1
|
Radjacommare R, Lin SY, Usharani R, Lin WD, Jauh GY, Schmidt W, Fu H. The Arabidopsis Deubiquitylase OTU5 Suppresses Flowering by Histone Modification-Mediated Activation of the Major Flowering Repressors FLC, MAF4, and MAF5. Int J Mol Sci 2023; 24:ijms24076176. [PMID: 37047144 PMCID: PMC10093928 DOI: 10.3390/ijms24076176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Distinct phylogeny and substrate specificities suggest that 12 Arabidopsis Ovarian Tumor domain-containing (OTU) deubiquitinases participate in conserved or plant-specific functions. The otu5-1 null mutant displayed a pleiotropic phenotype, including early flowering, mimicking that of mutants harboring defects in subunits (e.g., ARP6) of the SWR1 complex (SWR1c) involved in histone H2A.Z deposition. Transcriptome and RT-qPCR analyses suggest that downregulated FLC and MAF4-5 are responsible for the early flowering of otu5-1. qChIP analyses revealed a reduction and increase in activating and repressive histone marks, respectively, on FLC and MAF4-5 in otu5-1. Subcellular fractionation, GFP-fusion expression, and MNase treatment of chromatin showed that OTU5 is nucleus-enriched and chromatin-associated. Moreover, OTU5 was found to be associated with FLC and MAF4-5. The OTU5-associated protein complex(es) appears to be distinct from SWR1c, as the molecular weights of OTU5 complex(es) were unaltered in arp6-1 plants. Furthermore, the otu5-1 arp6-1 double mutant exhibited synergistic phenotypes, and H2A.Z levels on FLC/MAF4-5 were reduced in arp6-1 but not otu5-1. Our results support the proposition that Arabidopsis OTU5, acting independently of SWR1c, suppresses flowering by activating FLC and MAF4-5 through histone modification. Double-mutant analyses also indicate that OTU5 acts independently of the HUB1-mediated pathway, but it is partially required for FLC-mediated flowering suppression in autonomous pathway mutants and FRIGIDA-Col.
Collapse
|
2
|
Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions. PLANT CELL REPORTS 2023; 42:469-486. [PMID: 36567335 DOI: 10.1007/s00299-022-02962-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse
Affiliation(s)
- Runbang Luo
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Kun Yang
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
3
|
Arabidopsis LSH10 transcription factor and OTLD1 histone deubiquitinase interact and transcriptionally regulate the same target genes. Commun Biol 2023; 6:58. [PMID: 36650214 PMCID: PMC9845307 DOI: 10.1038/s42003-023-04424-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Histone ubiquitylation/deubiquitylation plays a major role in the epigenetic regulation of gene expression. In plants, OTLD1, a member of the ovarian tumor (OTU) deubiquitinase family, deubiquitylates histone 2B and represses the expression of genes involved in growth, cell expansion, and hormone signaling. OTLD1 lacks the intrinsic ability to bind DNA. How OTLD1, as well as most other known plant histone deubiquitinases, recognizes its target genes remains unknown. Here, we show that Arabidopsis transcription factor LSH10, a member of the ALOG protein family, interacts with OTLD1 in living plant cells. Loss-of-function LSH10 mutations relieve the OTLD1-promoted transcriptional repression of the target genes, resulting in their elevated expression, whereas recovery of the LSH10 function results in down-regulated transcription of the same genes. We show that LSH10 associates with the target gene chromatin as well as with DNA sequences in the promoter regions of the target genes. Furthermore, without LSH10, the degree of H2B monoubiquitylation in the target promoter chromatin increases. Hence, our data suggest that OTLD1-LSH10 acts as a co-repressor complex potentially representing a general mechanism for the specific function of plant histone deubiquitinases at their target chromatin.
