1
|
Wang N, Yang F, Qiu Z, Zhang L, Zou D, Tang Y, Zhang R, Sun C, Liu P, Qi K, Wang J, He H, Gan L. Curcumin prevents dexamethasone-induced activation of the pseudorabies virus in rat pheochromocytoma cells through the miR-155-5p-Aak1-Numb/Notch2 signalling axis. Vet Res 2025; 56:86. [PMID: 40259414 PMCID: PMC12010530 DOI: 10.1186/s13567-025-01509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/28/2025] [Indexed: 04/23/2025] Open
Abstract
Pseudorabies virus (PRV) causes neurological disorders and organ damage in diseased animals. After initial infection, PRV activity is gradually inhibited; however, stress stimulation increases the host's glucocorticoid levels, which overcomes the inhibition of PRV activity. Curcumin (Cur) helps maintain the inhibitory state of the Epstein-Barr virus, although further research is needed to establish whether Cur can prevent PRV activation triggered by stress hormones. In this study, we used PC-12 cells to determine the effects of Cur on PRV activation. The cells were successfully infected with PRV at a multiplicity of infection of 1 for 24 h, resulting in the inhibition of PRV activity. Following incubation with 0.5 µM dexamethasone (DEX) for 4 h, the inhibition of PRV activity was blocked. Further mechanistic analyses using a dual-luciferase assay revealed that miR-155-5p directly targets and regulates Aak1 and its downstream signalling molecules, Numb and Notch2, in maintaining and disrupting PRV inhibition. Moreover, in vitro experiments using miR-155-5p mimics and inhibitors, combined with Aak1 overexpression and interference, confirmed that the miR-155-5p-Aak1-Numb/Notch2 axis prevented DEX-induced disruption of PRV inhibition by Cur. These findings provide a novel regulatory target for preventing stress-activated PRV and provide evidence for the potential use of Cur as a stress modulator in practical applications.
Collapse
Affiliation(s)
- Naixiu Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Fan Yang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Zhiyun Qiu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Lin Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Dingqiu Zou
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Yanru Tang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Ruihan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Chenlu Sun
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Pei Liu
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Kexin Qi
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Jingyi Wang
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China
| | - Hua He
- College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, 611130, China
| | - Ling Gan
- College of Veterinary Medicine, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
2
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
3
|
Scheiber C, Klein HC, Schneider JM, Schulz T, Bechter K, Tumani H, Kapapa T, Flinkman D, Coffey E, Ross D, Čistjakovs M, Nora-Krūkle Z, Bortolotti D, Rizzo R, Murovska M, Schneider EM. HSV-1 and Cellular miRNAs in CSF-Derived Exosomes as Diagnostically Relevant Biomarkers for Neuroinflammation. Cells 2024; 13:1208. [PMID: 39056790 PMCID: PMC11275151 DOI: 10.3390/cells13141208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Virus-associated chronic inflammation may contribute to autoimmunity in a number of diseases. In the brain, autoimmune encephalitis appears related to fluctuating reactivation states of neurotropic viruses. In addition, viral miRNAs and proteins can be transmitted via exosomes, which constitute novel but highly relevant mediators of cellular communication. The current study questioned the role of HSV-1-encoded and host-derived miRNAs in cerebrospinal fluid (CSF)-derived exosomes, enriched from stress-induced neuroinflammatory diseases, mainly subarachnoid hemorrhage (SAH), psychiatric disorders (AF and SZ), and various other neuroinflammatory diseases. The results were compared with CSF exosomes from control donors devoid of any neuroinflammatory pathology. Serology proved positive, but variable immunity against herpesviruses in the majority of patients, except controls. Selective ultrastructural examinations identified distinct, herpesvirus-like particles in CSF-derived lymphocytes and monocytes. The likely release of extracellular vesicles and exosomes was most frequently observed from CSF monocytes. The exosomes released were structurally similar to highly purified stem-cell-derived exosomes. Exosomal RNA was quantified for HSV-1-derived miR-H2-3p, miR-H3-3p, miR-H4-3p, miR-H4-5p, miR-H6-3p, miR-H27 and host-derived miR-21-5p, miR-146a-5p, miR-155-5p, and miR-138-5p and correlated with the oxidative stress chemokine IL-8 and the axonal damage marker neurofilament light chain (NfL). Replication-associated miR-H27 correlated with neuronal damage marker NfL, and cell-derived miR-155-5p correlated with oxidative stress marker IL-8. Elevated miR-138-5p targeting HSV-1 latency-associated ICP0 inversely correlated with lower HSV-1 antibodies in CSF. In summary, miR-H27 and miR-155-5p may constitute neuroinflammatory markers for delineating frequent and fluctuating HSV-1 replication and NfL-related axonal damage in addition to the oxidative stress cytokine IL-8 in the brain. Tentatively, HSV-1 remains a relevant pathogen conditioning autoimmune processes and a psychiatric clinical phenotype.
