1
|
Zhou F, Chang M, Ruan S, Huang W, Sha Z, Cai B, Liu Z. Transcriptomic and histologic analyses preliminarily reveal the immune-metabolic response mechanism to saline-alkaline in large yellow croaker (Larimichthys crocea). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101282. [PMID: 38943980 DOI: 10.1016/j.cbd.2024.101282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
There are large areas of saline-alkaline waters worldwide, the utilization of which would greatly enhance the development of aquaculture productivity. To elucidate the regulatory mechanisms underlying the adaptation of large yellow croaker (Larimichthys crocea) to saline-alkaline water, this study analyzed the growth performance, tissue histology, and gills transcriptome profiles of L. crocea in both seawater (CK) and saline-alkaline water (EX) groups. Growth indices statistics revealed that L. crocea can adapt to saline-alkaline water, with growth performance comparable to that of the CK group. Histological examination revealed partial cellular detachment and structural relaxation in the gills tissue of the EX group, while liver and kidney tissues appeared normal. Transcriptome analysis revealed 3821 differentially expressed genes (DEGs), with 1541 DEGs up-regulated and 2280 DEGs down-regulated. GO enrichment analysis indicated that up-regulated DEGs were enriched in terms related to metabolite production during biological activities, while down-regulated DEGs were associated with terms related to maintaining cellular activities. KEGG enrichment analysis revealed that up-regulated DEGs were enriched in pathways related to the synthesis and metabolism of amino acids and lipids, such as the PPAR signaling pathway and glutathione metabolism. The down-regulated DEGs were predominantly enriched in immune-related signaling pathways, including the Toll-like receptor signaling pathway and NOD-like receptor signaling pathway. Further analysis revealed that genes such as lipoprotein lipase A (lpla), branched-chain amino acid aminotransferase 2 (bcat2), interleukin 8 (il8), interleukin 10 (il10), and interferon regulatory factor 7 (irf7) were involved in the adaptation of L. crocea to saline-alkaline water culture conditions. This study provides a basis for understanding the adaptability of large yellow croaker to saline-alkaline water and lays the foundation for the rational utilization of fishery water resources.
Collapse
Affiliation(s)
- Fengfang Zhou
- College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China
| | - Mengyang Chang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Shaojiang Ruan
- College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China
| | - Weiqing Huang
- College of Marine Sciences, Ningde Normal University, Ningde 352100, China; Ningde Dingcheng Fishery Company Limited, Ningde 352100, China; Ningxia Lanwan Ecological Agriculture Co., Ltd., Yin Chuan, China.
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao 266071, China.
| | - Binxin Cai
- College of Marine Sciences, Ningde Normal University, Ningde 352100, China
| | - Zheng Liu
- College of Biological Science and Engineering, Ningde Normal University, Ningde 352100, China
| |
Collapse
|
2
|
Koll R, Theilen J, Hauten E, Woodhouse JN, Thiel R, Möllmann C, Fabrizius A. Network-based integration of omics, physiological and environmental data in real-world Elbe estuarine Zander. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173656. [PMID: 38830414 DOI: 10.1016/j.scitotenv.2024.173656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
Coastal and estuarine environments are under endogenic and exogenic pressures jeopardizing survival and diversity of inhabiting biota. Information of possible synergistic effects of multiple (a)biotic stressors and holobiont interaction are largely missing in estuaries like the Elbe but are of importance to estimate unforeseen effects on animals' physiology. Here, we seek to leverage host-transcriptional RNA-seq and gill mucus microbial 16S rRNA metabarcoding data coupled with physiological and abiotic measurements in a network analysis approach to decipher the impact of multiple stressors on the health of juvenile Sander lucioperca along one of the largest European estuaries. We find mesohaline areas characterized by gill tissue specific transcriptional responses matching osmosensing and tissue remodeling. Liver transcriptomes instead emphasized that zander from highly turbid areas were undergoing starvation which was supported by compromised body condition. Potential pathogenic bacteria, including Shewanella, Acinetobacter, Aeromonas and Chryseobacterium, dominated the gill microbiome along the freshwater transition and oxygen minimum zone. Their occurrence coincided with a strong adaptive and innate transcriptional immune response in host gill and enhanced energy demand in liver tissue supporting their potential pathogenicity. Taken together, we show physiological responses of a fish species and its microbiome to abiotic factors whose impact is expected to increase with consequences of climate change. We further present a method for the close-meshed detection of the main stressors and bacterial species with disease potential in a highly productive ecosystem.
