1
|
Sadaty MM, Mekhemer SM, Abdel-Ghany S, El-Ansary AR, Mohamed R, Kamal NN, Sabit H. Expression profiles of miR-101-3p and miR-431-5p as potential diagnostic biomarkers for rheumatoid arthritis. Sci Rep 2025; 15:776. [PMID: 39755725 PMCID: PMC11700103 DOI: 10.1038/s41598-024-82339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/04/2024] [Indexed: 01/06/2025] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation of the synovial joints, leading to cartilage and bone destruction. This study aimed to evaluate the diagnostic utility of specific microRNAs (miRNAs) as potential biomarkers for RA. The study was conducted on 60 patients with RA disease along with 20 control participants. Comprehensive analysis of patient data, encompassing serological, hematological, and biochemical markers, revealed significantly elevated levels of miR-99b-5p, miR-101-3p, and miR-431-5p in RA patients compared to healthy controls. Among these, miR-101-3p demonstrated the highest diagnostic accuracy, with an area under the curve (AUC) of 0.873. These findings contribute to a deeper understanding of RA pathogenesis and suggest that miR-101-3p may serve as a valuable biomarker for early disease detection and potentially improved patient management. Further research is warranted to elucidate the precise mechanisms underlying miRNA involvement in RA and to explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mohamed M Sadaty
- Department of Technology of Medical Laboratory, Faculty of Applied Health Science Technology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Salma M Mekhemer
- Department of Technology of Medical Laboratory, Faculty of Applied Health Science Technology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Rana Mohamed
- Department of Technology of Medical Laboratory, Faculty of Applied Health Science Technology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Nashaat N Kamal
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt
| | - Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
| |
Collapse
|
2
|
Saquib M, Agnihotri P, Sarkar A, Malik S, Mann S, Chakraborty D, Joshi L, Malhotra R, Biswas S. Functional Significance of miR-4693-5p in Targeting HIF1α and Its Link to Rheumatoid Arthritis Pathogenesis. Noncoding RNA 2024; 10:22. [PMID: 38668380 PMCID: PMC11053697 DOI: 10.3390/ncrna10020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/29/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes joint inflammation and destruction with an unknown origin. Our study aims to elucidate the molecular mechanism behind HIF1α overexpression in RA. Dysregulated miRNA expressions are known to influence gene behavior, thereby enhancing cell proliferation, inflammation, and resistance to apoptosis, contributing to RA development. Our earlier finding indicated that exogenous miRNA similar to miR-4693-5p may modulate RA-related targets. However, the specific role of miR-4693-5p and its targets in RA remain unexplored. In this study, we found that miR-4693-5p was significantly reduced in PBMCs of RA patients, with evidence suggesting it targets the 3' UTR of HIF1α, thereby potentially contributing to its overexpression in RA. In vitro overexpression of miR-4693-5p leads to the knockdown of HIF1α, resulting in inhibited expression of Survivin to disrupt apoptosis resistance, inflammation suppression, and a reduction in the total cellular ROS response in SW982 and RAFLS cells. The results were validated using the CIA Rat model. In conclusion, this study provides a crucial foundation for understanding the functional role of miR-4693-5p. These findings improve our understanding and provide novel insights into the molecular mechanisms underlying RA pathogenesis.