Collapse
Affiliation(s)
- Christian Scheiber
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Hans C. Klein
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Research and Education Department Addiction Care Northern Netherlands, 9728 JR Groningen, The Netherlands
| | - Julian M. Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
| | - Tanja Schulz
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
| | - Karl Bechter
- Clinic for Psychiatry and Psychotherapy II, Ulm University, 89312 Guenzburg, Germany;
| | - Hayrettin Tumani
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| | - Thomas Kapapa
- Department of Neurosurgery, Ulm University Hospital, 89081 Ulm, Germany;
| | - Dani Flinkman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (D.F.); (E.C.)
| | - Eleanor Coffey
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20521 Turku, Finland; (D.F.); (E.C.)
| | | | - Maksims Čistjakovs
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - Zaiga Nora-Krūkle
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy; (D.B.); (R.R.)
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, Via Luigi Borsari, 46, 44121 Ferrara, Italy; (D.B.); (R.R.)
- Laboratory for Advanced Therapeutic Technologies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Modra Murovska
- Institute of Microbiology and Virology, Riga Stradins University, 1067 Riga, Latvia; (M.Č.); (Z.N.-K.); (M.M.)
| | - E. Marion Schneider
- Clinic for Anaesthesiology and Intensive Care Medicine, Ulm University Hospital, 89081 Ulm, Germany; (C.S.); (J.M.S.); (T.S.)
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany;
| |
Collapse
|
4
|
Wang Z, Wang R, Niu L, Zhou X, Han J, Li K. EPB41L4A-AS1 is required to maintain basal autophagy to modulates Aβ clearance. NPJ AGING 2024; 10:24. [PMID: 38704365 PMCID: PMC11069514 DOI: 10.1038/s41514-024-00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) plaques. Aβ is generated from the cleavage of the amyloid precursor protein by β and γ-secretases and cleared by neuroglial cells mediated autophagy. The imbalance of the intracellular Aβ generation and clearance is the causative factor for AD pathogenesis. However, the exact underlying molecular mechanisms remain unclear. Our previous study reported that EPB41L4A-AS1 is an aging-related long non-coding RNA (lncRNA) that is repressed in patients with AD. In this study, we found that downregulated EPB41L4A-AS1 in AD inhibited neuroglial cells mediated-Aβ clearance by decreasing the expression levels of multiple autophagy-related genes. We found that EPB41L4A-AS1 regulates the expression of general control of amino acid synthesis 5-like 2, an important histone acetyltransferase, thus affecting histone acetylation, crotonylation, and lactylation near the transcription start site of autophagy-related genes, ultimately influencing their transcription. Collectively, this study reveals EPB41L4A-AS1 as an AD-related lncRNA via mediating Aβ clearance and provides insights into the epigenetic regulatory mechanism of EPB41L4A-AS1 in gene expression and AD pathogenesis.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Ruomei Wang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Lixin Niu
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Xiaoyan Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jinxiang Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| |
Collapse
|
5
|
Wang Z, Zhang Y, Li K. Nuclear miRNAs as transcriptional regulators in processes related to various cancers (Review). Int J Oncol 2024; 64:56. [PMID: 38606502 PMCID: PMC11015916 DOI: 10.3892/ijo.2024.5644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/29/2024] [Indexed: 04/13/2024] Open
Abstract
MicroRNAs (miRNAs) are noncoding small nucleic acids that contain ~22 nucleotides and are considered to promote the degradation or inhibit the translation of mRNA by targeting its 3'‑untranslated region. However, growing evidence has revealed that nuclear miRNAs, combined with gene promoters or enhancers, are able to directly mediate gene transcription. These miRNAs exert a critical influence on cancer progression by affecting cell growth, migration and invasion. In this review, the direct regulation of gene expression by nuclear miRNAs at the transcriptional level was discussed and summarized, and their mechanisms of action in cancers were highlighted with reference to the various body systems.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yu Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
6
|
Xue J, Zhou D, Zhou J, Du X, Zhang X, Liu X, Ding L, Cheng Z. miR-155 facilitates the synergistic replication between avian leukosis virus subgroup J and reticuloendotheliosis virus by targeting a dual pathway. J Virol 2023; 97:e0093723. [PMID: 37909729 PMCID: PMC10688374 DOI: 10.1128/jvi.00937-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/01/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE The synergy of two oncogenic retroviruses is an essential phenomenon in nature. The synergistic replication of ALV-J and REV in poultry flocks increases immunosuppression and pathogenicity, extends the tumor spectrum, and accelerates viral evolution, causing substantial economic losses to the poultry industry. However, the mechanism of synergistic replication between ALV-J and REV is still incompletely elusive. We observed that microRNA-155 targets a dual pathway, PRKCI-MAPK8 and TIMP3-MMP2, interacting with the U3 region of ALV-J and REV, enabling synergistic replication. This work gives us new targets to modulate ALV-J and REV's synergistic replication, guiding future research on the mechanism.