Collapse
Affiliation(s)
- Raphael Koll
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany.
| | - Jesse Theilen
- University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Elena Hauten
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Jason Nicholas Woodhouse
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany; Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Microbial and phytoplankton Ecology, Germany
| | - Ralf Thiel
- Leibniz Institute for the Analysis of Biodiversity Change (LIB) - Hamburg site, Centre for Taxonomy & Morphology, Zoological Museum, Germany; University of Hamburg, Department of Biology, Biodiversity Research, Germany
| | - Christian Möllmann
- University of Hamburg, Institute of Marine Ecosystem and Fishery Science, Marine ecosystem dynamics, Germany
| | - Andrej Fabrizius
- University of Hamburg, Institute of Cell- and Systems Biology of Animals, Molecular Animal Physiology, Germany
| |
Collapse
|
3
|
Fernandes AM, Calduch-Giner JÀ, Pereira GV, Gonçalves AT, Dias J, Johansen J, Silva T, Naya-Català F, Piazzon C, Sitjà-Bobadilla A, Costas B, Conceição LEC, Fernandes JMO, Pérez-Sánchez J. Sustainable Fish Meal-Free Diets for Gilthead Sea Bream ( Sparus aurata): Integrated Biomarker Response to Assess the Effects on Growth Performance, Lipid Metabolism, Antioxidant Defense and Immunological Status. Animals (Basel) 2024; 14:2166. [PMID: 39123694 PMCID: PMC11311052 DOI: 10.3390/ani14152166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
The growth of the aquaculture industry requires more sustainable and circular economy-driven aquafeed formulas. Thus, the goal of the present study was to assess in farmed gilthead sea bream (Sparus aurata L.) how different combinations of novel and conventional fish feed ingredients supported proper animal performance in terms of growth and physiological biomarkers of blood/liver/head kidney. A 77-day feeding trial was conducted with three experimental diets (PAP, with terrestrial processed animal protein from animal by-products; NOPAP, without processed animal protein from terrestrial animal by-products; MIX, a combination of alternative ingredients of PAP and NOPAP diets) and a commercial-type formulation (CTRL), and their effects on growth performance and markers of endocrine growth regulation, lipid metabolism, antioxidant defense and inflammatory condition were assessed at circulatory and tissue level (liver, head kidney). Growth performance was similar among all dietary treatments. However, fish fed the PAP diet displayed a lower feed conversion and protein efficiency, with intermediate values in MIX-fed fish. Such gradual variation in growth performance was supported by different biomarker signatures that delineated a lower risk of oxidation and inflammatory condition in NOPAP fish, in concurrence with an enhanced hepatic lipogenesis that did not represent a risk of lipoid liver degeneration.
Collapse
Affiliation(s)
- Ana M Fernandes
- Sparos Lda, 8700-221 Olhão, Portugal
- Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | | | | | - Ana Teresa Gonçalves
- Sparos Lda, 8700-221 Olhão, Portugal
- GreenCoLab-Associação Oceano Verde, Universidade do Algarve, 8005-139 Faro, Portugal
| | | | - Johan Johansen
- Norwegian Institute of Bioeconomy Research (NIBIO), 1431 Ås, Norway
| | | | - Fernando Naya-Català
- Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Carla Piazzon
- Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Benjamin Costas
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4200-465 Porto, Portugal
- School of Biomedicine and Biomedical Sciences (ICBAS), University of Porto, 4200-465 Porto, Portugal
| | | | | | - Jaume Pérez-Sánchez
- Institute of Aquaculture Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
4
|
Tawfik MM, Betancor MB, McMillan S, Norambuena F, Tocher DR, Douglas A, Martin SAM. Modulation of metabolic and immunoregulatory pathways in the gut transcriptome of Atlantic salmon ( Salmo salar L.) after early nutritional programming during first feeding with plant-based diet. Front Immunol 2024; 15:1412821. [PMID: 39015564 PMCID: PMC11249740 DOI: 10.3389/fimmu.2024.1412821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Plant-based nutritional programming is the concept of exposing fish at very early life stages to a plant-based diet for a short duration to improve physiological responses when exposed to a similar plant-rich diet at a later developmental stage. The mechanisms of action underlying nutritional programming have not been fully deciphered, and the responses may be controlled at multiple levels. Methods This 22-week study examines gut transcriptional changes after nutritional programming. Triplicate groups of Atlantic salmon were fed with a plant (V) vs. a marine-rich (M, control) diet for 2 weeks (stimulus phase) at the first exogenous feeding. Both stimulus fish groups (M and V fish) were then fed the M diet for 12 weeks (intermediate phase) and lastly fed the V diet (challenge phase) for 6 weeks, generating two dietary regimes (MMV and VMV) across phases. This study used a whole-transcriptome approach to analyse the effects of the V diet at the end of stimulus (short-term effects) and 22 weeks post-first feeding (long-term effects). After the stimulus, due to its developmental stage, the whole intestine was used, whereas, after the challenge, pyloric caeca and middle and distal intestines were examined. Results and discussion At the stimulus end, genes with increased expression in V fish enriched pathways including regulatory epigenetic responses and lipid metabolism, and genes involved in innate immune response were downregulated. In the middle intestine at the end of the challenge, expression levels of genes of lipid, carbohydrate, and energy metabolism were increased in V fish, while M fish revealed increased expression of genes associated with autoimmune and acute adaptive immune response. The distal intestine of V fish showed increased expression of genes associated with immune response and potential immune tolerance. Conversely, the distal intestine of M fish at challenge revealed upregulation of lipid and carbohydrate metabolic pathways, tissue degeneration, and apoptotic responses. The present study demonstrated nutritional programming-associated changes in the intestinal transcriptome, with altered expression of genes involved in both immune responses and different metabolic processes. While there were limited changes in growth between the groups, the results show that there were transcriptional differences, suggesting a programming response, although the mechanism of this response still requires to be fully elucidated.
