1
|
Markov Y, Levine M, Higgins-Chen AT. Reliable detection of stochastic epigenetic mutations and associations with cardiovascular aging. GeroScience 2024; 46:5745-5765. [PMID: 38736015 PMCID: PMC11493905 DOI: 10.1007/s11357-024-01191-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024] Open
Abstract
Stochastic epigenetic mutations (SEMs) have been proposed as novel aging biomarkers to capture heterogeneity in age-related DNA methylation changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. Because SEMs are defined by their outlier status, it is critical to differentiate extreme values due to technical noise or data artifacts from those due to real biology. Using technical replicate data, we found SEM detection is not reliable: across 3 datasets, 24 to 39% of hypoSEM and 46 to 67% of hyperSEM are not shared between replicates. We identified factors influencing SEM reliability-including blood cell type composition, probe beta-value statistics, genomic location, and presence of SNPs. We used these factors in a training dataset to build a machine learning-based filter that removes unreliable SEMs, and found this filter enhances reliability in two independent validation datasets. We assessed associations between SEM loads and aging phenotypes in the Framingham Heart Study and discovered that associations with aging outcomes were in large part driven by hypoSEMs at baseline methylated probes and hyperSEMs at baseline unmethylated probes, which are the same subsets that demonstrate highest technical reliability. These aging associations were preserved after filtering out unreliable SEMs and were enhanced after adjusting for blood cell composition. Finally, we utilized these insights to formulate best practices for SEM detection and introduce a novel R package, SEMdetectR, which uses parallel programming for efficient SEM detection with comprehensive options for detection, filtering, and analysis.
Collapse
Affiliation(s)
- Yaroslav Markov
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Morgan Levine
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Albert T Higgins-Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Corsaro L, Sacco D, Corbetta C, Gentilini D, Faversani A, Ferrara F, Costantino L. A new approach to study stochastic epigenetic mutations in sperm methylome of Vietnam war veterans directly exposed to Agent Orange. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae020. [PMID: 39664489 PMCID: PMC11631699 DOI: 10.1093/eep/dvae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 12/13/2024]
Abstract
Among the various environmental pollutants, dioxin, a highly toxic and widely used compound, is associated with numerous adverse health effects, including a potentially toxic multigenerational effect. Understanding the mechanisms by which dioxin exposure can affect sperm epigenetics is critical to comprehending the potential consequences for offspring health and development. This study investigates the possible association between weighted epimutations, hypothesized as markers of epigenetic drift, and dioxin exposure in sperm tissues. We used a public online methylation dataset consisting of 37 participants: 26 Vietnam veterans exposed to Agent Orange, an herbicide contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and 11 individuals not directly exposed to TCDD but whose serum dioxin levels are equivalent to the background. In our study, conducted at the gene level, 437 epimutated genes were identified as significantly associated with each single-digit increase in serum dioxin levels. We found no significant association between the rise in total epimutation load and serum dioxin levels. The pathway analysis performed on the genes reveals biological processes mainly related to changes in embryonic morphology, development, and reproduction. Results from our current study suggest the importance of further investigations on the consequences of dioxin exposure in humans with specific reference to germinal tissue and related heredity.
