1
|
Zhao M, Cai M, Lei F, Yuan X, Liu Q, Fang Y, Zhu B. AI-driven feature selection and epigenetic pattern analysis: A screening strategy of CpGs validated by pyrosequencing for body fluid identification. Forensic Sci Int 2025; 367:112339. [PMID: 39729807 DOI: 10.1016/j.forsciint.2024.112339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024]
Abstract
Identification of body fluid stain at crime scene is one of the important tasks of forensic evidence analysis. Currently, body fluid-specific CpGs detected by DNA methylation microarray screening, have been widely studied for forensic body fluid identification. However, some CpGs have limited ability to distinguish certain body fluid types. The ongoing need is to discover novel methylation markers and fully validate them to enhance their evidentiary strength in complex forensic scenarios. This research gathered forensic-related DNA methylation microarrays data from the Gene Expression Omnibus (GEO) database. A novel screening strategy for marker selection was developed, combining feature selection algorithms (elastic net, information gain ratio, feature importance based on Random Forest, and mutual information coefficient) with epigenetic pattern analysis, to identify CpG markers for body fluid identification. The selected CpGs were validated through pyrosequencing on peripheral blood, saliva, semen, vaginal secretions, and menstrual blood samples, and machine learning classification models were constructed based on the sequencing results. Pyrosequencing results revealed 14 CpGs with high specificity in five types of body fluid samples. A machine learning classification model, developed based on the pyrosequencing results, could effectively distinguish five types of body fluid samples, achieving 100 % accuracy on the test set. Utilizing six CpG markers, it was also feasible to attain ideal efficacy in identifying body fluid stains. Our research proposes a systematic and scientific strategy for screening body fluid-specific CpGs, contributing new insights and methods to forensic body fluid identification.
Collapse
Affiliation(s)
- Ming Zhao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meiming Cai
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fanzhang Lei
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xi Yuan
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qinglin Liu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yating Fang
- School of Basic Medical Science, Anhui Medical University, Hefei 230031, China.
| | - Bofeng Zhu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Liu J, Huang B, Ding F, Li Y. Environment factors, DNA methylation, and cancer. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7543-7568. [PMID: 37715840 DOI: 10.1007/s10653-023-01749-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
Today, the rapid development of science and technology and the rapid change in economy and society are changing the way of life of human beings and affecting the natural, living, working, and internal environment on which human beings depend. At the same time, the global incidence of cancer has increased significantly yearly, and cancer has become the number one killer that threatens human health. Studies have shown that diet, living habits, residential environment, mental and psychological factors, intestinal flora, genetics, social factors, and viral and non-viral infections are closely related to human cancer. However, the molecular mechanisms of the environment and cancer development remain to be further explored. In recent years, DNA methylation has become a key hub and bridge for environmental and cancer research. Some environmental factors can alter the hyper/hypomethylation of human cancer suppressor gene promoters, proto-oncogene promoters, and the whole genome, causing low/high expression or gene mutation of related genes, thereby exerting oncogenic or anticancer effects. It is expected to develop early warning markers of cancer environment based on DNA methylation, thereby providing new methods for early detection of cancers, diagnosis, and targeted therapy. This review systematically expounds on the internal mechanism of environmental factors affecting cancer by changing DNA methylation, aiming to help establish the concept of cancer prevention and improve people's health.
Collapse
Affiliation(s)
- Jie Liu
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Binjie Huang
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Feifei Ding
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lan Zhou, China.
- Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lan Zhou, China.
| |
Collapse
|
3
|
Hunt JT, Kamat R, Yao M, Sharma N, Batur P. Effect of contraceptive hormonal therapy on mammographic breast density: A longitudinal cohort study. Clin Imaging 2023; 97:62-67. [PMID: 36893493 DOI: 10.1016/j.clinimag.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE Evaluate the longitudinal relationship between mammographic density and hormonal contraceptive use in late reproductive-aged women. METHODS Patients aged 35-50 years old who underwent 5 or more screening mammograms within a 7.5-year period between 2004 and 2019 in a single urban tertiary care center were randomly selected. Patients were categorized into four cohorts based on hormonal contraceptive exposure during a 2-year lead-in period and a 7.5-year study period: 1) never exposed, 2) always exposed, 3) interval hormonal contraceptive start, and 4) interval hormonal contraceptive stop. The primary outcome was difference in BI-RADS breast density category between initial and final mammograms. RESULTS Of the 708 patients included, long-term use of combined oral contraceptives or a levonorgestrel intrauterine device were not associated with an increase in breast density category over the 7.5-year study period, compared to those with no hormonal contraceptive exposure. Initiation of combined oral contraceptives was associated with an increase in breast density category (β = 0.31, P = 0.045); however, no difference in initial density category was noted between those exposed and those never exposed to combined oral contraceptives during the 2-year lead-in period, and discontinuation was not associated with a decrease in breast density category when compared to those with continuous exposure. CONCLUSION(S) Long-term use of combined oral contraceptives or a levonorgestrel intrauterine device was not associated with an increase in BI-RADS breast density category. Initiation of a combined oral contraceptive was associated with an increase in breast density category, although this may be a transient effect.