Collapse
Affiliation(s)
- Jingwen Xue
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Defang Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Xusheng Du
- College of Agronomy and Agricultural Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Xinyue Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Xiaoyang Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Longying Ding
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Taian City, Shandong, China
| |
Collapse
|
7
|
de Souza Carneiro VC, Leon LAA, de Paula VS. miRNAs: Targets to Investigate Herpesvirus Infection Associated with Neurological Disorders. Int J Mol Sci 2023; 24:15876. [PMID: 37958855 PMCID: PMC10650863 DOI: 10.3390/ijms242115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Herpesvirus is associated with various neurological disorders and a specific diagnosis is associated with a better prognosis. MicroRNAs (miRNAs) are potential diagnostic and prognostic biomarkers of neurological diseases triggered by herpetic infection. In this review, we discuss miRNAs that have been associated with neurological disorders related to the action of herpesviruses. Human miRNAs and herpesvirus-encoded miRNAs were listed and discussed. This review article will be valuable in stimulating the search for new diagnostic and prognosis alternatives and understanding the role of these miRNAs in neurological diseases triggered by herpesviruses.
Collapse
Affiliation(s)
- Vanessa Cristine de Souza Carneiro
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luciane Almeida Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
| |
Collapse
|
8
|
Jiang H, Li G. Transcription factors direct epigenetic reprogramming at specific loci in human cancers. Front Genet 2023; 14:1234515. [PMID: 37876590 PMCID: PMC10591108 DOI: 10.3389/fgene.2023.1234515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
The characterization of epigenetic changes during cancer development and progression led to notable insights regarding the roles of cancer-specific epigenetic reprogramming. Recent studies showed that transcription factors (TFs) are capable to regulate epigenetic reprogramming at specific loci in different cancer types through their DNA-binding activities. However, the causal association of dynamic histone modification change mediated by TFs is still not well elucidated. Here we evaluated the impacts of 636 transcription factor binding activities on histone modification in 24 cancer types. We performed Instrumental Variables analysis by using genetic lesions of TFs as our instrumental proxies, which previously discovered to be associated with histone mark activities. As a result, we showed a total of 6 EpiTFs as strong directors of epigenetic reprogramming of histone modification in cancers, which alters the molecular and clinical phenotypes of cancer. Together our findings highlight a causal mechanism driven by the TFs and genome-wide histone modification, which is relevant to multiple status of oncogenesis.
Collapse
Affiliation(s)
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Li K, Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev 2023; 86:101878. [PMID: 36738893 DOI: 10.1016/j.arr.2023.101878] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases are the most common causes of disability worldwide. Given their high prevalence, devastating symptoms, and lack of definitive diagnostic tests, there is an urgent need to identify potential biomarkers and new therapeutic targets. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in neurodegenerative diseases. Among them, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be upregulated in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). However, whether this is part of a protective or harmful mechanism is still unclear. This review summarizes our current knowledge of the role of NEAT1 in neurodegenerative diseases and its association with the characteristic aggregation of misfolded proteins: amyloid-β and tau in AD, α-synuclein in PD, mutant huntingtin in HD, and TAR DNA-binding protein-43 fused in sarcoma/translocated in liposarcoma in ALS. The aim of this review is to stimulate further research on more precise and effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| |
Collapse
|
10
|
Alshahrani SH, Alameri AA, Kahar F, Alexis Ramírez-Coronel A, Fadhel Obaid R, Alsaikhan F, Zabibah RS, Qasim QA, Altalbawy FMA, Fakri Mustafa Y, Mirzaei R, Karampoor S. Overview of the role and action mechanism of microRNA-128 in viral infections. Microb Pathog 2023; 176:106020. [PMID: 36746316 DOI: 10.1016/j.micpath.2023.106020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/21/2023] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Recently in vivo and in vitro studies have provided evidence establishing the significance of microRNAs (miRNAs) in both physiological and pathological conditions. In this regard, the role of miRNA-128 (miR-128) in health and diseases has been found, and its critical regulatory role in the context of some viral diseases has been recently identified. For instance, it has been found that miR-128 can serve as an antiviral mediator and significantly limit the replication and dissemination of human immunodeficiency virus type 1 (HIV-1). Besides, it has been noted that poliovirus receptor-related 4 (PVRL4) is post-transcriptionally regulated by miR-128, representing possible miRNA targets that can modulate measles virus infection. Of note, the downregulation of seminal exosomes eca-miR-128 is associated with the long-term persistence of Equine arteritis virus (EAV) in the reproductive tract, and this particular miRNA is a putative regulator of chemokine ligand 16 (C-X-C motif) as determined by target prediction analysis. In this review, the latest information on the role and action mechanism of miR-128 in viral infections will be summarized and discussed in detail.