Collapse
Affiliation(s)
- Marwa Mamdouh Tawfik
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Hydrobiology Department, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Mónica B. Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Stuart McMillan
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | | | - Douglas R. Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong, China
| | - Alex Douglas
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Samuel A. M. Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
5
|
Zuo A, Zhou Y, Chen Y, Liu S, Lu Y, Li Y, Cao S, Liu Z. Physiological and Transcriptome Analysis Reveal the Regulation Mechanism Underlying the Muscle Quality Effect of Dietary Schisandra chinensis in Triploid Crucian Carp (Carassius auratus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1191-1207. [PMID: 38079085 DOI: 10.1007/s10126-023-10270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Schisandra chinensis (sc) is generally demonstrated to improve antioxidant and immune functions in mammal. The present study through physiological and transcriptome analysis revealed alterations in muscle metabolisms of triploid crucian carp (Carassius auratus) cultured at different concentrations of S. chinensis diets (sc0, sc0.125%, sc0.25%, sc0.5%, sc1%, sc2%) after 8 weeks. The serum antioxidant enzyme activities analysis showed that dietary S. chinensis could reduce oxidative stress and increase organismic antioxidant capacity. Meanwhile, the detected results of muscle components presented that the amino acids and two flavor nucleotides of GMP and IMP significantly elevated while muscle crude lipid significantly reduced in S. chinensis feeding groups. In addition, springiness, chewiness, and fiber density in S. chinensis feeding groups muscle were significantly upregulated while muscle fiber diameter and area showed an opposite trend. By comparative transcriptome analysis of the muscles, functional enrichments of differentially expressed genes showed that multiple terms were related to purine metabolism, glycerolipid metabolism, regulation of actin cytoskeleton, and peroxisome. Finally, some key hub genes such as egln, gst, ggct, su1b, pi3kr4, myh9, lpl, gcdh, mylk, and col4a were identified by weighted gene co-expression network analysis. Taken together, our findings facilitate the understanding of the molecular basis underlying the muscle quality effect of dietary S. chinensis in triploid crucian carp, which provides valuable insights into the nutritional strategies of the aquaculture industry.
Collapse
Affiliation(s)
- Anli Zuo
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
- College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yonghua Zhou
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yuxian Chen
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Sipu Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yuyao Lu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Yingjie Li
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Shenping Cao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China
| | - Zhen Liu
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Chemical Engineering, Changsha University, Changsha, 410022, China.
| |
Collapse
|
6
|
Naya-Català F, Belenguer A, Montero D, Torrecillas S, Soriano B, Calduch-Giner J, Llorens C, Fontanillas R, Sarih S, Zamorano MJ, Izquierdo M, Pérez-Sánchez J. Broodstock nutritional programming differentially affects the hepatic transcriptome and genome-wide DNA methylome of farmed gilthead sea bream (Sparus aurata) depending on genetic background. BMC Genomics 2023; 24:670. [PMID: 37936076 PMCID: PMC10631108 DOI: 10.1186/s12864-023-09759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/21/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Broodstock nutritional programming improves the offspring utilization of plant-based diets in gilthead sea bream through changes in hepatic metabolism. Attention was initially focused on fatty acid desaturases, but it can involve a wide range of processes that remain largely unexplored. How all this can be driven by a different genetic background is hardly underlined, and the present study aimed to assess how broodstock nutrition affects differentially the transcriptome and genome-wide DNA methylome of reference and genetically selected fish within the PROGENSA® selection program. RESULTS After the stimulus phase with a low fish oil diet, two offspring subsets of each genetic background received a control or a FUTURE-based diet. This highlighted a different hepatic transcriptome (RNA-seq) and genome-wide DNA methylation (MBD-seq) pattern depending on the genetic background. The number of differentially expressed transcripts following the challenge phase varied from 323 in reference fish to 2,009 in genetically selected fish. The number of discriminant transcripts, and associated enriched functions, were also markedly higher in selected fish. Moreover, correlation analysis depicted a hyper-methylated and down-regulated gene expression state in selected fish with the FUTURE diet, whereas the opposite pattern appeared in reference fish. After filtering for highly represented functions in selected fish, 115 epigenetic markers were retrieved in this group. Among them, lipid metabolism genes (23) were the most reactive following ordering by fold-change in expression, rendering a final list of 10 top markers with a key role on hepatic lipogenesis and fatty acid metabolism (cd36, pitpna, cidea, fasn, g6pd, lipt1, scd1a, acsbg2, acsl14, acsbg2). CONCLUSIONS Gene expression profiles and methylation signatures were dependent on genetic background in our experimental model. Such assumption affected the magnitude, but also the type and direction of change. Thus, the resulting epigenetic clock of reference fish might depict an older phenotype with a lower methylation for the epigenetically responsive genes with a negative methylation-expression pattern. Therefore, epigenetic markers will be specific of each genetic lineage, serving the broodstock programming in our selected fish to prevent and mitigate later in life the risk of hepatic steatosis through changes in hepatic lipogenesis and fatty acid metabolism.