Collapse
Affiliation(s)
- Luigi Corsaro
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Davide Sacco
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Carlo Corbetta
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Davide Gentilini
- Department of Brain and Behavioural Sciences, Università di Pavia, Pavia, PV 27100, Italy
| | - Alice Faversani
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Fulvio Ferrara
- Integrated Laboratory Medicine Services, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| | - Lucy Costantino
- Medical Genetics Laboratory, Centro Diagnostico Italiano, Milan, MI 20147, Italy
| |
Collapse
|
3
|
Markov Y, Levine M, Higgins-Chen AT. Stochastic Epigenetic Mutations: Reliable Detection and Associations with Cardiovascular Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571149. [PMID: 38168247 PMCID: PMC10760000 DOI: 10.1101/2023.12.12.571149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Stochastic Epigenetic Mutations (SEMs) have been proposed as novel aging biomarkers that have the potential to capture heterogeneity in age-related DNA methylation (DNAme) changes. SEMs are defined as outlier methylation patterns at cytosine-guanine dinucleotide (CpG) sites, categorized as hypermethylated (hyperSEM) or hypomethylated (hypoSEM) relative to a reference. While individual SEMs are rarely consistent across subjects, the SEM load - the total number of SEMs - increases with age. However, given poor technical reliability of measurement for many DNA methylation sites, we posited that many outliers might represent technical noise. Our study of whole blood samples from 36 individuals, each measured twice, found that 23.3% of hypoSEM and 45.6% hyperSEM are not shared between replicates. This diminishes the reliability of SEM loads, where intraclass correlation coefficients are 0.96 for hypoSEM and 0.90 for hyperSEM. We linked SEM reliability to multiple factors, including blood cell type composition, probe beta-value statistics, and presence of SNPs. A machine learning approach, leveraging these factors, filtered unreliable SEMs, enhancing reliability in a separate dataset of technical replicates from 128 individuals. Analysis of the Framingham Heart Study confirmed previously reported SEM association with mortality and revealed novel connections to cardiovascular disease. We discover that associations with aging outcomes are primarily driven by hypoSEMs at baseline methylated probes and hyperSEMs at baseline unmethylated probes, which are the same subsets that demonstrate highest technical reliability. These aging associations are preserved after filtering out unreliable SEMs and are enhanced after adjusting for blood cell composition. Finally, we utilize these insights to formulate best practices for SEM detection and introduce a novel R package, SEMdetectR, which utilizes parallel programming for efficient SEM detection with comprehensive options for detection, filtering, and analysis.
Collapse
Affiliation(s)
- Yaroslav Markov
- Program in Computational Biology & Bioinformatics, Yale Graduate School of Arts and Sciences, New Haven, CT, USA
| | - Morgan Levine
- Altos Labs, San Diego Institute of Sciences, San Diego, CA, USA
| | - Albert T Higgins-Chen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Hood RB, Terrell ML, Smith AK, Curtis S, Conneely K, Pearson M, Barton H, Barr DB, Marder EM, Marcus M. Elimination of PBB-153; findings from a cohort of Michigan adults. ENVIRONMENTAL RESEARCH 2023; 220:115146. [PMID: 36566966 PMCID: PMC9898188 DOI: 10.1016/j.envres.2022.115146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND An industrial accident led to the widespread contamination of polybrominated biphenyl (PBB), a flame retardant, into the food system in Michigan in the 1970's. PBB continues to be detected in Michiganders' blood some forty years later. It is necessary to understand the elimination rate and half-life of PBB because it may provide clues on how to hasten the elimination of it from the human body. METHODS Serum samples were taken from young adult and adult participants of the Michigan PBB registry from 1974 to 2019. A single compartment model was assumed for the elimination rate for PBB-153 in young adults and adults (≥16 years). Generalized linear mixed models were used to estimate the average elimination rate of PBB-153 and allowed for a random intercept and slope for the time between measurements. Models were adjusted for age at exposure, body mass index (BMI) at initial measurement, and smoking. Models were also stratified by demographic characteristics. RESULTS In total, 1974 participants contributed 4768 samples over a forty-year span. The median initial PBB-153 level was 1.542 parts per billion (ppb) (Range: 0.001-1442.48 ppb). The adjusted median participant-specific half-life for PBB-153 was 12.23 years. The half-life of PBB-153 was lengthened by higher initial PBB level (∼1.5 years), younger age at exposure (∼5.4 years), higher BMI (∼1.0 years), and increased gravidity (∼7.3 years). Additionally, the half-life of PBB-153 was shortened by smoking status (∼-2.8 years) and breastfeeding (∼-3.5 years). CONCLUSIONS Consistent with previous studies, PBB-153 has been demonstrated to have a long half-life in the human body and may be modified by some demographic characteristics. These updated estimates of half-life will further support evaluation of health effects associated with PBB exposure. Investigations into mechanisms to accelerate elimination and reduce body burdens of PBB-153, especially those related to body weight, are needed.