Collapse
Affiliation(s)
- Shadia Hamoud Alshahrani
- Medical Surgical Nursing Department, King Khalid University, Almahala, Khamis Mushate, Saudi Arabia
| | - Ameer A Alameri
- Department of Chemistry, University of Babylon, Babylon, Iraq
| | - Fitriani Kahar
- Medic Technology Laboratory, Poltekkes Kemenkes Semarang, Indonesia
| | - Andrés Alexis Ramírez-Coronel
- National University of Education, Azogues, Ecuador; Catholic University of Cuenca, Azogues Campus, Ecuador; University of Palermo, Buenos Aires, Argentina; CES University, Colombia, Azogues, Ecuador
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Kingdom of Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), Cairo University, Giza 12613, Egypt; Department of Chemistry, University College of Duba, Tabuk University, Duba 71911, Saudi Arabia
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
lncRNA-mediated ceRNA network in bladder cancer. Noncoding RNA Res 2022; 8:135-145. [PMID: 36605618 PMCID: PMC9792360 DOI: 10.1016/j.ncrna.2022.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Bladder cancer is a common disease associated with high rates of morbidity and mortality. Although immunotherapy approaches such as adoptive T-cell therapy and immune checkpoint blockade have been investigated for the treatment of bladder cancer, their off-target effects and ability to affect only single targets have led to clinical outcomes that are far from satisfactory. Therefore, it is important to identify novel targets that can effectively control tumor growth and metastasis. It is well known that long noncoding RNAs (lncRNAs) are powerful regulators of gene expression. Increasing evidence has shown that dysregulated lncRNAs in bladder cancer are involved in cancer cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT). In this review, we focus on the roles and underlying mechanisms of lncRNA-mediated competing endogenous RNA (ceRNA) networks in the regulation of bladder cancer progression. In addition, we discuss the potential of targeting lncRNA-mediated ceRNA networks to overcome cancer treatment resistance and its association with clinicopathological features and outcomes in bladder cancer patients. We hope this review will stimulate research to develop more effective therapeutic approaches for bladder cancer treatment.
Collapse
|
12
|
Periwal N, Bhardwaj U, Sarma S, Arora P, Sood V. In silico analysis of SARS-CoV-2 genomes: Insights from SARS encoded non-coding RNAs. Front Cell Infect Microbiol 2022; 12:966870. [PMID: 36519126 PMCID: PMC9742375 DOI: 10.3389/fcimb.2022.966870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022] Open
Abstract
The recent pandemic caused by Severe Acute Respiratory Syndrome Coronavirus-2 has resulted in enormous deaths around the world. Clues from genomic sequences of parent and their mutants can be obtained to understand the evolving pathogenesis of this virus. Apart from the viral proteins, virus-encoded microRNAs (miRNAs) have been shown to play a vital role in regulating viral pathogenesis. Thus we sought to investigate the miRNAs encoded by SARS-CoV-2, its mutants, and the host. Here, we present the results obtained using a dual approach i.e (i) identifying host-encoded miRNAs that might regulate viral pathogenesis and (ii) identifying viral-encoded miRNAs that might regulate host cell signaling pathways and aid in viral pathogenesis. Analysis utilizing the first approach resulted in the identification of ten host-encoded miRNAs that could target the SARS, SARS-CoV-2, and its mutants. Interestingly our analysis revealed that there is a significantly higher number of host miRNAs that could target the SARS-CoV-2 genome as compared to the SARS reference genome. Results from the second approach resulted in the identification of a set of virus-encoded miRNAs which might regulate host signaling pathways. Our analysis further identified a similar "GA" rich motif in the SARS-CoV-2 and its mutant genomes that was shown to play a vital role in lung pathogenesis during severe SARS infections. In summary, we have identified human and virus-encoded miRNAs that might regulate the pathogenesis of SARS coronaviruses and describe similar non-coding RNA sequences in SARS-CoV-2 that were shown to regulate SARS-induced lung pathology in mice.