Collapse
Affiliation(s)
- F Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - A Belenguer
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - D Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - S Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - B Soriano
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - J Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain
| | - C Llorens
- Biotechvana, Parc Científic Universitat de València, 46980, Paterna, Spain
| | - R Fontanillas
- Skretting Aquaculture Research Centre, Stavanger, Norway
| | - S Sarih
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M J Zamorano
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - M Izquierdo
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Ctra. Taliarte S/N, 35214, Telde, Las Palmas, Canary Islands, Spain
| | - J Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de La Sal (IATS, CSIC), 12595, Castellón, Spain.
| |
Collapse
|
7
|
Liver Transcriptome Analysis of the Black Porgy (Acanthopagrus schlegelii) under Acute Low-Temperature Stress. Life (Basel) 2023; 13:life13030721. [PMID: 36983876 PMCID: PMC10057800 DOI: 10.3390/life13030721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
High nutritional value and the development of efficient biotechnological methods of controlled production have made black porgy (Acanthopagrus schlegelii) an economically important fish in Chinese aquaculture in recent years. However, aquaculture production of the species faces multiple issues associated with reduced growth rate, low reproduction ability, and high mortality during production, which are associated with the species’ limited tolerance to low temperatures. To date, comprehensive information on the genetic-based mechanisms of cold tolerance and adaptation to low temperature in the species are still unavailable. In this study, the HiSeq™2500 (Illumina) sequencing platform was used to analyze the transcriptomic profile of the liver tissue in the black porgy subjected to different extents of cold shock, including a control temperature group (AS, T = 15 °C), an intermediate temperature group (AL1, T = 10 °C), and an acute low-temperature stress group (AL2, T = 5 °C). For this purpose, three standardized cDNA libraries of AS, AL1, and AL2 were established. We obtained 43,258,908, 48,239,072, and 38,983,833 clean reads from the AS group, AL1 group, and AL2 group, respectively. After pairwise comparison, 70 differentially expressed genes (DEGs) were identified in the examined fish groups. Among them, 60 genes were found to be significantly differentially expressed after trend analysis. GO annotation and enrichment results showed that they were mainly enriched into three categories: biological processes (12 subcategories), molecular functions (7 subcategories), and cellular components (7 subcategories). KEGG analysis results indicated that all significantly differentially expressed genes were annotated to 102 signaling pathways, including biological rhythm, cholesterol metabolism, glycerolipid metabolism, animal autophagy, FoxO signaling pathway, steroid biosynthesis, and regulation of adipocyte lipolysis and apoptosis. Four of them, namely: G6PC, GPX1, GCK, and HSPE1 were randomly selected for further qRT-PCR verification of data reliability obtained by RNA-Seq technology. In this study, we found that environmental acute cold stress mainly affected the black porgy’s biological processes related to metabolism, apoptosis, and signal transduction. The data that we have reported provides baseline information for further studies concerning the genetic responses of the black porgy under cold stress conditions, the improvement of its aquaculture production, and other economically important matters regarding their limited tolerance to cold shock.
Collapse
|
8
|
Hamagami N, Wu DY, Clemens AW, Nettles SA, Gabel HW. NSD1 deposits histone H3 lysine 36 dimethylation to pattern non-CG DNA methylation in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528965. [PMID: 36824816 PMCID: PMC9949142 DOI: 10.1101/2023.02.17.528965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
During postnatal development the DNA methyltransferase DNMT3A deposits high levels of non-CG cytosine methylation in neurons. This unique methylation is critical for transcriptional regulation in the mature mammalian brain, and loss of this mark is implicated in DNMT3A-associated neurodevelopmental disorders (NDDs). The mechanisms determining genomic non-CG methylation profiles are not well defined however, and it is unknown if this pathway is disrupted in additional NDDs. Here we show that genome topology and gene expression converge to shape histone H3 lysine 36 dimethylation (H3K36me2) profiles, which in turn recruit DNMT3A and pattern neuronal non-CG methylation. We show that NSD1, the H3K36 methyltransferase mutated in the NDD, Sotos syndrome, is required for megabase-scale patterning of H3K36me2 and non-CG methylation in neurons. We find that brain-specific deletion of NSD1 causes alterations in DNA methylation that overlap with models of DNMT3A disorders and define convergent disruption in the expression of key neuronal genes in these models that may contribute to shared phenotypes in NSD1- and DNMT3A-associated NDD. Our findings indicate that H3K36me2 deposited by NSD1 is an important determinant of neuronal non-CG DNA methylation and implicates disruption of this methylation in Sotos syndrome. Highlights Topology-associated DNA methylation and gene expression independently contribute to neuronal gene body and enhancer non-CG DNA methylation patterns.Topology-associated H3K36me2 patterns and local enrichment of H3K4 methylation impact deposition of non-CG methylation by DNMT3A. Disruption of NSD1 in vivo leads to alterations in H3K36me2, DNA methylation, and gene expression that overlap with models of DNMT3A disorders.