Collapse
Affiliation(s)
- Robert B Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA.
| | - Metrecia L Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA; Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Karen Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Melanie Pearson
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Hillary Barton
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Elizabeth M Marder
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA; Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| |
Collapse
|
5
|
Bao J, Jin H, Wang Y, Jin J, Chen L. New emerging polybromobiphenyls in serum of general population and their disruption on thyroid hormone receptor β 1. ENVIRONMENT INTERNATIONAL 2022; 166:107390. [PMID: 35810546 DOI: 10.1016/j.envint.2022.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
After the PBBs pollution incident in Michigan, a large number of studies focused on the exposure of people to 2,2',4,4',5,5'-hexabromobiphenyl (BB-153), but paid less attention to other PBBs congeners in human serum. In this study, three monobromobiphenyls (BB-1, BB-2 and BB-3), five dibromobiphenyls (BB-4, BB-7, BB-9, BB-10 and BB-15), decabromobiphenyl (BB-209) and BB-153 in the serum of the general population in Wuxi from 2012 to 2016 were detected by GC-MS/MS. The most abundant congeners in serum samples were BB-1(median 254 ng·g-1 lw), BB-10 (median 141 ng·g-1 lw) and BB-209 (median 68.4 ng·g-1 lw). The detection rate of BB-153 is less than 10%, and the concentration is far lower than that in other areas. The concentrations of BB-1, BB-10 and BB-209 are 3-4 orders of magnitude higher than the maximum concentration of BB-153. Serum concentrations of BB-209 increased significantly from 2012 to 2016 (p = 0.025). In addition, the concentrations of BB-1 in serum of females were significantly higher than that of males, and the concentrations of BB-1, BB-10 and BB-209 in serum of young adults were significantly higher than that of middle-aged adults. Finally, we found that BB-1 and BB-10 may have similar disruption on the binding of T3 and TRβ1 as BB-153, while BB-209 has little effect on the binding of T3 and TRβ1. This suggests that we should pay more attention to the damage of BB-1 and BB-10 to thyroid in the future.
Collapse
Affiliation(s)
- Junsong Bao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Hongli Jin
- Department of Biomedicine, Beijing City University, Beijing 100094, China.
| | - Ying Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing 100081, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Engineering Research Center of Food Environment and Public Health, Beijing 100081, China.
| | - Limei Chen
- Wuxi Center for Disease Control and Prevention, Wuxi 214023, China; Research Base for Environment and Health in Wuxi, Chinese Center for Disease Control and Prevention, Wuxi 214023, China.
| |
Collapse
|
6
|
Yang L, Sun P, Zhao W, Liu M. Human developmental toxicity mechanism of polybrominated biphenyl exposure and health risk regulation strategy for special populations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 237:113543. [PMID: 35487171 DOI: 10.1016/j.ecoenv.2022.113543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated biphenyls (PBBs) can bioaccumulate in nature and are toxic to humans. Long-time exposure to PBBs in pregnant women can lead to the birth of an infant with abnormal conditions. Hence, in this study, we used molecular docking, molecular dynamics, Taguchi experimental design, and fractional factorial experimental design to identify the developmental toxicity characteristics of 10 typical developmental toxic pollutants such as PBBs to which humans are frequently exposed. Furthermore, the correlation and sensitivity analyses of molecular developmental toxicity and structural parameters were performed. The molecular key structural parameters of the pollutants affecting human development were screened. Moreover, the supplementary food factors that could alleviate the developmental toxicity of pollutants were screened to develop supplementary food schemes to prevent or alleviate human developmental toxicity in the special population (e.g., pregnant women, infants) exposed to the pollutants. The results showed that the developmental toxicity was controlled by the main effects of the 10 pollutants. Among the 10 pollutants with developmental toxicity, the most significant pollutant with the main effects was PBB-153 (37.06%). In addition, the correlation and sensitivity analyses of the molecular developmental toxicity of the pollutants and structural parameters showed that the total energy value and infrared C-H vibration frequency of the pollutants were significantly correlated with human developmental toxicity. Accordingly, 15 supplementary food cofactors were selected for the Taguchi experiment design, among which the top seven cofactors were designed by fractional factorial analysis. The most significant cofactor that alleviated the developmental toxicity of PBB-153 exposure was the combination of carotene and docosahexaenoic acid (DHA), with an improvement of 17.28%. The combination of carotene and DHA significantly alleviated the effects of toxicity caused by most of the other pollutants, indicating that the selected supplementary food has certain universality. In this study, we developed a method to identify the characteristics of the developmental toxicity of pollutant exposure and developmental toxicity alleviation. Our study provided theoretical support for the regulation strategy of developmental toxicity caused by pollutants such as PBBs.