Collapse
Affiliation(s)
- Mohd Saquib
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prachi Agnihotri
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Sarkar
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Malik
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonia Mann
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
| | - Debolina Chakraborty
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Lovely Joshi
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh Malhotra
- All India Institute of Medical Science (AIIMS), Ansari Nagar, New Delhi 110029, India;
| | - Sagarika Biswas
- Council of Scientific and Industrial Research (CSIR), Institute of Genomics and Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India; (M.S.); (P.A.); (A.S.); (S.M.); (S.M.); (D.C.); (L.J.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
4
|
Xiao J, Zhou F, Zhao Z, Cao F, Xiao H, Zhang L, Chen H, Wang K, Zhang A. PDCD5 as a Potential Biomarker for Improved Prediction of the Incidence and Remission for Patients with Rheumatoid Arthritis. Rheumatol Ther 2023; 10:1369-1383. [PMID: 37528307 PMCID: PMC10468452 DOI: 10.1007/s40744-023-00587-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) often involves an altered T-cell subpopulation, higher levels of inflammatory cytokines, and auto-antibodies. This study investigated whether PDCD5 could be a biomarker to predict the incidence and remission of RA so as to guide the therapeutic management of clinical RA. METHODS One hundred fifty-two patients (41 being in both active status and stable remission status) who were newly diagnosed with RA and 38 healthy controls were enrolled. Basic clinical data were collected before using blood samples remaining in the clinic after routine complete blood count. The ability of PDCD5 and important indicators to predict the remission of RA was estimated based on receiver operating characteristic curve (ROC) analysis. RESULTS PDCD5 expression was found to be significantly increased in RA patients in active status in comparison with healthy controls or those in stable remission status. Compared with anti-CCP, ESR and DAS28 score, PDCD5 was of better predictive value with an AUC of 0.846 (95% CI 0.780-0.912) for RA remission. The incidence risk of RA increased with higher levels of PDCD5 (OR = 1.73, 95% CI = 1.45-1.98, P = 0.005) in multiple logistic regression analysis, with the risk increasing by 2.94-times for high-risk group in comparison with low-risk group (OR = 2.94, 95% CI = 2.35-4.62, P < 0.001). The association between PDCD5 and RA remission showed a similar result. For correlation analysis, significant associations were eventually found between PDCD5 and indicated genes (FOXP3, TNF-α, IL-17A, IFN-γ and IL-6) as well as several important clinical parameters including IgG, RF, CRP, ESR, anti-CCP and DAS28 score. CONCLUSIONS This study suggested that increased PDCD5 expression was significantly linked to the incidence and remission of RA. PDCD5 may be used as a novel biomarker for the prediction of RA incidence and remission, especially due to its potential involvement in the development of the condition.
Collapse
Affiliation(s)
- Juan Xiao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Fengqiao Zhou
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Zhenwang Zhao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Fengsheng Cao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Hong Xiao
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Lu Zhang
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Huabo Chen
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China
| | - Ke Wang
- Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- Medical College, Hubei University of Arts and Science, 296 Longzhong Road, Xiangyang, 441053, Hubei, China.
| | - Anbing Zhang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, 136 Jinzhou Street, Xiangyang, 441021, Hubei, China.
| |
Collapse
|
5
|
Jiang Y, Zhong S, He S, Weng J, Liu L, Ye Y, Chen H. Biomarkers (mRNAs and non-coding RNAs) for the diagnosis and prognosis of rheumatoid arthritis. Front Immunol 2023; 14:1087925. [PMID: 36817438 PMCID: PMC9929281 DOI: 10.3389/fimmu.2023.1087925] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, diagnostic and therapeutic approaches for rheumatoid arthritis (RA) have continued to improve. However, in the advanced stages of the disease, patients are unable to achieve long-term clinical remission and often suffer from systemic multi-organ damage and severe complications. Patients with RA usually have no overt clinical manifestations in the early stages, and by the time a definitive diagnosis is made, the disease is already at an advanced stage. RA is diagnosed clinically and with laboratory tests, including the blood markers C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) and the autoantibodies rheumatoid factor (RF) and anticitrullinated protein antibodies (ACPA). However, the presence of RF and ACPA autoantibodies is associated with aggravated disease, joint damage, and increased mortality, and these autoantibodies have low specificity and sensitivity. The etiology of RA is unknown, with the pathogenesis involving multiple factors and clinical heterogeneity. The early diagnosis, subtype classification, and prognosis of RA remain challenging, and studies to develop minimally invasive or non-invasive biomarkers in the form of biofluid biopsies are becoming more common. Non-coding RNA (ncRNA) molecules are composed of long non-coding RNAs, small nucleolar RNAs, microRNAs, and circular RNAs, which play an essential role in disease onset and progression and can be used in the early diagnosis and prognosis of RA. In this review of the diagnostic and prognostic approaches to RA disease, we provide an overview of the current knowledge on the subject, focusing on recent advances in mRNA-ncRNA as diagnostic and prognostic biomarkers from the biofluid to the tissue level.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuxin Zhong
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Shenghua He
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Juanling Weng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijin Liu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yufeng Ye
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Hanwei Chen
- Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, China.,Department of Radiology, GuangzhouPanyu Health Management Center (Panyu Rehabilitation Hospital), Guangzhou, China
| |
Collapse
|
6
|
Mei X, Zhang B, Zhao M, Lu Q. An update on epigenetic regulation in autoimmune diseases. J Transl Autoimmun 2022; 5:100176. [PMID: 36544624 PMCID: PMC9762196 DOI: 10.1016/j.jtauto.2022.100176] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Autoimmune diseases (AIDs) generally manifest as chronic immune disorders characterized by significant heterogeneity and complex symptoms. The discordant incidence of AIDs between monozygotic twins guided people to attach importance to environmental factors. Epigenetics is one of the major ways to be influenced, some of them can even occur years before clinical diagnosis. With the advent of high-throughput omics times, the mysterious veil of epigenetic modification in AIDs has been gradually unraveled, and some progress has been made in utilizing it as indicators of diagnosis and disease activity. For example, the hypomethylated IFI44L promoter in diagnosing systematic lupus erythematosus (SLE). More recently, newly identified noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are also believed to be involved in the etiology of AIDs while the initial factor behind those epigenetic alterations can be diverse from metabolism to microbiota. Update and comprehensive insights into epigenetics in AIDs can help us understand the pathogenesis and further orchestrate it to benefit patients in the future. Therefore, we reviewed the latest epigenetic findings in SLE, rheumatoid arthritis (RA), Type 1 diabetes (T1D), systemic sclerosis (SSc) primarily from cellular levels.