Collapse
Affiliation(s)
- Neha Periwal
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | | | - Sankritya Sarma
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Pooja Arora
- Department of Zoology, Hansraj College, University of Delhi, Delhi, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi, India,*Correspondence: Vikas Sood,
| |
Collapse
|
13
|
Li K, Wang Z. Non-coding RNAs: Key players in T cell exhaustion. Front Immunol 2022; 13:959729. [PMID: 36268018 PMCID: PMC9577297 DOI: 10.3389/fimmu.2022.959729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
T cell exhaustion caused by continuous antigen stimulation in chronic viral infections and the tumor microenvironment is a major barrier to successful elimination of viruses and tumor cells. Although immune checkpoint inhibitors should reverse T cell exhaustion, shortcomings, such as off-target effects and single targets, limit their application. Therefore, it is important to identify molecular targets in effector T cells that simultaneously regulate the expression of multiple immune checkpoints. Over the past few years, non-coding RNAs, including microRNAs and long non-coding RNAs, have been shown to participate in the immune response against viral infections and tumors. In this review, we focus on the roles and underlying mechanisms of microRNAs and long non-coding RNAs in the regulation of T cell exhaustion during chronic viral infections and tumorigenesis. We hope that this review will stimulate research to provide more precise and effective immunotherapies against viral infections and tumors.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Ziqiang Wang,
| |
Collapse
|
14
|
Lee MF, Voon GZ, Lim HX, Chua ML, Poh CL. Innate and adaptive immune evasion by dengue virus. Front Cell Infect Microbiol 2022; 12:1004608. [PMID: 36189361 PMCID: PMC9523788 DOI: 10.3389/fcimb.2022.1004608] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Dengue is a mosquito-borne disease which causes significant public health concerns in tropical and subtropical countries. Dengue virus (DENV) has evolved various strategies to manipulate the innate immune responses of the host such as ‘hiding’ in the ultrastructure of the host, interfering with the signaling pathway through RNA modifications, inhibiting type 1 IFN production, as well as inhibiting STAT1 phosphorylation. DENV is also able to evade the adaptive immune responses of the host through antigenic variation, antigen-dependent enhancement (ADE), partial maturation of prM proteins, and inhibition of antigen presentation. miRNAs are important regulators of both innate and adaptive immunity and they have been shown to play important roles in DENV replication and pathogenesis. This makes them suitable candidates for the development of anti-dengue therapeutics. This review discusses the various strategies employed by DENV to evade innate and adaptive immunity. The role of miRNAs and DENV non-structural proteins (NS) are promising targets for the development of anti-dengue therapeutics.
Collapse
|
15
|
Abstract
Recognition of viral RNAs by melanoma differentiation associated gene-5 (MDA5) initiates chicken antiviral response by producing type I interferons. Our previous studies showed that chicken microRNA-155-5p (gga-miR-155-5p) enhanced IFN-β expression and suppressed the replication of infectious burse disease virus (IBDV), a double-stranded RNA (dsRNA) virus causing infectious burse disease in chickens. However, the mechanism underlying IBDV-induced gga-miR-155-5p expression in host cells remains elusive. Here, we show that IBDV infection or poly(I:C) treatment of DF-1 cells markedly increased the expression of GATA-binding protein 3 (GATA3), a master regulator for TH2 cell differentiation, and that GATA3 promoted gga-miR-155-5p expression in IBDV-infected or poly(I:C)-treated cells by directly binding to its promoter. Surprisingly, ectopic expression of GATA3 significantly reduced IBDV replication in DF-1 cells, and this reduction could be completely abolished by treatment with gga-miR-155-5p inhibitors, whereas knockdown of GATA3 by RNA interference enhanced IBDV growth, and this enhancement could be blocked with gga-miR-155-5p mimics, indicating that GATA3 suppressed IBDV replication by gga-miR-155-5p. Furthermore, our data show that MDA5 is required for GATA3 expression in host cells with poly(I:C) treatment, so are the adaptor protein TBK1 and transcription factor IRF7, suggesting that induction of GATA3 expression in IBDV-infected cells relies on MDA5-TBK1-IRF7 signaling pathway. These results uncover a novel role for GATA3 as an antivirus transcription factor in innate immune response by promoting miR-155 expression, further our understandings of host response against pathogenic infection, and provide valuable clues to the development of antiviral reagents for public health. IMPORTANCE Gga-miR-155-5p acts as an important antivirus factor against IBDV infection, which causes a severe immunosuppressive disease in chicken. Elucidation of the mechanism regulating gga-miR-155-5p expression in IBDV-infected cells is essential to our understandings of the host response against pathogenic infection. This study shows that transcription factor GATA3 initiated gga-miR-155-5p expression in IBDV-infected cells by directly binding to its promoter, suppressing viral replication. Furthermore, induction of GATA3 expression was attributable to the recognition of dsRNA by MDA5, which initiates signal transduction via TBK1 and IRF7. Thus, it is clear that IBDV induces GATA3 expression via MDA5-TBK1-IRF7 signaling pathway, thereby suppressing IBDV replication by GATA3-mediated gga-miR-155-5p expression. This information remarkably expands our knowledge of the roles for GATA3 as an antivirus transcription factor in host innate immune response particularly at an RNA level and may prove valuable in the development of antiviral drugs for public health.