Collapse
Affiliation(s)
- Luze Yang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Peixuan Sun
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Wenjin Zhao
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Miao Liu
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
7
|
Fiorito G, Caini S, Palli D, Bendinelli B, Saieva C, Ermini I, Valentini V, Assedi M, Rizzolo P, Ambrogetti D, Ottini L, Masala G. DNA methylation-based biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: the DAMA study. Aging Cell 2021; 20:e13439. [PMID: 34535961 PMCID: PMC8520727 DOI: 10.1111/acel.13439] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/09/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Several biomarkers of healthy aging have been proposed in recent years, including the epigenetic clocks, based on DNA methylation (DNAm) measures, which are getting increasingly accurate in predicting the individual biological age. The recently developed "next-generation clock" DNAmGrimAge outperforms "first-generation clocks" in predicting longevity and the onset of many age-related pathological conditions and diseases. Additionally, the total number of stochastic epigenetic mutations (SEMs), also known as the epigenetic mutation load (EML), has been proposed as a complementary DNAm-based biomarker of healthy aging. A fundamental biological property of epigenetic, and in particular DNAm modifications, is the potential reversibility of the effect, raising questions about the possible slowdown of epigenetic aging by modifying one's lifestyle. Here, we investigated whether improved dietary habits and increased physical activity have favorable effects on aging biomarkers in healthy postmenopausal women. The study sample consists of 219 women from the "Diet, Physical Activity, and Mammography" (DAMA) study: a 24-month randomized factorial intervention trial with DNAm measured twice, at baseline and the end of the trial. Women who participated in the dietary intervention had a significant slowing of the DNAmGrimAge clock, whereas increasing physical activity led to a significant reduction of SEMs in crucial cancer-related pathways. Our study provides strong evidence of a causal association between lifestyle modification and slowing down of DNAm aging biomarkers. This randomized trial elucidates the causal relationship between lifestyle and healthy aging-related epigenetic mechanisms.