Collapse
Affiliation(s)
- Jonathan T Hunt
- Department of Obstetrics & Gynecology, Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH 44195, United States.
| | - Rachel Kamat
- Department of Obstetrics & Gynecology, Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Meng Yao
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Nidhi Sharma
- Austin Radiological Association Women's Imaging Center, Suite 100, 1600 West 38(th) Street, Austin, TX 78731, United States
| | - Pelin Batur
- Department of Obstetrics & Gynecology, Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
4
|
Krum-Hansen S, Standahl Olsen K, Anderssen E, Frantzen JO, Lund E, Paulssen RH. Associations of breast cancer related exposures and gene expression profiles in normal breast tissue-The Norwegian Women and Cancer normal breast tissue study. Cancer Rep (Hoboken) 2023; 6:e1777. [PMID: 36617746 PMCID: PMC10075301 DOI: 10.1002/cnr2.1777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Normal breast tissue is utilized in tissue-based studies of breast carcinogenesis. While gene expression in breast tumor tissue is well explored, our knowledge of transcriptomic signatures in normal breast tissue is still incomplete. The aim of this study was to investigate variability of gene expression in a large sample of normal breast tissue biopsies, according to breast cancer related exposures (obesity, smoking, alcohol, hormone therapy, and parity). METHODS We analyzed gene expression profiles from 311 normal breast tissue biopsies from cancer-free, post-menopausal women, using Illumina bead chip arrays. Principal component analysis and K-means clustering was used for initial analysis of the dataset. The association of exposures and covariates with gene expression was determined using linear models for microarrays. RESULTS Heterogeneity of the breast tissue and cell composition had the strongest influence on gene expression profiles. After adjusting for cell composition, obesity, smoking, and alcohol showed the highest numbers of associated genes and pathways, whereas hormone therapy and parity were associated with negligible gene expression differences. CONCLUSION Our results provide insight into associations between major exposures and gene expression profiles and provide an informative baseline for improved understanding of exposure-related molecular events in normal breast tissue of cancer-free, post-menopausal women.
Collapse
Affiliation(s)
- Sanda Krum-Hansen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway.,Department of Hematology and Oncology, Stavanger University Hospital, Stavanger, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Endre Anderssen
- Genomics Support Center Tromsø (GSCT), UiT The Arctic University of Norway, Tromsø, Norway
| | - Jan Ole Frantzen
- Narvik Hospital, University Hospital of North Norway, Narvik, Norway
| | - Eiliv Lund
- Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ruth H Paulssen
- Genomics Support Center Tromsø (GSCT), UiT The Arctic University of Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
5
|
Wei S, Tao J, Xu J, Chen X, Wang Z, Zhang N, Zuo L, Jia Z, Chen H, Sun H, Yan Y, Zhang M, Lv H, Kong F, Duan L, Ma Y, Liao M, Xu L, Feng R, Liu G, Project TEWAS, Jiang Y. Ten Years of EWAS. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100727. [PMID: 34382344 PMCID: PMC8529436 DOI: 10.1002/advs.202100727] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Epigenome-wide association study (EWAS) has been applied to analyze DNA methylation variation in complex diseases for a decade, and epigenome as a research target has gradually become a hot topic of current studies. The DNA methylation microarrays, next-generation, and third-generation sequencing technologies have prepared a high-quality platform for EWAS. Here, the progress of EWAS research is reviewed, its contributions to clinical applications, and mainly describe the achievements of four typical diseases. Finally, the challenges encountered by EWAS and make bold predictions for its future development are presented.
Collapse
Affiliation(s)
- Siyu Wei
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Junxian Tao
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Xingyu Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhaoyang Wang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Lijiao Zuo
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Zhe Jia
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Haiyan Chen
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongmei Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Yubo Yan
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
| | - Fanwu Kong
- The EWAS ProjectHarbinChina
- Department of NephrologyThe Second Affiliated HospitalHarbin Medical UniversityHarbin150001China
| | - Lian Duan
- The EWAS ProjectHarbinChina
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Ye Ma
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| | - Mingzhi Liao
- The EWAS ProjectHarbinChina
- College of Life SciencesNorthwest A&F UniversityYanglingShanxi712100China
| | - Liangde Xu
- The EWAS ProjectHarbinChina
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhou325035China
| | - Rennan Feng
- The EWAS ProjectHarbinChina
- Department of Nutrition and Food HygienePublic Health CollegeHarbin Medical UniversityHarbin150081China
| | - Guiyou Liu
- The EWAS ProjectHarbinChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijing100069China
| | | | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbin150081China
- The EWAS ProjectHarbinChina
| |
Collapse
|
6
|
Abstract
The current therapies against cancer showed limited success. Nanotechnology is a promising strategy for cancer tracking, diagnosis, and therapy. The hybrid nanotechnology assembled several materials in a multimodal system to develop multifunctional approaches to cancer treatment. The quantum dot and polymer are some of these hybrid nanoparticle platforms. The quantum dot hybrid system possesses photonic and magnetic properties, allowing photothermal therapy and live multimodal imaging of cancer. These quantum dots were used to convey medicines to cancer cells. Hybrid polymer nanoparticles were utilized for the systemic delivery of small interfering RNA to malignant tumors and metastasis. They allowed non-invasive imaging to track in real-time the biodistribution of small interfering RNA in the whole body. They offer an opportunity to treat cancers by specifically silencing target genes. This review highlights the major nanotechnology approaches to effectively treat cancer and metastasis.
Collapse
|