Collapse
Affiliation(s)
- Nicole Hamagami
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- These authors contributed equally
| | - Dennis Y Wu
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- These authors contributed equally
| | - Adam W Clemens
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
| | - Sabin A Nettles
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, St Louis MO 63110-1093, USA
- Lead contact
| |
Collapse
|
9
|
Holhorea PG, Felip A, Calduch-Giner JÀ, Afonso JM, Pérez-Sánchez J. Use of male-to-female sex reversal as a welfare scoring system in the protandrous farmed gilthead sea bream ( Sparus aurata). Front Vet Sci 2023; 9:1083255. [PMID: 36699328 PMCID: PMC9868933 DOI: 10.3389/fvets.2022.1083255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Gilthead sea bream is a highly cultured marine fish throughout the Mediterranean area, but new and strict criteria of welfare are needed to assure that the intensification of production has no negative effects on animal farming. Most welfare indicators are specific to a given phase of the production cycle, but others such as the timing of puberty and/or sex reversal are of retrospective value. This is of particular relevance in the protandrous gilthead sea bream, in which the sex ratio is highly regulated at the nutritional level. Social and environmental factors (e.g., contaminant loads) also alter the sex ratio, but the contribution of the genetic component remains unclear. To assess this complex issue, five gilthead sea bream families representative of slow/intermediate/fast growth were grown out with control or a plant-based diet in a common garden system from early life to the completion of their sexual maturity in 3-year-old fish. The plant-based diet highly enhanced the male-to-female sex reversal. This occurred in parallel with the progressive impairment of growth performance, which was indicative of changes in nutrient requirements as the result of the different energy demands for growth and reproduction through development. The effect of a different nutritional and genetic background on the reproductive performance was also assessed by measurements of circulating levels of sex steroids during the two consecutive spawning seasons, varying plasma levels of 17β-estradiol (E2) and 11-ketotestosterone (11-KT) with age, gender, diet, and genetic background. Principal component analysis (PCA) of 3-year-old fish displayed a gradual increase of the E2/11-KT ratio from males to females with the improvement of nutritional/genetic background. Altogether, these results support the use of a reproductive tract scoring system for leading farmed fish toward their optimum welfare condition, contributing to improving the productivity of the current gilthead sea bream livestock.
Collapse
Affiliation(s)
- Paul G Holhorea
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| | - Alicia Felip
- Group of Fish Reproductive Physiology, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| | - Josep À Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| | - Juan Manuel Afonso
- Aquaculture Research Group, Institute of Sustainable Aquaculture and Marine Ecosystems (IU-ECOAQUA), University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, CSIC, Castellón, Spain
| |
Collapse
|
10
|
Callet T, Li H, Heraud C, Larroquet L, Lanuque A, Sandres F, Terrier F, Surget A, Corraze G, Panserat S, Marandel L. Molecular programming of the hepatic lipid metabolism via a parental high carbohydrate and low protein diet in rainbow trout. Animal 2022; 16:100670. [PMID: 36402111 DOI: 10.1016/j.animal.2022.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
It is now recognised that parental diets could alter their offspring metabolism, concept known as nutritional programming. For agronomic purposes, it has been previously proposed that programming could be employed as a strategy to prepare individual for future nutritional challenges. Concerning cultured fish that belong to high trophic level, plant-derived carbohydrates are a possible substitute for the traditional protein-rich fishmeal in broodstock diet, lowering thus the dietary protein-to-carbohydrate ratio (HC/LP nutrition). However, in mammals, numerous studies have previously demonstrated that parental HC/LP nutrition negatively affects their offspring in the long term. Therefore, the question of possible adaptation to plant-based diets, via parental nutrition, should be explored. First, the maternal HC/LP nutrition induced a global DNA hypomethylation in the liver of their offspring. Interestingly at the gene expression level, the effects brought by the maternal and paternal HC/LP nutrition cumulated in the liver, as indicated by the altered transcriptome. The paternal HC/LP nutrition significantly enhanced cholesterol synthesis at the transcriptomic level. Furthermore, hepatic genes involved in long-chain polyunsaturated fatty acids were significantly increased by the parental HC/LP nutrition, affecting thus both hepatic and muscle fatty acid profiles. Overall, the present study demonstrated that lipid metabolism could be modulated via a parental nutrition in rainbow trout, and that such modulations have consequences on their progeny phenotypes.
Collapse
Affiliation(s)
- Thérèse Callet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Hongyan Li
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cécile Heraud
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Frédéric Terrier
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Anne Surget
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Geneviève Corraze
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR 1419, Nutrition, Métabolisme, Aquaculture, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
11
|
Leikin-Frenkel A, Cohen H, Keshet R, Shnerb-GanOr R, Kandel-Kfir M, Harari A, Hollander KS, Shaish A, Harats D, Kamari Y. The effect of α-linolenic acid enrichment in perinatal diets in preventing high fat diet-induced SCD1 increased activity and lipid disarray in adult offspring of low density lipoprotein receptor knockout (LDLRKO) mice. Prostaglandins Leukot Essent Fatty Acids 2022; 184:102475. [PMID: 35940045 DOI: 10.1016/j.plefa.2022.102475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/29/2022]
Abstract
The present study examined the effects of maternal perinatal dietary ALA enrichment on the high fat diet (HFD)-induced lipid disarray in the adult offspring of low density lipoprotein receptor knock-out (LDLRKO) mice. Female LDLRKO mice received, during pregnancy and lactation, isocaloric diets with either corn oil, RD, or flax oil, ALA. The weaning offspring was given a regular chow diet for a washout period of eight weeks, which was followed by HFD for eight weeks. Plasma and liver lipids and SCD1 activity were then analyzed. The HFD-fed RD adult offspring had substantially higher plasma cholesterol levels than the HFD-fed ALA offspring (15.7 versus 9.7 mmole/l, p<0.00001) and non-alcoholic fatty liver disease (NAFLD) (65.0 versus 23.9 mg/g lipids, p<0.00001). Liver lipids oleic acid (OA) content and monounsaturated to saturated fatty acids (MUFA/SAT) ratio, were two times lower in RD compared to ALA (p<0.0001). The threefold HFD-induced SCD1 raised activity (p<0.00001), and OA produced from SA, observed in RD adult offspring were prevented by perinatal ALA. In conclusion, the resilience of SCD1 to HFD- induced increased activity may account for the beneficial effects of perinatal ALA dietary enrichment in preventing NAFLD and hypercholesterolemia from occurring in adult LDLRKO offspring mice.