Collapse
Affiliation(s)
- Giovanni Fiorito
- Laboratory of Biostatistics Department of Biomedical Sciences University of Sassari Sassari Italy
- MRC‐PHE Centre for Environment 43 and Health Imperial College London London UK
| | - Saverio Caini
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| | - Domenico Palli
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| | - Benedetta Bendinelli
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| | - Calogero Saieva
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| | - Ilaria Ermini
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| | | | - Melania Assedi
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| | - Piera Rizzolo
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | - Daniela Ambrogetti
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| | - Laura Ottini
- Department of Molecular Medicine Sapienza University of Rome Rome Italy
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network ‐ ISPRO Florence Italy
| |
Collapse
|
8
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Genome-wide DNA methylation differences and polychlorinated biphenyl (PCB) exposure in a US population. Epigenetics 2021; 16:338-352. [PMID: 32660331 PMCID: PMC7901541 DOI: 10.1080/15592294.2020.1795605] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022] Open
Abstract
Exposure to polychlorinated biphenyls (PCBs), an endocrine-disrupting compound, is ubiquitous despite decades-old bans on the manufacture and use of PCBs. Increased exposure to PCBs is associated with adverse health consequences throughout life, including type 2 diabetes and cancer. PCB exposure is also associated with alterations in epigenetic marks and gene transcription, which could lead to adverse health outcomes, but many of these are population-specific. To further investigate the association between PCB and epigenetic marks, DNA methylation was measured at 787,684 CpG sites in 641 peripheral blood samples from the Michigan Polybrominated Biphenyl (PBB) Registry. 1345 CpGs were associated with increased total PCB level after controlling for age, sex, and 24 surrogate variables (FDR < 0.05). These CpGs were enriched in active promoter and transcription associated regions (p < 0.05), and in regions around the binding sites for transcription factors involved in xenobiotic metabolism and immune function (FDR < 0.05). PCB exposure also associated with proportions of CD4T, NK, and granulocyte cell types, and with the neutrophil to lymphocyte ratio (NLR) (p < 0.05), and the estimated effect sizes of PCB on the epigenome were correlated with the effect sizes previously reported in an epigenome-wide study of C-reactive protein (r = 0.29; p = 2.22e-5), supporting previous studies on the association between PCB and immune dysfunction. These results indicate that PCB exposure is associated with differences in epigenetic marks in active regions of the genome, and future work should investigate whether these may mediate the association between PCB and health consequences.
Collapse
Affiliation(s)
- Sarah W. Curtis
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University School of Medicine, Atlanta, GA, USA
| | - Dawayland O. Cobb
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Varun Kilaru
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Metrecia L. Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - M. Elizabeth Marder
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Michele Marcus
- Departments of Epidemiology and Department of Pediatrics Emory University School of Medicine, Environmental Health, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Karen N. Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alicia K. Smith
- Departments of Gynecology and Obstetrics & Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Yan Q, Paul KC, Lu AT, Kusters C, Binder AM, Horvath S, Ritz B. Epigenetic mutation load is weakly correlated with epigenetic age acceleration. Aging (Albany NY) 2020; 12:17863-17894. [PMID: 32991324 PMCID: PMC7585066 DOI: 10.18632/aging.103950] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/08/2020] [Indexed: 01/24/2023]
Abstract
DNA methylation (DNAm) age estimators are widely used to study aging-related conditions. It is not yet known whether DNAm age is associated with the accumulation of stochastic epigenetic mutations (SEMs), which reflect dysfunctions of the epigenetic maintenance system. Here, we defined epigenetic mutation load (EML) as the total number of SEMs per individual. We assessed associations between EML and DNAm age acceleration estimators using biweight midcorrelations in four population-based studies (total n = 6,388). EML was not only positively associated with chronological age (meta r = 0.171), but also with four measures of epigenetic age acceleration: the Horvath pan tissue clock, intrinsic epigenetic age acceleration, the Hannum clock, and the GrimAge clock (meta-analysis correlation ranging from r = 0.109 to 0.179). We further conducted pathway enrichment analyses for each participant's SEMs. The enrichment result demonstrated the stochasticity of epigenetic mutations, meanwhile implicated several pathways: signaling, neurogenesis, neurotransmitter, glucocorticoid, and circadian rhythm pathways may contribute to faster DNAm age acceleration. Finally, investigating genomic-region specific EML, we found that EMLs located within regions of transcriptional repression (TSS1500, TSS200, and 1stExon) were associated with faster age acceleration. Overall, our findings suggest a role for the accumulation of epigenetic mutations in the aging process.