Collapse
|
16
|
The Emerging Role of Non-Coding RNAs in the Regulation of Virus Replication and Resultant Cellular Pathologies. Int J Mol Sci 2022; 23:ijms23020815. [PMID: 35055001 PMCID: PMC8775676 DOI: 10.3390/ijms23020815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Non-coding RNAs, particularly lncRNAs and miRNAs, have recently been shown to regulate different steps in viral infections and induction of immune responses against viruses. Expressions of several host and viral lncRNAs have been found to be altered during viral infection. These lncRNAs can exert antiviral function via inhibition of viral infection or stimulation of antiviral immune response. Some other lncRNAs can promote viral replication or suppress antiviral responses. The current review summarizes the interaction between ncRNAs and herpes simplex virus, cytomegalovirus, and Epstein–Barr infections. The data presented in this review helps identify viral-related regulators and proposes novel strategies for the prevention and treatment of viral infection.
Collapse
|
17
|
Qi M, Liu B, Li S, Ni Z, Li F. Construction and Investigation of Competing Endogenous RNA Networks and Candidate Genes Involved in SARS-CoV-2 Infection. Int J Gen Med 2021; 14:6647-6659. [PMID: 34675627 PMCID: PMC8520483 DOI: 10.2147/ijgm.s335162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction The current COVID-19 pandemic caused by a novel coronavirus SARS-CoV-2 is a quickly developing global health crisis, yet the mechanisms of pathogenesis in COVID-19 are not fully understood. Methods The RNA sequencing data of SARS-CoV-2-infected cells was obtained from the Gene Expression Omnibus (GEO). The differentially expressed mRNAs (DEmRNAs), long non-coding RNAs (DElncRNAs), and microRNAs (DEmiRNAs) were identified by edgeR, and the SARS-CoV-2-associated competing endogenous RNA (ceRNA) network was constructed based on the prediction of bioinformatic databases. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted with the SARS-CoV-2-related DEmRNAs, and the protein–protein interaction network was also built basing on STRING database. The ROC analysis was performed for assessing the diagnostic efficiency of hub genes. Results The results indicated that SARS-CoV-2-related DEmRNAs were associated with the interferon signaling pathway and other antiviral processes, such as IFNL3, IFNL1 and CH25H. Our analysis suggested that lncRNA NEAT1 might regulate the host immune response through two miRNAs, hsa-miR-374-5p and hsa-miR-155-5p, which control the expression of SOCS1, IL6, IL1B, CSF1R, CD274, TLR6, and TNF. Additionally, IFI6, HRASLS2, IGFBP4 and PTN may be potential targets based on an analysis comparing the transcriptional responses of SARS-CoV-2 infection with that of other respiratory viruses. Discussion The unique ceRNA network identified potential non-coding RNAs and their possible targets as well as a new perspective to understand the molecular mechanisms of the host immune response to SARS-CoV-2. This study may also aid in the development of innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Mingran Qi
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bin Liu
- Cardiovascular Disease Center, The First Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Shuai Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhaohui Ni
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China
| | - Fan Li
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medicine, Jilin University, Changchun, Jilin, People's Republic of China.,The Key Laboratory for Bionics Engineering, Ministry of Education, Jilin University, Changchun, Jilin, People's Republic of China.,Engineering Research Center for Medical Biomaterials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China.,Key Laboratory for Health Biomedical Materials of Jilin Province, Jilin University, Changchun, Jilin, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, People's Republic of China
| |
Collapse
|
18
|
Speckles and paraspeckles coordinate to regulate HSV-1 genes transcription. Commun Biol 2021; 4:1207. [PMID: 34675360 PMCID: PMC8531360 DOI: 10.1038/s42003-021-02742-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Numbers of nuclear speckles and paraspeckles components have been demonstrated to regulate herpes simplex virus 1 (HSV-1) replication. However, how HSV-1 infection affects the two nuclear bodies, and whether this influence facilitates the expression of viral genes, remains elusive. In the current study, we found that HSV-1 infection leads to a redistribution of speckles and paraspeckles components. Serine/arginine-rich splicing factor 2 (SRSF2), the core component of speckles, was associated with multiple paraspeckles components, including nuclear paraspeckles assembly transcript 1 (NEAT1), PSPC1, and P54nrb, in HSV-1 infected cells. This association coordinates the transcription of viral genes by binding to the promoters of these genes. By association with the enhancer of zeste homolog 2 (EZH2) and P300/CBP complex, NEAT1 and SRSF2 influenced the histone modifications located near viral genes. This study elucidates the interplay between speckles and paraspeckles following HSV-1 infection and provides insight into the mechanisms by which HSV-1 utilizes host cellular nuclear bodies to facilitate its life cycle. Li & Wang report that components of nuclear speckles and paraspeckles are redistributed upon HSV-1 infection. They show that the association of Serine/arginine-rich splicing factor 2 (SRSF2) with nuclear paraspeckles assembly transcript 1 (NEAT1) coordinates the transcription of viral genes