Collapse
Affiliation(s)
- Xiaole Mei
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China
| | - Bo Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China.
| | - Qianjin Lu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Key Laboratory of Basic and Translational Research on Immunological Dermatology, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China,Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China,Research Unit of Key Technologies of Diagnosis and Treatment for Immune-related Skin Diseases, Chinese Academy of Medical Sciences, Changsha, Hunan, China,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China,Corresponding author. Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
7
|
ST3GAL3 Promotes the Inflammatory Response of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis by Activating the TLR9/MyD88 Pathway. Mediators Inflamm 2022; 2022:4258742. [DOI: 10.1155/2022/4258742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/09/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
This study is aimed at investigating the role of β-galactoside-α2,3-sialyltransferase III (ST3GAL3) in fibroblast-like synoviocytes (FLS) in rheumatoid arthritis (RA), as well as its potential mechanism of action. The Gene Expression Omnibus (GEO) database and gene set enrichment analysis (GSEA) were used to analyse the expression of ST3GAL3 and the enrichment signalling pathways associated with ST3GAL3 in RA. The effects of ST3GAL3 on tumour necrosis factor- (TNF-) α and interleukin- (IL-) 1β-treated MH7A cells were determined using methyl thiazolyl tetrazolium (MTT), transwell, and enzyme-linked immunosorbent assays (ELISA). The expression of proliferation-associated proteins and Toll-like receptor (TLR) pathway-enriched proteins was analysed using western blotting. As a main result, ST3GAL3 was screened as an overlapping upregulated gene from GSE101193 and GSE94519 datasets. ST3GAL3 expression in MH7A cells significantly increased with increasing treatment time with TNF-α or IL-1β. TLR9/myeloid differentiation primary response protein 88 (MyD88) is a downstream activation pathway of ST3GAL3. ST3GAL3 overexpression promoted MH7A cell proliferation and migration. Additionally, ST3GAL3 overexpression upregulated the expression of proliferation-associated proteins (cyclinD, cyclinE, and proliferating cell nuclear antigen) and TLR pathway enrichment factors (TLR9 and MyD88) and increased the production of matrix metallopeptidase (MMP) 1, MMP3, interleukin- (IL-) 6, and IL-8, whereas si-ST3GAL3 had the opposite effect. The addition of TLR9 agonists (CpG 2216 and CpG 2006) reversed the effects of si-ST3GAL3 on MH7A cell proliferation, migration, and inflammation. TLR9-specific siRNA reversed the effects of ST3GAL3 overexpression on MH7A cell proliferation, migration, and inflammation. In conclusion, ST3GAL3 is likely involved in RA pathogenesis by activating the TLR9/MyD88 pathway.