Collapse
|
4
|
Vo Phan MS, Tran PT, Citovsky V. Investigating Interactions Between Histone Modifying Enzymes and Transcription Factors in vivo by Fluorescence Resonance Energy Transfer. JOURNAL OF VISUALIZED EXPERIMENTS : JOVE 2022:10.3791/64656. [PMID: 36314833 PMCID: PMC9629860 DOI: 10.3791/64656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Epigenetic regulation of gene expression is commonly affected by histone modifying enzymes (HMEs) that generate heterochromatic or euchromatic histone marks for transcriptional repression or activation, respectively. HMEs are recruited to their target chromatin by transcription factors (TFs). Thus, detecting and characterizing direct interactions between HMEs and TFs are critical for understanding their function and specificity better. These studies would be more biologically relevant if performed in vivo within living tissues. Here, a protocol is described for visualizing interactions in plant leaves between a plant histone deubiquitinase and a plant transcription factor using fluorescence resonance energy transfer (FRET), which allows the detection of complexes between protein molecules that are within <10 nm from each other. Two variations of the FRET technique are presented: SE-FRET (sensitized emission) and AB-FRET (acceptor bleaching), in which the energy is transferred non-radiatively from the donor to the acceptor or emitted radiatively by the donor upon photobleaching of the acceptor. Both SE-FRET and AB-FRET approaches can be adapted easily to discover other interactions between other proteins in planta.
Collapse
Affiliation(s)
- Mi Sa Vo Phan
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA,corresponding author: Mi Sa Vo Phan ()
| | - Phu Tri Tran
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, USA
| |
Collapse
|
5
|
Zarreen F, Karim MJ, Chakraborty S. The diverse roles of histone 2B monoubiquitination in the life of plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3854-3865. [PMID: 35348666 DOI: 10.1093/jxb/erac120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Covalent modification of histones is an important tool for gene transcriptional control in eukaryotes, which coordinates growth, development, and adaptation to environmental changes. In recent years, an important role for monoubiquitination of histone 2B (H2B) has emerged in plants, where it is associated with transcriptional activation. In this review, we discuss the dynamics of the H2B monoubiquitination system in plants and its role in regulating developmental processes including flowering, circadian rhythm, photomorphogenesis, and the response to abiotic and biotic stress including drought, salinity, and fungal, bacterial, and viral pathogens. Furthermore, we highlight the crosstalk between H2B monoubiquitination and other histone modifications which fine-tunes transcription and ensures developmental plasticity. Finally, we put into perspective how this versatile regulatory mechanism can be developed as a useful tool for crop improvement.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mir Jishan Karim
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Song S, Wang Y, Wang HY, Guo LL. Role of sevoflurane in myocardial ischemia-reperfusion injury via the ubiquitin-specific protease 22/lysine-specific demethylase 3A axis. Bioengineered 2022; 13:13366-13383. [PMID: 36700466 PMCID: PMC9275884 DOI: 10.1080/21655979.2022.2062535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) represents a coronary artery disease, accompanied by high morbidity and mortality. Sevoflurane post-conditioning (SPC) is importantly reported in myocardial disease. Accordingly, the current study sought to evaluate the role of Sevo in MI/RI. Firstly, MI/RI models were established and subjected to SPC. Subsequently, pathological injury in the myocardium, myocardial infarction areas, H9c2 cell viability, apoptosis, and levels of creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH) were all measured. Ubiquitin-specific peptidase (22USP22), lysine-specific demethylase 3A (KDM3A), and Yes1 associated transcriptional regulator (YAP1) were down-regulated in H9c2 cells using cell transfection to verify their roles. The interaction between USP22 and KDM3A and between KDM3A and YAP1 was further validated. USP 22, KDM3A, and YAP1 were found to be down-regulated in MI/RI and SPC protected MI/RI rats, as evidenced by up-regulated expressions of USP22, KDM3A, and YAP1, reduced pathological injury in the myocardium, myocardial infarction areas, apoptosis, and levels of CK-MB, cTnI, and LDH, and enhanced H9c2 cell viability; while the protective effects of Sevo were counteracted by silencing of USP22, KDM3A, and SPC upregulated USP22, which stabilized KDM3A protein levels via deubiquitination, and KDM3A inhibited histone 3 lysine 9 di-methylation (H3K9me2) levels in the YAP1 promoter to encourage YAP1 transcription, to reduce MI/RI.
