basel) 2021; 12:genes12020172. [PMID: 33513760 PMCID: PMC7911624 DOI: 10.3390/genes12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic alterations at imprinted genes on different chromosomes have been linked to several imprinting disorders (IDs) such as Beckwith-Wiedemann syndrome (BWS) and pseudohypoparathyroidism type 1b (PHP1b). Here, we present a male patient with these two distinct IDs caused by two independent mechanisms-loss of methylation (LOM) at chromosome 11p15.5 associated with multi-locus imprinting disturbances (MLID and paternal uniparental disomy of chromosome 20 (patUPD20). A clinical diagnosis of BWS was made based on the clinical features of macrosomia, macroglossia, and umbilical hernia. The diagnosis of PHP1b was supported by the presence of reduced growth velocity and mild learning disability as well as hypocalcemia and hyperphosphatemia at 14 years of age. Molecular analyses, including genome-wide DNA methylation (Illumina 450k array), bisulfite pyrosequencing, single nucleotide polymorphism (SNP) array and microsatellite analysis, demonstrated loss of methylation (LOM) at IC2 on chromosome 11p15.5, and paternal isodisomy of the entire chromosome 20. In addition, imprinting disturbances were noted at the differentially methylated regions (DMRs) associated with DIRAS3 on chromosome 1 and PLAGL1 on chromosome 6. This is the first case report of PHP1b due to patUPD20 diagnosed in a BWS patient with LOM at IC2 demonstrating etiologic heterogeneity for multiple imprinting disorders in a single individual.
Collapse
Affiliation(s)
- Sanaa Choufani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Jung Min Ko
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Youliang Lou
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
| | - Cheryl Shuman
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
| | - Leona Fishman
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; (S.C.); (J.M.K.); (Y.L.)
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X8, Canada;
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
15
|
Papulino C, Chianese U, Nicoletti MM, Benedetti R, Altucci L. Preclinical and Clinical Epigenetic-Based Reconsideration of Beckwith-Wiedemann Syndrome. Front Genet 2020; 11:563718. [PMID: 33101381 PMCID: PMC7522569 DOI: 10.3389/fgene.2020.563718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
Epigenetics has achieved a profound impact in the biomedical field, providing new experimental opportunities and innovative therapeutic strategies to face a plethora of diseases. In the rare diseases scenario, Beckwith-Wiedemann syndrome (BWS) is a pediatric pathological condition characterized by a complex molecular basis, showing alterations in the expression of different growth-regulating genes. The molecular origin of BWS is associated with impairments in the genomic imprinting of two domains at the 11p15.5 chromosomal region. The first domain contains three different regions: insulin growth like factor gene (IGF2), H19, and abnormally methylated DMR1 region. The second domain consists of cell proliferation and regulating-genes such as CDKN1C gene encoding for cyclin kinase inhibitor its role is to block cell proliferation. Although most cases are sporadic, about 5-10% of BWS patients have inheritance characteristics. In the 11p15.5 region, some of the patients have maternal chromosomal rearrangements while others have Uniparental Paternal Disomy UPD(11)pat. Defects in DNA methylation cause alteration of genes and the genomic structure equilibrium leading uncontrolled cell proliferation, which is a typical tumorigenesis event. Indeed, in BWS patients an increased childhood tumor predisposition is observed. Here, we summarize the latest knowledge on BWS and focus on the impact of epigenetic alterations to an increased cancer risk development and to metabolic disorders. Moreover, we highlight the correlation between assisted reproductive technologies and this rare disease. We also discuss intriguing aspects of BWS in twinning. Epigenetic therapies in clinical trials have already demonstrated effectiveness in oncological and non-oncological diseases. In this review, we propose a potential "epigenetic-based" approaches may unveil new therapeutic options for BWS patients. Although the complexity of the syndrome is high, patients can be able to lead a normal life but tumor predispositions might impair life expectancy. In this sense epigenetic therapies should have a supporting role in order to guarantee a good prognosis.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Maddalena Nicoletti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
16
|
Fontana L, Bedeschi MF, Cagnoli GA, Costanza J, Persico N, Gangi S, Porro M, Ajmone PF, Colapietro P, Santaniello C, Crippa M, Sirchia SM, Miozzo M, Tabano S. (Epi)genetic profiling of extraembryonic and postnatal tissues from female monozygotic twins discordant for Beckwith-Wiedemann syndrome. Mol Genet Genomic Med 2020; 8:e1386. [PMID: 32627967 PMCID: PMC7507324 DOI: 10.1002/mgg3.1386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Beckwith–Wiedemann syndrome (BWS) is an overgrowth disorder caused by defects at the 11p15.5 imprinted region. Many cases of female monozygotic (MZ) twins discordant for BWS have been reported, but no definitive conclusions have been drawn regarding the link between epigenetic defects, twinning process, and gender. Here, we report a comprehensive characterization and follow‐up of female MZ twins discordant for BWS. Methods Methylation pattern at 11p15.5 and multilocus methylation disturbance (MLID) profiling were performed by pyrosequencing and MassARRAY in placental/umbilical cord samples and postnatal tissues. Whole‐exome sequencing was carried out to identify MLID causative mutations. X‐chromosome inactivation (XCI) was determined by HUMARA test. Results Both twins share KCNQ1OT1:TSS‐DMR loss of methylation (LOM) and MLID in blood and the epigenetic defect remained stable in the healthy twin over time. KCNQ1OT1:TSS‐DMRLOM was nonhomogeneously distributed in placental samples and the twins showed the same severely skewed XCI pattern. No MLID‐causative mutations were identified. Conclusion This is the first report on BWS‐discordant twins with methylation analyses extended to extraembryonic tissues. The results suggest that caution is required when attempting prenatal diagnosis in similar cases. Although the causative mechanism underlying LOM remains undiscovered, the XCI pattern and mosaic LOM suggest that both twinning and LOM/MLID occurred after XCI commitment.