Collapse
|
8
|
Chang C, Xu L, Zhang R, Jin Y, Jiang P, Wei K, Xu L, Shi Y, Zhao J, Xiong M, Guo S, He D. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol 2022; 13:838884. [PMID: 35401568 PMCID: PMC8987113 DOI: 10.3389/fimmu.2022.838884] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating the transcriptome and development of rheumatoid arthritis (RA). Currently, a comprehensive map illustrating how miRNAs regulate transcripts, pathways, immune system differentiation, and their interactions with terminal cells such as fibroblast-like synoviocytes (FLS), immune-cells, osteoblasts, and osteoclasts are still laking. In this review, we summarize the roles of miRNAs in the susceptibility, pathogenesis, diagnosis, therapeutic intervention, and prognosis of RA. Numerous miRNAs are abnormally expressed in cells involved in RA and regulate target genes and pathways, including NF-κB, Fas-FasL, JAK-STAT, and mTOR pathways. We outline how functional genetic variants of miR-499 and miR-146a partly explain susceptibility to RA. By regulating gene expression, miRNAs affect T cell differentiation into diverse cell types, including Th17 and Treg cells, thus constituting promising gene therapy targets to modulate the immune system in RA. We summarize the diagnostic and prognostic potential of blood-circulating and cell-free miRNAs, highlighting the opportunity to combine these miRNAs with antibodies to cyclic citrullinated peptide (ACCP) to allow accurate diagnosis and prognosis, particularly for seronegative patients. Furthermore, we review the evidence implicating miRNAs as promising biomarkers of efficiency and response of, and resistance to, disease-modifying anti-rheumatic drugs and immunotherapy. Finally, we discuss the autotherapeutic effect of miRNA intervention as a step toward the development of miRNA-based anti-RA drugs. Collectively, the current evidence supports miRNAs as interesting targets to better understand the pathogenetic mechanisms of RA and design more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
9
|
Alexandre D, Teixeira B, Rico A, Valente S, Craveiro A, Baptista PV, Cruz C. Molecular Beacon for Detection miRNA-21 as a Biomarker of Lung Cancer. Int J Mol Sci 2022; 23:ijms23063330. [PMID: 35328750 PMCID: PMC8955680 DOI: 10.3390/ijms23063330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 12/25/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells’ (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.
Collapse
Affiliation(s)
- Daniela Alexandre
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
| | - Bernardo Teixeira
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
| | - André Rico
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
| | - Salete Valente
- Serviço de Pneumologia do Centro Hospitalar Universitário Cova da Beira (CHUCB), 6200-506 Covilhã, Portugal; (S.V.); (A.C.)
| | - Ana Craveiro
- Serviço de Pneumologia do Centro Hospitalar Universitário Cova da Beira (CHUCB), 6200-506 Covilhã, Portugal; (S.V.); (A.C.)
| | - Pedro V. Baptista
- UCIBIO, Department of Life Sciences, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
- i4HB, Associate Laboratory–Institute for Health and Bioeconomy, FCT-NOVA, 2829-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. 5 Henrique, 6200-506 Covilhã, Portugal; (D.A.); (B.T.); (A.R.)
- Correspondence:
| |
Collapse
|
10
|
Wu LF, Zhang Q, Mo XB, Lin J, Wu YL, Lu X, He P, Wu J, Guo YF, Wang MJ, Ren WY, Deng HW, Lei SF, Deng FY. Identification of novel rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes. Exp Mol Med 2022; 54:334-345. [PMID: 35354913 PMCID: PMC8980013 DOI: 10.1038/s12276-022-00751-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/10/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by infiltration of immune cells in the synovium. However, the crosstalk of immune cells and synovial fibroblasts is still largely unknown. Here, global miRNA screening in plasma exosomes was carried out with a custom microarray (RA patients vs. healthy controls = 9:9). A total of 14 exosomal miRNAs were abnormally expressed in the RA patients. Then, downregulated expression of exosomal miR-204-5p was confirmed in both the replication (RA patients vs. healthy controls = 30:30) and validation groups (RA patients vs. healthy controls = 56:60). Similar to the findings obtained in humans, a decreased abundance of exosomal miR-204-5p was observed in mice with collagen-induced arthritis (CIA). Furthermore, Spearman correlation analysis indicated that plasma exosomal miR-204-5p expression was inversely correlated with disease parameters of RA patients, such as rheumatoid factor, erythrocyte sedimentation rate, and C-reactive protein. In vitro, our data showed that human T lymphocytes released exosomes containing large amounts of miR-204-5p, which can be transferred into synovial fibroblasts, inhibiting cell proliferation. Overexpression of miR-204-5p in synovial fibroblasts suppressed synovial fibroblast activation by targeting genes related to cell proliferation and invasion. In vivo assays found that administration of lentiviruses expressing miR-204-5p markedly alleviated the disease progression of the mice with CIA. Collectively, this study identified a novel RA-associated plasma exosomal miRNA-204-5p that mediates the communication between immune cells and synovial fibroblasts and can be used as a potential biomarker for RA diagnosis and treatment.