Collapse
|
19
|
Wang Z, Zhang S, Li K. LncRNA NEAT1 induces autophagy through epigenetic regulation of autophagy-related gene expression in neuroglial cells. J Cell Physiol 2021; 237:824-832. [PMID: 34402054 DOI: 10.1002/jcp.30556] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 01/30/2023]
Abstract
Endocytosis and autophagy are two important pathways for amyloid-β (Aβ) clearance in neuroglial cells. Our previous study demonstrated that nuclear paraspeckle assembly transcript 1 (NEAT1) long noncoding RNA modulates Aβ clearance mediated by neuroglial cells via the epigenetic regulation of endocytosis-related genes. Herein, we demonstrate that NEAT1 functions as an autophagy inducer by modulating the expression of multiple autophagy-related genes, including autophagy-related 5 (atg5), autophagy-related 3 (atg3), and beclin1. NEAT1 can promote transcription of these genes by altering histone modification near these transcriptional start sites of the genes and thereby influencing the recruitment of signal transducer and activator of transcription 3 to these gene promoters. Our findings demonstrate a new cellular function of NEAT1 in neuroglial cells and suggest a potential therapeutic target for the treatment of autophagy-related diseases.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shikuan Zhang
- School of Life Sciences, Tsinghua University, Beijing, China.,China State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Shenzhen, China.,Key Lab in Healthy Science and Technology of Shenzhen, Tsinghua Shenzhen International Graduate School, Shenzhen, China
| | - Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
20
|
Histone modifications centric-regulation in osteogenic differentiation. Cell Death Dis 2021; 7:91. [PMID: 33941771 PMCID: PMC8093204 DOI: 10.1038/s41420-021-00472-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/21/2021] [Accepted: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Histone modification critically contributes to the epigenetic control of gene expression by changing the configuration of chromatin and modifying the access of transcription factors to gene promoters. Recently, we observed that histone acetylation and crotonylation mediated the expression of endocytosis-related genes and tumor-related immune checkpoint genes by regulating the enrichment of signal transducer and activator of transcription 3 on these gene promoters in Alzheimer's disease and tumorigenesis, suggesting that histone modification plays an important role in disease development. Furthermore, studies performed in the past decade revealed that histone modifications affect osteogenic differentiation by regulating the expression of osteogenic marker genes. In this review, we summarize and discuss the histone modification-centric regulation of osteogenic gene expression. This review improves the understanding of the role of histone modifications in osteogenic differentiation and describes its potential as a therapeutic target for osteogenic differentiation-related diseases.
Collapse
|
21
|
Li K, Wang Z. Histone crotonylation-centric gene regulation. Epigenetics Chromatin 2021; 14:10. [PMID: 33549150 PMCID: PMC7868018 DOI: 10.1186/s13072-021-00385-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/28/2021] [Indexed: 01/19/2023] Open
Abstract
Histone crotonylation is a recently described post-translational modification that occurs at multiple identified histone lysine crotonylation sites. An increasing number of studies have demonstrated that histone crotonylation at DNA regulatory elements plays an important role in the activation of gene transcription. However, among others, we have shown that elevated cellular crotonylation levels result in the inhibition of endocytosis-related gene expression and pro-growth gene expression, implicating the complexity of histone crotonylation in gene regulation. Therefore, it is important to understand how histone crotonylation is regulated and how it, in turn, regulates the expression of its target genes. In this review, we summarize the regulatory factors that control histone crotonylation and discuss the role of different histone crotonylation sites in regulating gene expression, while providing novel insights into the central role of histone crotonylation in gene regulation.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ziqiang Wang
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China. .,Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China.