Collapse
Affiliation(s)
- Laura Fontana
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Maria F Bedeschi
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Giulia A Cagnoli
- Medical Genetics Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Jole Costanza
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nicola Persico
- Obstetrics and Gynecology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.,Department of ClinicalSciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvana Gangi
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Matteo Porro
- Pediatric Physical Medicine & Rehabilitation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Paola F Ajmone
- Child and AdolescentNeuropsychiatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Patrizia Colapietro
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Carlo Santaniello
- Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Milena Crippa
- Medical Cytogenetics& Human Molecular Genetics, Istituto Auxologico Italiano-IRCCS, Milano, Italy
| | - Silvia M Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Miozzo
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Research Laboratories Coordination Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Silvia Tabano
- Medical Genetics, Department of Pathophysiology & Transplantation, Università degli Studi di Milano, Milano, Italy.,Laboratory of Medical Genetics, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
17
|
DNA Methylation in the Diagnosis of Monogenic Diseases. Genes (Basel) 2020; 11:genes11040355. [PMID: 32224912 PMCID: PMC7231024 DOI: 10.3390/genes11040355] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
DNA methylation in the human genome is largely programmed and shaped by transcription factor binding and interaction between DNA methyltransferases and histone marks during gamete and embryo development. Normal methylation profiles can be modified at single or multiple loci, more frequently as consequences of genetic variants acting in cis or in trans, or in some cases stochastically or through interaction with environmental factors. For many developmental disorders, specific methylation patterns or signatures can be detected in blood DNA. The recent use of high-throughput assays investigating the whole genome has largely increased the number of diseases for which DNA methylation analysis provides information for their diagnosis. Here, we review the methylation abnormalities that have been associated with mono/oligogenic diseases, their relationship with genotype and phenotype and relevance for diagnosis, as well as the limitations in their use and interpretation of results.
Collapse
|
18
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
19
|
Elbracht M, Mackay D, Begemann M, Kagan KO, Eggermann T. Disturbed genomic imprinting and its relevance for human reproduction: causes and clinical consequences. Hum Reprod Update 2020; 26:197-213. [DOI: 10.1093/humupd/dmz045] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/07/2019] [Accepted: 11/15/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
BACKGROUND
Human reproductive issues affecting fetal and maternal health are caused by numerous exogenous and endogenous factors, of which the latter undoubtedly include genetic changes. Pathogenic variants in either maternal or offspring DNA are associated with effects on the offspring including clinical disorders and nonviable outcomes. Conversely, both fetal and maternal factors can affect maternal health during pregnancy. Recently, it has become evident that mammalian reproduction is influenced by genomic imprinting, an epigenetic phenomenon that regulates the expression of genes according to their parent from whom they are inherited. About 1% of human genes are normally expressed from only the maternally or paternally inherited gene copy. Since numerous imprinted genes are involved in (embryonic) growth and development, disturbance of their balanced expression can adversely affect these processes.
OBJECTIVE AND RATIONALE
This review summarises current our understanding of genomic imprinting in relation to human ontogenesis and pregnancy and its relevance for reproductive medicine.
SEARCH METHODS
Literature databases (Pubmed, Medline) were thoroughly searched for the role of imprinting in human reproductive failure. In particular, the terms ‘multilocus imprinting disturbances, SCMC, NLRP/NALP, imprinting and reproduction’ were used in various combinations.