Collapse
Affiliation(s)
- Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qin Zhang
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Jun Lin
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yang-Lin Wu
- Department of Orthopedics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Jian Wu
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu-Fan Guo
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming-Jun Wang
- Department of Rheumatology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wen-Yan Ren
- Cam-Su Genomic Resource Center, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Hong-Wen Deng
- Center of Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China.
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, 215123, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 215123, Suzhou, Jiangsu, China.
| |
Collapse
|
11
|
Liu L, Chen H, Jiang T, He D. MicroRNA-106b Overexpression Suppresses Synovial Inflammation and Alleviates Synovial Damage in Patients with Rheumatoid Arthritis. Mod Rheumatol 2021; 32:1054-1063. [PMID: 34850088 DOI: 10.1093/mr/roab108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To explore the effect of miR-106b on synovial inflammation and damage in rheumatoid arthritis (RA) patients, and further to investigate its possible mechanism. METHODS : Quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, in situ hybridization and immunohistochemistry assay were separately used to verify the levels of miR-106b and cytokines in the synovial tissues of patients with RA or osteoarthritis (OA). Pearson correlation analysis was conducted to examine the bivariate relationship between miR-106b and cytokines or RANKL. Following the isolation and culture of fibroblast-like synoviocytes (FLS), the cells were transfected with lentivirus-mediated miR-106b mimic, miR-106b inhibitor, and negative control miR-106b mimic, respectively. Thereafter, cell proliferation was measured by Cell Counting Kit-8 assay, and cell invasion and migration capacity was assessed by Transwell assay. Furthermore, concentration and expression of cytokines were separately detected by Enzyme linked immunosorbent assay and Western blot. RESULTS Compared with osteoarthritis, validation by qRT-PCR showed that RA patients had a lower level of miR-106b and higher levels of receptor activator of nuclear factor-κ B ligand (RANKL), tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6). Additionally, the scatter plot showed that the relative transcription of miR-106b level was negatively correlated to the level of TNF-a, IL-6, and RNKAL in the synovial tissues of both RA and OA patients (All P<0.05). Furthermore, miR-106b overexpression suppressed cell proliferation, migration and invasion capacity of human RA-FLS. CONCLUSIONS miR-106b overexpression suppresses synovial inflammation and alleviates synovial damage, thus it may be served as a potential therapeutic target for RA patients.
Collapse
Affiliation(s)
- Linchen Liu
- Department of Rheumatology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing China
| | - Haiyan Chen
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Ting Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional and Western Medicine, Shanghai China
| | - Dongyi He
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
12
|
Lara-Barba E, Araya MJ, Hill CN, Bustamante-Barrientos FA, Ortloff A, García C, Galvez-Jiron F, Pradenas C, Luque-Campos N, Maita G, Elizondo-Vega R, Djouad F, Vega-Letter AM, Luz-Crawford P. Role of microRNA Shuttled in Small Extracellular Vesicles Derived From Mesenchymal Stem/Stromal Cells for Osteoarticular Disease Treatment. Front Immunol 2021; 12:768771. [PMID: 34790203 PMCID: PMC8591173 DOI: 10.3389/fimmu.2021.768771] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/14/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarticular diseases (OD), such as rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic autoimmune/inflammatory and age-related diseases that affect the joints and other organs for which the current therapies are not effective. Cell therapy using mesenchymal stem/stromal cells (MSCs) is an alternative treatment due to their immunomodulatory and tissue differentiation capacity. Several experimental studies in numerous diseases have demonstrated the MSCs’ therapeutic effects. However, MSCs have shown heterogeneity, instability of stemness and differentiation capacities, limited homing ability, and various adverse responses such as abnormal differentiation and tumor formation. Recently, acellular therapy based on MSC secreted factors has raised the attention of several studies. It has been shown that molecules embedded in extracellular vesicles (EVs) derived from MSCs, particularly those from the small fraction enriched in exosomes (sEVs), effectively mimic their impact in target cells. The biological effects of sEVs critically depend on their cargo, where sEVs-embedded microRNAs (miRNAs) are particularly relevant due to their crucial role in gene expression regulation. Therefore, in this review, we will focus on the effect of sEVs derived from MSCs and their miRNA cargo on target cells associated with the pathology of RA and OA and their potential therapeutic impact.