Collapse
Affiliation(s)
- Qi Yan
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Kimberly C. Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cynthia Kusters
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA
| | - Alexandra M. Binder
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA,Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA,Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Beate Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA 90095, USA,Department of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Curtis SW, Gerkowicz SA, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Sex-specific DNA methylation differences in people exposed to polybrominated biphenyl. Epigenomics 2020; 12:757-770. [PMID: 32496131 PMCID: PMC7607410 DOI: 10.2217/epi-2019-0179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Aim: Michigan residents were exposed to polybrominated biphenyls (PBBs) when it was accidentally added to the food supply. Highly exposed individuals report sex-specific health problems, but the underlying biological mechanism behind these different health risks is not known. Materials and methods: DNA methylation in blood from 381 women and 277 men with PBB exposure was analyzed with the MethylationEPIC BeadChip. Results: 675 CpGs were associated with PBBs levels in males, while only 17 CpGs were associated in females (false discovery rate <0.05). No CpGs were associated in both sexes. These CpGs were enriched in different functional regions and transcription factor binding sites in each sex. Conclusion: Exposure to PBBs may have sex-specific effects on the epigenome that may underlie sex-specific adverse health outcomes.
Collapse
Affiliation(s)
- Sarah W Curtis
- Genetics & Molecular Biology Program, Laney Graduate School, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Sabrina A Gerkowicz
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Dawayland O Cobb
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Varun Kilaru
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| | - Metrecia L Terrell
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - M Elizabeth Marder
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Carmen J Marsit
- Department of Environmental Health, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Michele Marcus
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Rd, Atlanta, GA 30322, USA
- Department of Pediatrics Emory University School of Medicine, 1518 Clifton Rd, Atlanta, GA 30322, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, 615 Michael St, Atlanta, GA 30322, USA
| | - Alicia K Smith
- Department of Gynecology & Obstetrics, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
- Department of Psychiatry & Behavioral Science, Emory University School of Medicine, 101 Woodruff Circle NE, Ste 4217, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Chang CJ, Terrell ML, Marcus M, Marder ME, Panuwet P, Ryan PB, Pearson M, Barton H, Barr DB. Serum concentrations of polybrominated biphenyls (PBBs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the Michigan PBB Registry 40 years after the PBB contamination incident. ENVIRONMENT INTERNATIONAL 2020; 137:105526. [PMID: 32062441 PMCID: PMC7201813 DOI: 10.1016/j.envint.2020.105526] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/15/2019] [Accepted: 01/24/2020] [Indexed: 05/10/2023]
Abstract
Widespread polybrominated biphenyls (PBBs) contamination occurred in Michigan from 1973 to 1974, when PBBs were accidentally substituted for a nutritional supplement in livestock feed. People who lived in the state were exposed to PBBs via several routes including ingestion, inhalation and skin absorption. PBBs sequestered in lipid-rich matrices such as adipose tissue, are slowly eliminated after entering the human body, and can also be transferred from a mother to her offspring through the placenta and breastfeeding. Due to the long biological half-lives of PBBs, as well as concerns from the exposed community, biomonitoring measurements were conducted from 2012 to 2015. Because of their similar structures, serum PBBs, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) were all measured 40 years after the PBB contamination incident (N = 862). The serum PBB-153 levels among the original highly-exposed groups (i.e., chemical workers, the family of chemical workers, and individuals who lived on or received food from the contaminated farms) remains significantly higher than other Michigan residents. Several predictors such as sampling age, sex, and smoking status were significantly associated with the serum levels of some persistent organic pollutants (POPs). Higher average values and also wider ranges of serum POP levels were found in this study compared to the National Health and Nutrition Examination Survey (NHANES), with the most substantial difference in serum PBB-153. This was true for all groups of Michigan residents including those who were not part of the above-described highly-exposed groups. Moreover, the people born after the contamination incident began also have higher serum PBB-153 levels when compared with more recent NHANES data (2010-2014), which suggests potential intergenerational exposure and/or continued environmental exposure following the contamination period.