Collapse
Affiliation(s)
- Shan Song
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Yang Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hai-Yan Wang
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China,Hai-Yan Wang Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Zhifu District, Yantai City264000, Shandong Province, China
| | - Long-Long Guo
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China,CONTACT Long-Long Guo
| |
Collapse
|
7
|
Grasser KD, Rubio V, Barneche F. Multifaceted activities of the plant SAGA complex. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194613. [PMID: 32745625 DOI: 10.1016/j.bbagrm.2020.194613] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Abstract
From yeast to human, the Spt-Ada-GCN5-acetyltransferase (SAGA) gigantic complex modifies chromatin during RNA polymerase II initiation and elongation steps to facilitate transcription. Its enzymatic activity involves a histone acetyltransferase module (HATm) that acetylates multiple lysine residues on the N-terminal tails of histones H2B and H3 and a deubiquitination module (DUBm) that triggers co-transcriptional deubiquitination of histone H2B. With a few notable exceptions described in this review, most SAGA subunits identified in yeast and metazoa are present in plants. Studies from the last 20 years have unveiled that different SAGA subunits are involved in gene expression regulation during the plant life cycle and in response to various types of stress or environmental cues. Their functional analysis in the Arabidopsis thaliana model species is increasingly shedding light on their intrinsic properties and how they can themselves be regulated during plant adaptive responses. Recent biochemical studies have also uncovered multiple associations between plant SAGA and chromatin machineries linked to RNA Pol II transcription. Still, considerably less is known about the molecular links between SAGA or SAGA-like complexes and chromatin dynamics during transcription in Arabidopsis and other plant species. We summarize the emerging knowledge on plant SAGA complex composition and activity, with a particular focus on the best-characterized subunits from its HAT (such as GCN5) and DUB (such as UBP22) modules, and implication of these ensembles in plant development and adaptive responses.
Collapse
Affiliation(s)
- Klaus D Grasser
- Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| | - Vicente Rubio
- Plant Molecular Genetics Dept., Centro Nacional de Biotecnología (CNB-CSIC), Darwin, 3, 28049 Madrid, Spain.
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| |
Collapse
|
8
|
Keren I, Lacroix B, Kohrman A, Citovsky V. Histone Deubiquitinase OTU1 Epigenetically Regulates DA1 and DA2, Which Control Arabidopsis Seed and Organ Size. iScience 2020; 23:100948. [PMID: 32169818 PMCID: PMC7068640 DOI: 10.1016/j.isci.2020.100948] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 01/05/2020] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Seeds are central to plant life cycle and to human nutrition, functioning as the major supplier of human population energy intake. To understand better the roles of enzymic writers and erasers of the epigenetic marks, in particular, histone ubiquitylation and the corresponding histone modifiers, involved in control of seed development, we identified the otubain-like cysteine protease OTU1 as a histone deubiquitinase involved in transcriptional repression of the DA1 and DA2 genes known to regulate seed and organ size in Arabidopsis. Loss-of-function mutants of OTU1 accumulate H2B monoubiquitylation and such euchromatic marks as H3 trimethylation and hyperacetylation in the DA1 and DA2 chromatin. These data advance our knowledge about epigenetic regulation of the DA1 and DA2 genes by recognizing OTU1 as a member of a putative repressor complex that negatively regulates their transcription. Histone ubiquitylation regulates transcription of DA1/DA2 that control seed/organ size OTU1 deubiquitinase is involved in deubiquitylation of the DA1/DA2 chromatin OTU1 acts as an epigenetic transcriptional repressor of the DA1/DA2 genes OTU1 is nucleocytoplasmic, indicating involvement in nuclear and cytoplasmic processes
Collapse
Affiliation(s)
- Ido Keren
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA.
| | - Benoît Lacroix
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | - Abraham Kohrman
- Graduate Program in Genetics, State University of New York, Stony Brook, NY 11794-5222, USA
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| |
Collapse
|