Collapse
Affiliation(s)
- A Leikin-Frenkel
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel.
| | - H Cohen
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - R Keshet
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - R Shnerb-GanOr
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - M Kandel-Kfir
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - A Harari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel
| | - K S Hollander
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - A Shaish
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Achva Academic College, Israel
| | - D Harats
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Y Kamari
- The Bert W. Strassburger Metabolic Center, Sheba Medical Center, Tel-Hashomer, 5265601, Israel; Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
12
|
Roy K, Podhorec P, Dvorak P, Mraz J. Understanding Nutrition and Metabolism of Threatened, Data-Poor Rheophilic Fishes in Context of Riverine Stocking Success- Barbel as a Model for Major European Drainages? BIOLOGY 2021; 10:1245. [PMID: 34943160 PMCID: PMC8698400 DOI: 10.3390/biology10121245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Large-bodied, river-migrating, rheophilic fishes (cyprinids) such as barbel Barbus barbus, nase Chondrostoma nasus, asp Leuciscus aspius, and vimba bream Vimba vimba are threatened in major European drainages. This represents the subject of our present study. Their hatchery nutrition prior to river-release is mostly on a hit-and-trial or carp-based diet basis. The study demonstrates an alternative approach to decide optimum nutrition for these conservation-priority and nutritionally data-poor fishes. The study revealed barbel as a central representative species in terms of wild body composition among other native rheophilic cyprinids considered (asp, nase, vimba bream). Taking barbel as a model, the study shows that barbel or rheophilic cyprinids may have carnivorous-like metabolism and higher requirements of S-containing, aromatic, branched-chain amino acids (AAs) than carps. Besides, there are important interactions of AAs and fatty acids (FAs) biosynthesis to consider. Only proper feeding of nutritionally well-selected diets may contribute to river stocking mandates such as steepest growth trajectory (≈less time in captivity), ideal size-at-release, body fitness (≈blend-in with wild conspecifics, predator refuge), better gastrointestinal condition, maximized body reserves of functional nutrients, and retention efficiencies (≈uncompromised physiology). Considering important physiological functions and how AA-FA interactions shape them, hatchery-raised fishes on casually chosen diets may have high chances of physiological, morphological, and behavioral deficits (≈low post-stocking survivability). Based on the observations, optimum nutrient requirements of juvenile (0+ to 1+ age) barbels are suggested. Future efforts may consider barbels as a nutrition model for conservation aquaculture of threatened and data poor rheophilic cyprinids of the region.
Collapse
Affiliation(s)
| | | | | | - Jan Mraz
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05 České Budějovice, Czech Republic; (K.R.); (P.P.); (P.D.)
| |
Collapse
|
13
|
Naya-Català F, do Vale Pereira G, Piazzon MC, Fernandes AM, Calduch-Giner JA, Sitjà-Bobadilla A, Conceição LEC, Pérez-Sánchez J. Cross-Talk Between Intestinal Microbiota and Host Gene Expression in Gilthead Sea Bream ( Sparus aurata) Juveniles: Insights in Fish Feeds for Increased Circularity and Resource Utilization. Front Physiol 2021; 12:748265. [PMID: 34675821 PMCID: PMC8523787 DOI: 10.3389/fphys.2021.748265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/02/2021] [Indexed: 01/03/2023] Open
Abstract
New types of fish feed based on processed animal proteins (PAPs), insect meal, yeast, and microbial biomasses have been used with success in gilthead sea bream. However, some drawback effects on feed conversion and inflammatory systemic markers were reported in different degrees with PAP- and non-PAP-based feed formulations. Here, we focused on the effects of control and two experimental diets on gut mucosal-adherent microbiota, and how it correlated with host transcriptomics at the local (intestine) and systemic (liver and head kidney) levels. The use of tissue-specific PCR-arrays of 93 genes in total rendered 13, 12, and 9 differentially expressed (DE) genes in the intestine, liver, and head kidney, respectively. Illumina sequencing of gut microbiota yielded a mean of 125,350 reads per sample, assigned to 1,281 operational taxonomic unit (OTUs). Bacterial richness and alpha diversity were lower in fish fed with the PAP diet, and discriminant analysis displayed 135 OTUs driving the separation between groups with 43 taxa correlating with 27 DE genes. The highest expression of intestinal pcna and alpi was achieved in PAP fish with intermediate values in non-PAP, being the pro-inflammatory action of alpi associated with the presence of Psychrobacter piscatorii. The intestinal muc13 gene was down-regulated in non-PAP fish, with this gene being negatively correlated with anaerobic (Chloroflexi and Anoxybacillus) and metal-reducing (Pelosinus and Psychrosinus) bacteria. Other inflammatory markers (igm, il8, tnfα) were up-regulated in PAP fish, positively correlating the intestinal igm gene with the inflammasome activator Escherichia/Shigella, whereas the systemic expression of il8 and tnfα was negatively correlated with the Bacilli class in PAP fish and positively correlated with Paracoccus yeei in non-PAP fish. Overall changes in the expression pattern of il10, galectins (lgals1, lgals8), and toll-like receptors (tlr2, tlr5, tlr9) reinforced the anti-inflammatory profile of fish fed with the non-PAP diet, with these gene markers being associated with a wide range of OTUs. A gut microbiota-liver axis was also established, linking the microbial generation of short chain fatty acids with the fueling of scd1- and elovl6-mediated lipogenesis. In summary, by correlating the microbiome with host gene expression, we offer new insights in the evaluation of fish diets promoting gut and metabolism homeostasis, and ultimately, the health of farmed fish.