Collapse
Affiliation(s)
- Che-Jung Chang
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA.
| | - Metrecia L Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - M Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Parinya Panuwet
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - P Barry Ryan
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Melanie Pearson
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| | - Hillary Barton
- Department of Epidemiology, Rollins School of Public Health, Emory University, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, USA
| |
Collapse
|
12
|
Seeboth A, McCartney DL, Wang Y, Hillary RF, Stevenson AJ, Walker RM, Campbell A, Evans KL, McIntosh AM, Hägg S, Deary IJ, Marioni RE. DNA methylation outlier burden, health, and ageing in Generation Scotland and the Lothian Birth Cohorts of 1921 and 1936. Clin Epigenetics 2020; 12:49. [PMID: 32216821 PMCID: PMC7098133 DOI: 10.1186/s13148-020-00838-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/09/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND DNA methylation outlier burden has been suggested as a potential marker of biological age. An outlier is typically defined as DNA methylation levels at any one CpG site that are three times beyond the inter-quartile range from the 25th or 75th percentiles compared to the rest of the population. DNA methylation outlier burden (the number of such outlier sites per individual) increases exponentially with age. However, these findings have been observed in small samples. RESULTS Here, we showed an association between age and log10-transformed DNA methylation outlier burden in a large cross-sectional cohort, the Generation Scotland Family Health Study (N = 7010, β = 0.0091, p < 2 × 10-16), and in two longitudinal cohort studies, the Lothian Birth Cohorts of 1921 (N = 430, β = 0.033, p = 7.9 × 10-4) and 1936 (N = 898, β = 0.0079, p = 0.074). Significant confounders of both cross-sectional and longitudinal associations between outlier burden and age included white blood cell proportions, body mass index (BMI), smoking, and batch effects. In Generation Scotland, the increase in epigenetic outlier burden with age was not purely an artefact of an increase in DNA methylation level variability with age (epigenetic drift). Log10-transformed DNA methylation outlier burden in Generation Scotland was not related to self-reported, or family history of, age-related diseases, and it was not heritable (SNP-based heritability of 4.4%, p = 0.18). Finally, DNA methylation outlier burden was not significantly related to survival in either of the Lothian Birth Cohorts individually or in the meta-analysis after correction for multiple testing (HRmeta = 1.12; 95% CImeta = [1.02; 1.21]; pmeta = 0.021). CONCLUSIONS These findings suggest that, while it does not associate with ageing-related health outcomes, DNA methylation outlier burden does track chronological ageing and may also relate to survival. DNA methylation outlier burden may thus be useful as a marker of biological ageing.
Collapse
Affiliation(s)
- Anne Seeboth
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Daniel L McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Yunzhang Wang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robert F Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Anna J Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Andrew M McIntosh
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Sara Hägg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Riccardo E Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| |
Collapse
|
13
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Exposure to polybrominated biphenyl and stochastic epigenetic mutations: application of a novel epigenetic approach to environmental exposure in the Michigan polybrominated biphenyl registry. Epigenetics 2019; 14:1003-1018. [PMID: 31200609 PMCID: PMC6691996 DOI: 10.1080/15592294.2019.1629232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 01/01/2023] Open
Abstract
Endocrine-disrupting compounds are associated with altered epigenetic regulation and adverse health outcomes, although inconsistent results suggest that people have varied responses to the same exposure. Interpersonal variation in response to environmental exposures is not identified using standard, population-based methods. However, methods that capture an individual's response, such as analyzing stochastic epigenetic mutations (SEMs), may capture currently missed effects of environmental exposure. To test whether polybrominated biphenyl (PBB) was associated with SEMs, DNA methylation was measured using Illumina's MethylationEPIC array in PBB-exposed individuals, and SEMs were identified. Association was tested using a linear regression with robust sandwich variance estimators, controlling for age, sex, lipids, and cell types. The number of SEMs was variable (range: 119-18,309), and positively associated with age (p = 1.23e-17), but not with sex (p = 0.97). PBBs and SEMs were only positively associated in people who were older when they were exposed (p = 0.02 vs. p = 0.91). Many subjects had SEMs enriched in biological pathways, particularly in pathways involved with xenobiotic metabolism and endocrine function. Higher number of SEMs was also associated with higher age acceleration (intrinsic: p = 1.70e-3; extrinsic: p = 3.59e-11), indicating that SEMs may be associated with age-related health problems. Finding an association between environmental contaminants and higher SEMs may provide insight into individual differences in response to environmental contaminants, as well as into the biological mechanism behind SEM formation. Furthermore, these results suggest that people may be particularly vulnerable to epigenetic dysregulation from environmental exposures as they age.