Collapse
Affiliation(s)
- Eliana Lara-Barba
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - María Jesús Araya
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Charlotte Nicole Hill
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Facultad de Ciencias Biológicas, Millennium Institute for Immunology and Immunotherapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Cynthia García
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Felipe Galvez-Jiron
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Carolina Pradenas
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Gabriela Maita
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Farida Djouad
- Institute for Regenerative Medicine and Biotherapy (IRMB), Univ Montpellier, Institut national de la santé et de la recherche médicale (INSERM), Montpellier, France
| | - Ana María Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, Chile.,IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
13
|
Guo S, Jin Y, Zhou J, Zhu Q, Jiang T, Bian Y, Zhang R, Chang C, Xu L, Shen J, Zheng X, Shen Y, Qin Y, Chen J, Tang X, Cheng P, Ding Q, Zhang Y, Liu J, Cheng Q, Guo M, Liu Z, Qiu W, Qian Y, Sun Y, Shen Y, Nie H, Schrodi SJ, He D. MicroRNA Variants and HLA-miRNA Interactions are Novel Rheumatoid Arthritis Susceptibility Factors. Front Genet 2021; 12:747274. [PMID: 34777472 PMCID: PMC8585984 DOI: 10.3389/fgene.2021.747274] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022] Open
Abstract
Genome-wide association studies have identified >100 genetic risk factors for rheumatoid arthritis. However, the reported genetic variants could only explain less than 40% heritability of rheumatoid arthritis. The majority of the heritability is still missing and needs to be identified with more studies with different approaches and populations. In order to identify novel function SNPs to explain missing heritability and reveal novel mechanism pathogenesis of rheumatoid arthritis, 4 HLA SNPs (HLA-DRB1, HLA-DRB9, HLA-DQB1, and TNFAIP3) and 225 common SNPs located in miRNA, which might influence the miRNA target binding or pre-miRNA stability, were genotyped in 1,607 rheumatoid arthritis and 1,580 matched normal individuals. We identified 2 novel SNPs as significantly associated with rheumatoid arthritis including rs1414273 (miR-548ac, OR = 0.84, p = 8.26 × 10-4) and rs2620381 (miR-627, OR = 0.77, p = 2.55 × 10-3). We also identified that rs5997893 (miR-3928) showed significant epistasis effect with rs4947332 (HLA-DRB1, OR = 4.23, p = 0.04) and rs2967897 (miR-5695) with rs7752903 (TNFAIP3, OR = 4.43, p = 0.03). In addition, we found that individuals who carried 8 risk alleles showed 15.38 (95%CI: 4.69-50.49, p < 1.0 × 10-6) times more risk of being affected by RA. Finally, we demonstrated that the targets of the significant miRNAs showed enrichment in immune related genes (p = 2.0 × 10-5) and FDA approved drug target genes (p = 0.014). Overall, 6 novel miRNA SNPs including rs1414273 (miR-548ac, p = 8.26 × 10-4), rs2620381 (miR-627, p = 2.55 × 10-3), rs4285314 (miR-3135b, p = 1.10 × 10-13), rs28477407 (miR-4308, p = 3.44 × 10-5), rs5997893 (miR-3928, p = 5.9 × 10-3) and rs45596840 (miR-4482, p = 6.6 × 10-3) were confirmed to be significantly associated with RA in a Chinese population. Our study suggests that miRNAs might be interesting targets to accelerate understanding of the pathogenesis and drug development for rheumatoid arthritis.