Collapse
Affiliation(s)
- Fernando Naya-Català
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - M Carla Piazzon
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ana Margarida Fernandes
- SPAROS Lda, Area Empresarial de Marim, Olhăo, Portugal.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | - Ariadna Sitjà-Bobadilla
- Fish Pathology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain
| |
Collapse
|
14
|
Transcriptomic profiling of Gh/Igf system reveals a prompted tissue-specific differentiation and novel hypoxia responsive genes in gilthead sea bream. Sci Rep 2021; 11:16466. [PMID: 34385497 PMCID: PMC8360970 DOI: 10.1038/s41598-021-95408-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
A customized PCR-array was used for the simultaneous gene expression of the Gh/Igf system and related markers of muscle growth, and lipid and energy metabolism during early life stages of gilthead sea bream (60–127 days posthatching). Also, transcriptional reprogramming by mild hypoxia was assessed in fingerling fish with different history trajectories on O2 availability during the same time window. In normoxic fish, the expression of almost all the genes in the array varied over time with a prompted liver and muscle tissue-specific differentiation, which also revealed temporal changes in the relative expression of markers of the full gilthead sea bream repertoire of Gh receptors, Igfs and Igf-binding proteins. Results supported a different contribution through development of ghr and igf subtypes on the type of action of GH via systemic or direct effects at the local tissue level. This was extensive to Igfbp1/2/4 and Igfbp3/5/6 clades that clearly evolved through development as hepatic and muscle Igfbp subtypes, respectively. This trade-off is however very plastic to cope changes in the environment, and ghr1 and igfbp1/3/4/5 emerged as hypoxic imprinting genes during critical early developmental windows leading to recognize individuals with different history trajectories of oxygen availability and metabolic capabilities later in life.
Collapse
|
15
|
Basto A, Calduch-Giner J, Oliveira B, Petit L, Sá T, Maia MRG, Fonseca SC, Matos E, Pérez-Sánchez J, Valente LMP. The Use of Defatted Tenebrio molitor Larvae Meal as a Main Protein Source Is Supported in European Sea Bass ( Dicentrarchus labrax) by Data on Growth Performance, Lipid Metabolism, and Flesh Quality. Front Physiol 2021; 12:659567. [PMID: 33967831 PMCID: PMC8104126 DOI: 10.3389/fphys.2021.659567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Objective This study aims to determine the maximal inclusion level of defatted (d-) Tenebrio molitor larvae meal (TM) able to replace dietary fishmeal (FM) without compromising growth performance, general metabolism, and flesh quality traits in European sea bass, and to evaluate the major underlying physiological mechanisms. Materials and Methods Fish (55 ± 2 g) were fed with diets containing increasing levels of dTM: 0, 40, 80 and 100% (CTRL, TM40, TM80, and TM100, respectively) to replace FM. After 10 weeks of feeding, the growth performance, nutrient and energy balance, intestinal integrity, plasma metabolites and the expression of genes related to growth and nutrient metabolism, in liver and muscle were determined. The fatty acids (FA) profile, textural properties and color were also evaluated in muscle. Results Protein and lipids digestibility remained unaltered up to 80% dTM inclusion. Growth performance parameters were similar among dietary treatments. The dTM inclusion increased the hepatosomatic index in fish fed TM100. Muscle eicosapentaenoic acid, docosahexaenoic acid and n-3 long-chain polyunsaturated FA levels were maintained up to 80% dTM inclusion, but total cholesterol and non-esterified FA increased with dietary dTM inclusion. In liver, the expression of elongation of very long-chain FA protein 6 (elovl6) and FA desaturase 2 (fads2) did not change in fish fed TM40 and TM80, but elovl6 decreased whilst fads2 increased in fish fed TM100 when compared to those fed CTRL. The expression of cholesterol 7 alpha-monooxygenase (cyp7a1) decreased with dietary dTM inclusion. In muscle, the expression of myoblast determination protein-2 (myod2) decreased in fish fed TM80 and TM100. Conclusion It is feasible to substitute dietary FM by dTM up to 80% in European sea bass without detrimental effects on nutrient digestibility, growth performance and associated genetic pathways, whilst assuring fillet nutritional value for human consumption.