OUTCOMES
A range of molecular changes to specific groups of imprinted genes are associated with imprinting disorders, i.e. syndromes with recognisable clinical features including distinctive prenatal features. Whereas the majority of affected individuals exhibit alterations at single imprinted loci, some have multi-locus imprinting disturbances (MLID) with less predictable clinical features. Imprinting disturbances are also seen in some nonviable pregnancy outcomes, such as (recurrent) hydatidiform moles, which can therefore be regarded as a severe form of imprinting disorders. There is growing evidence that MLID can be caused by variants in the maternal genome altering the imprinting status of the oocyte and the embryo, i.e. maternal effect mutations. Pregnancies of women carrying maternal affect mutations can have different courses, ranging from miscarriages to birth of children with clinical features of various imprinting disorders.
WIDER IMPLICATIONS
Increasing understanding of imprinting disturbances and their clinical consequences have significant impacts on diagnostics, counselling and management in the context of human reproduction. Defining criteria for identifying pregnancies complicated by imprinting disorders facilitates early diagnosis and personalised management of both the mother and offspring. Identifying the molecular lesions underlying imprinting disturbances (e.g. maternal effect mutations) allows targeted counselling of the family and focused medical care in further pregnancies.
Collapse
Affiliation(s)
- Miriam Elbracht
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Deborah Mackay
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthias Begemann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karl Oliver Kagan
- Obstetrics and Gynaecology, University Hospital of Tübingen, Tübingen, Germany
| | - Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
|
21
|
Borchiellini M, Ummarino S, Di Ruscio A. The Bright and Dark Side of DNA Methylation: A Matter of Balance. Cells 2019; 8:cells8101243. [PMID: 31614870 PMCID: PMC6830319 DOI: 10.3390/cells8101243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022] Open
Abstract
DNA methylation controls several cellular processes, from early development to old age, including biological responses to endogenous or exogenous stimuli contributing to disease transition. As a result, minimal DNA methylation changes during developmental stages drive severe phenotypes, as observed in germ-line imprinting disorders, while genome-wide alterations occurring in somatic cells are linked to cancer onset and progression. By summarizing the molecular events governing DNA methylation, we focus on the methods that have facilitated mapping and understanding of this epigenetic mark in healthy conditions and diseases. Overall, we review the bright (health-related) and dark (disease-related) side of DNA methylation changes, outlining how bulk and single-cell genomic analyses are moving toward the identification of new molecular targets and driving the development of more specific and less toxic demethylating agents.
Collapse
Affiliation(s)
- Marta Borchiellini
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy.
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy.
| | - Simone Ummarino
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| | - Annalisa Di Ruscio
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy.
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Azzollini J, Pesenti C, Pizzamiglio S, Fontana L, Guarino C, Peissel B, Plebani M, Tabano S, Sirchia SM, Colapietro P, Villa R, Paolini B, Verderio P, Miozzo M, Manoukian S. Constitutive BRCA1 Promoter Hypermethylation Can Be a Predisposing Event in Isolated Early-Onset Breast Cancer. Cancers (Basel) 2019; 11:cancers11010058. [PMID: 30634417 PMCID: PMC6356733 DOI: 10.3390/cancers11010058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
Early age at onset of breast cancer (eoBC) is suggestive of an increased genetic risk. Although genetic testing is offered to all eoBC-affected women, in isolated cases the detection rate of pathogenic variants is <10%. This study aimed at assessing the role of constitutive promoter methylation at BC-associated loci as an underlying predisposing event in women with eoBC and negative family history. Promoter methylation at 12 loci was assessed by the MassARRAY technology in blood from 154 BRCA1/2 negative patients with eoBC and negative family history, and 60 healthy controls. Hypermethylation was determined, within each promoter, by comparing the patient’s mean methylation value with thresholds based on one-sided 95% bootstrap confidence interval of the controls’ mean. Three patients had hypermethylated results, two at BRCA1 and one at RAD51C. Analyses on tumor tissue from the patient exceeding the highest threshold at BRCA1 revealed a mean methylation >60% and loss of heterozygosity at chromosome 17q. The patient hypermethylated at RAD51C showed low methylation in the tumor sample, ruling out a role for methylation-induced silencing in tumor development. In isolated eoBC patients, BRCA1 constitutive promoter methylation may be a predisposing event. Further studies are required to define the impact of methylation changes occurring at BC-predisposing genes and their role in tumorigenesis.
Collapse
Affiliation(s)
- Jacopo Azzollini
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Chiara Pesenti
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Sara Pizzamiglio
- Unit of Bioinformatics and Biostatistics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Laura Fontana
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Carmela Guarino
- Immunohematology & Transfusion Medicine Service, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy.
| | - Bernard Peissel
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Maddalena Plebani
- Unit of Bioinformatics and Biostatistics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Silvia Tabano
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Silvia Maria Sirchia
- Medical Genetics, Department of Health Sciences, Università degli Studi di Milano, 20142 Milano, Italy.
| | - Patrizia Colapietro
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Roberta Villa
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Monica Miozzo
- Department of Pathophysiology & Transplantation, Università degli Studi di Milano; Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy.
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|