Collapse
Affiliation(s)
- Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Yehua Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jieru Zhou
- Department of Health Management, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qi Zhu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ting Jiang
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqin Bian
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Shen
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinchun Zheng
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shen
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yingying Qin
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jihong Chen
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaorong Tang
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng Cheng
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Ding
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Zhang
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Liu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingqing Cheng
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengru Guo
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoyi Liu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weifang Qiu
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Qian
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Sun
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shen
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hong Nie
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Steven J Schrodi
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Dongyi He
- Department of Rheumatology,Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Liu A, Zhou K, Martínez MA, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Wang X, Anadón A, Ares I. A "Janus" face of the RASSF4 signal in cell fate. J Cell Physiol 2021; 237:466-479. [PMID: 34553373 DOI: 10.1002/jcp.30592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/19/2022]
Abstract
RASSF4 (Ras-association domain family 4) is a protein-coding gene, regarded as a tumor suppressor regulated by DNA methylation. However, RASSF4 acts as a "Janus" in cell fate: death and survival. This review article focuses on the regulatory mechanisms of RASSF4 on cell death and cell survival and puts forward a comprehensive analysis of the relevant signaling pathways. The participation of RASSF4 in the regulation of intracellular store-operated Ca2+ entry also affects cell survival. Moreover, the mechanism of inducing abnormal expression of RASSF4 was summarized. We highlight recent advances in our knowledge of RASSF4 function in the development of cancer and other clinical diseases, which may provide insight into the controversial functions of RASSF4 and its potential application in disease therapy.
Collapse
Affiliation(s)
- Aimei Liu
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Kaixiang Zhou
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - María Aránzazu Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Bernardo Lopez-Torres
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Marta Martínez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - María-Rosa Martínez-Larrañaga
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Xu Wang
- Department of National Reference, Laboratory of Veterinary Drug Residues (HZAU) and MOA Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, China.,Department of MOA, Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
| | - Arturo Anadón
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| | - Irma Ares
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Universidad Complutense de Madrid(UCM), and Research Institute Hospital 12 de October (i+12), Madrid, Spain
| |
Collapse
|
15
|
Zhao J, Xie F, Chen R, Zhang Z, Dai R, Zhao N, Wang R, Sun Y, Chen Y. Transcription factor NF-κB promotes acute lung injury via microRNA-99b-mediated PRDM1 down-regulation. J Biol Chem 2020; 295:18638-18648. [PMID: 33109608 PMCID: PMC7939479 DOI: 10.1074/jbc.ra120.014861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1.
Collapse
Affiliation(s)
- Jie Zhao
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China.
| | - Fei Xie
- The Six Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Ruidong Chen
- The Six Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Zhen Zhang
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Rujun Dai
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Na Zhao
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Rongxin Wang
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Yanhong Sun
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Yue Chen
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| |
Collapse
|
16
|
Dysregulated microRNA expression in rheumatoid arthritis families-a comparison between rheumatoid arthritis patients, their first-degree relatives, and healthy controls. Clin Rheumatol 2020; 40:2387-2394. [PMID: 33210166 PMCID: PMC8121735 DOI: 10.1007/s10067-020-05502-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 11/01/2022]
Abstract
OBJECTIVE Recent studies have demonstrated an altered expression of certain microRNAs in patients with rheumatoid arthritis (RA) as well as their first-degree relatives (FDRs) compared to healthy controls (HCs), suggesting a role of microRNA in the progression of the disease. To corroborate this, a set of well-characterized RA families originating from northern Sweden were analyzed for differential expression of a selected set of microRNAs. METHOD MicroRNA was isolated from frozen peripheral blood cells obtained from 21 different families and included 26 RA patients, 22 FDRs, and 21 HCs. Expression of the selected microRNAs miR-22-3p, miR-26b-5p, miR-34a-3p, miR-103a-3p, miR-142-3p, miR-146a-5p, miR-155, miR-346, and miR-451a was determined by a two-step quantitative real-time polymerase chain reaction (qRT-PCR). Statistical analysis including clinical variables was applied. RESULTS Out of the nine selected microRNAs that previously have been linked to RA, we confirmed four after adjusting for age and gender, i.e., miR-22-3p (p = 0.020), miR-26b-5p (p = 0.018), miR-142-3p (p = 0.005), and miR-155 (p = 0.033). Moreover, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs. In addition, analysis of the effect of corticosteroid use showed modulation of miR-103a-3p expression. CONCLUSIONS We confirm that microRNAs seem to be involved in the development of RA, and that the expression pattern in FDR is partly overlapping with RA patients. The contribution of single microRNAs in relation to the complex network including all microRNAs and other molecules is still to be revealed. Key Points • Expression levels of miR-22-3p, miR-26b-5p, miR-142-3p, and miR-155 were significantly altered in RA patients compared to those in controls. • In first-degree relatives, a significant trend with an intermediate microRNA expression in FDR was observed for the same four microRNAs.
Collapse
|