Collapse
Affiliation(s)
- Ana Basto
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Josep Calduch-Giner
- IATS - CSIC, Instituto de Acuicultura Torre de la Sal, Castellón de la Plana, Spain
| | - Beatriz Oliveira
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Lisa Petit
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Tiago Sá
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Margarida R G Maia
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Susana C Fonseca
- GreenUPorto, DGAOT, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Elisabete Matos
- SORGAL - Sociedade de Óleos e Rações, S.A., S. João de Ovar, Portugal
| | - Jaume Pérez-Sánchez
- IATS - CSIC, Instituto de Acuicultura Torre de la Sal, Castellón de la Plana, Spain
| | - Luisa M P Valente
- ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
16
|
Xie D, Chen C, Dong Y, You C, Wang S, Monroig Ó, Tocher DR, Li Y. Regulation of long-chain polyunsaturated fatty acid biosynthesis in teleost fish. Prog Lipid Res 2021; 82:101095. [PMID: 33741387 DOI: 10.1016/j.plipres.2021.101095] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/24/2021] [Accepted: 03/12/2021] [Indexed: 12/26/2022]
Abstract
Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA, C20-24), including eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), are involved in numerous biological processes and have a range of health benefits. Fish have long been considered as the main source of n-3 LC-PUFA in human diets. However, the capacity for endogenous biosynthesis of LC-PUFA from C18 PUFA varies in fish species based on the presence, expression and activity of key enzymes including fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. In this article, we review progress on the identified Fads and Elovl, as well as the regulatory mechanisms of LC-PUFA biosynthesis both at transcriptional and post-transcriptional levels in teleosts. The most comprehensive advances have been obtained in rabbitfish Siganus canaliculatus, a marine teleost demonstrated to have the entire pathway for LC-PUFA biosynthesis, including the roles of transcription factors hepatocyte nuclear factor 4α (Hnf4α), liver X receptor alpha (Lxrα), sterol regulatory element-binding protein 1 (Srebp-1), peroxisome proliferator-activated receptor gamma (Pparγ) and stimulatory protein 1 (Sp1), as well as post-transcriptional regulation by individual microRNA (miRNA) or clusters. This research has, for the first time, demonstrated the involvement of Hnf4α, Pparγ and miRNA in the regulation of LC-PUFA biosynthesis in vertebrates. The present review provides readers with a relatively comprehensive overview of the progress made into understanding LC-PUFA biosynthetic systems in teleosts, and some insights into improving endogenous LC-PUFA biosynthesis capacity aimed at reducing the dependence of aquafeeds on fish oil while maintaining or increasing flesh LC-PUFA content and the nutritional quality of farmed fish.
Collapse
Affiliation(s)
- Dizhi Xie
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Cuihong You
- Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Castellón, Spain.
| | - Douglas R Tocher
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling FK94LA, Scotland, United Kingdom
| | - Yuanyou Li
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
17
|
Turkmen S, Zamorano MJ, Xu H, Fernández-Palacios H, Robaina L, Kaushik S, Izquierdo M. Parental LC-PUFA biosynthesis capacity and nutritional intervention with alpha-linolenic acid affect performance of Sparus aurata progeny. ACTA ACUST UNITED AC 2020; 223:jeb.214999. [PMID: 33077642 DOI: 10.1242/jeb.214999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Environmental factors such as nutritional interventions during early developmental stages affect and establish long-term metabolic changes in all animals. Diet during the spawning period has a nutritional programming effect in offspring of gilthead seabream and affects long-term metabolism. Studies showed modulation of genes such as fads2, which is considered to be a rate-limiting step in the synthesis of n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). However, it is still unknown whether this adaptation is related to the presence of precursors or to limitations in the pre-formed products, n-3 LC-PUFA, contained in the diets used during nutritional programming. This study investigated the combined effects of nutritional programming on Sparus aurata through broodstock diets during the spawning period and in broodfish showing higher or lower fads2 expression levels in the blood after 1 month of feeding with a diet containing high levels of plant protein sources and vegetable oils (VM/VO). Broodfish showing high fads2 expression had a noticeable improvement in spawning quality parameters as well as in the growth of 6 month old offspring when challenged with a high VM/VO diet. Further, nutritional conditioning with 18:3n-3-rich diets had an adverse effect in comparison to progeny obtained from fish fed high fish meal and fish oil (FM/FO) diets, with a reduction in growth of juveniles. Improved growth of progeny from the high fads2 broodstock combined with similar muscle fatty acid profiles is also an excellent option for tailoring and increasing the flesh n-3 LC-PUFA levels to meet the recommended dietary allowances for human consumption.
Collapse
Affiliation(s)
- Serhat Turkmen
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain .,Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Maria J Zamorano
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Hanlin Xu
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Hipólito Fernández-Palacios
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Lidia Robaina
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Sadasivam Kaushik
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| | - Marisol Izquierdo
- Aquaculture Research Group (GIA), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Spain
| |
Collapse
|