Collapse
Affiliation(s)
- Sarah W Curtis
- a Genetics and Molecular Biology Program, Laney Graduate School, Emory University School of Medicine , Atlanta , GA , USA
| | - Dawayland O Cobb
- b Department of Gynecology and Obstetrics, Emory University School of Medicine , Atlanta , GA , USA
| | - Varun Kilaru
- b Department of Gynecology and Obstetrics, Emory University School of Medicine , Atlanta , GA , USA
| | - Metrecia L Terrell
- c Department of Epidemiology, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - M Elizabeth Marder
- d Department of Environmental Health, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Dana Boyd Barr
- d Department of Environmental Health, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Carmen J Marsit
- d Department of Environmental Health, Emory University Rollins School of Public Health , Atlanta , GA , USA
| | - Michele Marcus
- e Departments of Epidemiology, Environmental Health, Emory University Rollins School of Public Health, and Department of Pediatrics Emory University School of Medicine , Atlanta , GA , USA
| | - Karen N Conneely
- f Department of Human Genetics, Emory University School of Medicine , Atlanta , GA , USA
| | - Alicia K Smith
- g Departments of Gynecology and Obstetrics & Psychiatry and Behavioral Science, Emory University School of Medicine , Atlanta , GA , USA
| |
Collapse
|
14
|
Curtis SW, Cobb DO, Kilaru V, Terrell ML, Marder ME, Barr DB, Marsit CJ, Marcus M, Conneely KN, Smith AK. Environmental exposure to polybrominated biphenyl (PBB) associates with an increased rate of biological aging. Aging (Albany NY) 2019; 11:5498-5517. [PMID: 31375641 PMCID: PMC6710070 DOI: 10.18632/aging.102134] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/26/2019] [Indexed: 12/13/2022]
Abstract
Advanced age increases risk for cancer, cardiovascular disease, and all-cause mortality. However, people do not age at the same rate, and biological age (frequently measured through DNA methylation) can be older than chronological age. Environmental factors have been associated with the rate of biological aging, but it is not known whether persistent endocrine-disrupting compounds (EDCs) like polybrominated biphenyl (PBB) would associate with age acceleration. Three different epigenetic age acceleration measures (intrinsic, extrinsic, and phenotypic) were calculated from existing epigenetic data in whole blood from a population highly exposed to PBB (N=658). Association between serum PBB concentration and these measures was tested, controlling for sex, lipid levels, and estimated cell type proportions. Higher PBB levels associated with increased age acceleration (intrinsic: β=0.24, 95%CI=0.01-0.46, p = 0.03; extrinsic: β=0.39, 95%CI=0.12-0.65, p = 0.004; and phenotypic: β=0.30, 95%CI=0.05-0.54, p = 0.01). Neither age when exposed to PBB nor sex statistically interacted with PBB to predict age acceleration, but, in stratified analyses, the association between PBB and age acceleration was only in people exposed before finishing puberty and in men. This suggests that EDCs can associate with the biological aging process, and further studies are warranted to investigate other environmental pollutants' effect on aging.
Collapse
Affiliation(s)
- Sarah W. Curtis
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Dawayland O. Cobb
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Varun Kilaru
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Metrecia L. Terrell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - M. Elizabeth Marder
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Carmen J. Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Michele Marcus
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Karen N. Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Alicia K. Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|