| |
Collapse
|
22
|
Wang Z, Li K, Huang W. Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 2020; 77:3769-3779. [PMID: 32219465 PMCID: PMC11104955 DOI: 10.1007/s00018-020-03503-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1) is a long non-coding RNA that is widely expressed in a variety of mammalian cell types. An increasing number of studies have demonstrated that NEAT1 plays key roles in various biological and pathological processes; therefore, it is important to understand how its expression is regulated and how it regulates the expression of its target genes. Recently, we found that NEAT1 expression could be regulated by signal transducer and activator of transcription 3 and that altered NEAT1 expression epigenetically regulates downstream gene transcription during herpes simplex virus-1 infection and Alzheimer's disease, suggesting that NEAT1 acts as an important sensor and effector during stress and disease development. In this review, we summarize and discuss the molecules and regulatory patterns that control NEAT1 gene expression and the molecular mechanism via which NEAT1 regulates the expression of its target genes, providing novel insights into the central role of NEAT1 in gene regulation.
Collapse
Affiliation(s)
- Ziqiang Wang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| | - Kun Li
- Department of Nuclear Medicine, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, 250014, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center, Shenzhen University School of Medicine, Shenzhen, 518039, China.
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen, 518035, China.
| |
Collapse
|
23
|
miR-155 Accelerates the Growth of Human Liver Cancer Cells by Activating CDK2 via Targeting H3F3A. MOLECULAR THERAPY-ONCOLYTICS 2020; 17:471-483. [PMID: 32490171 PMCID: PMC7260613 DOI: 10.1016/j.omto.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 12/14/2022]
Abstract
miR-155 is associated with the promotion of tumorigenesis. Herein, we indicate that abnormal miR-155 was negatively correlated with the expression of P21WAF1/Cip1. Our results suggest that miR-155 alters the transcriptome and inhibits the expression of H3F3A in liver cancer cells. Therefore, miR-155 inhibits the methylation modification of histone H3 on the 27th lysine. Notably, on the one hand, miR-155-dependent CTCF loops cause the CDK2 interacting with cyclin E in liver cancer cells; on the other hand, miR-155 promotes the phosphorylation modification of CDK2 by inhibiting H3F3A. Subsequently, miR-155 competitively blocks the binding of RNA polymerase II (RNA Pol II) to the P21WAF1/CIP1 promoter by increasing the phosphorylation of CDK2, inhibiting the transcription and translation of P21WAF1/CIP1. Strikingly, excessive P21WAF1/CIP1 abolishes the cancerous function of miR-155. In conclusion, miR-155 can play a positive role in the development of liver cancer and influence a series of gene expression through epigenetic regulation.
Collapse
|
24
|
Su YC, Huang YF, Wu YW, Chen HF, Wu YH, Hsu CC, Hsu YC, Lee JC. MicroRNA-155 inhibits dengue virus replication by inducing heme oxygenase-1-mediated antiviral interferon responses. FASEB J 2020; 34:7283-7294. [PMID: 32277848 DOI: 10.1096/fj.201902878r] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) have been reported to directly alter the virus life cycle and virus-host interactions, and so are considered promising molecules for controlling virus infection. In the present study, we observed that miR-155 time-dependently downregulated upon dengue virus (DENV) infection. In contrast, exogenous overexpression of miR-155 appeared to limit viral replication in vitro, suggesting that the low levels of miR-155 would be beneficial for DENV replication. In vivo, overexpression of miR-155 protected ICR suckling mice from the life-threatening effects of DENV infection and reduced virus propagation. Further investigation revealed that the anti-DENV activity of miR-155 was due to target Bach1, resulting in the induction of the heme oxygenase-1 (HO-1)-mediated inhibition of DENV NS2B/NS3 protease activity, ultimately leading to induction of antiviral interferon responses, including interferon-induced protein kinase R (PKR), 2'-5'-oligoadenylate synthetase 1 (OAS1), OAS2, and OAS3 expression, against DENV replication. Collectively, our results provide a promising new strategy to manage DENV infection by modulation of miR-155 expression.
Collapse
Affiliation(s)
- Yu-Chieh Su
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Fang Huang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Wen Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Feng Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsuan Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Chun Hsu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yao-Chin Hsu
- Department of Chinese medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine and Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|