1
|
Kielbowski K, Bratborska AW, Bakinowska E, Pawlik A. Sirtuins as therapeutic targets in diabetes. Expert Opin Ther Targets 2025; 29:117-135. [PMID: 40116767 DOI: 10.1080/14728222.2025.2482563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/01/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
INTRODUCTION Sirtuins (SIRTs) are NAD+-dependent deacetylases that mediate post-translational modifications of proteins. Seven members of the SIRT family have been identified in mammals. Importantly, SIRTs interact with numerous metabolic and inflammatory pathways. Thus, researchers have investigated their role in metabolic and inflammatory disorders. AREAS COVERED In this review, we comprehensively discuss the involvement of SIRTs in the processes of pancreatic β-cell dysfunction, glucose tolerance, insulin secretion, lipid metabolism, and adipocyte functions. In addition, we describe the current evidence regarding modulation of the expression and activity of SIRTs in diabetes, diabetic complications, and obesity. EXPERT OPINION The development of specific SIRT activators and inhibitors that exhibit high selectivity toward specific SIRT isoforms remains a major challenge. This involves the need to elucidate the physiological pathways involving SIRTs, as well as their important role in the development of metabolic disorders. Molecular modeling techniques will be helpful to develop new compounds that modulate the activity of SIRTs, which may contribute to the preparation of new drugs that selectively target specific SIRTs. SIRTs hold promise as potential targets in metabolic disease, but there is much to learn about specific modulators and the final answers will await clinical trials.
Collapse
Affiliation(s)
- Kajetan Kielbowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | | | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
2
|
Hu Y, Luo X, Chen H, Ke J, Feng M, Yuan W. MiR-204-5p regulates SIRT1 to promote the endoplasmic reticulum stress-induced apoptosis of inner ear cells in C57BL/6 mice with hearing loss. PLoS One 2024; 19:e0309892. [PMID: 39531447 PMCID: PMC11556682 DOI: 10.1371/journal.pone.0309892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/20/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE This study investigated the effect of miR-204-5p-mediated silencing of SIRT1 on the development of deafness in C57BL/6 mice and the roles of miR-204-5p and SIRT1 in deafness. METHODS Auditory brainstem response recordings, H&E staining, and immunohistochemistry were used to observe changes in hearing function and cochlear tissue morphology in 2-month-old and 15-month-old C57BL/6 mice. A senescence model was induced using H2O2 in inner ear cells (HEI-OC1). Changes in HEI-OC1 cell proliferation were detected using the CCK-8 assay, whereas flow cytometry was used to detect changes in apoptosis. MiR-204-5p expression was measured via RT‒qPCR. The SIRT1 agonist RSV and a miR-204-5p inhibitor were used to study changes in ER stress (ERS), proliferation, and apoptosis in HEI-OC1 cells. Western blotting was performed to detect changes in ATF4, CHOP, SIRT1, PERK, p-PERK, Bax, and Bcl-2 protein levels. A dual-luciferase reporter gene assay was carried out to assess the ability of miR-204-5p to target SIRT1. RESULTS Relative miR-204-5p expression levels in the cochleae of aged C57BL/6 mice increased, whereas SIRT1 expression levels decreased, and miR-204-5p and SIRT1 expression levels were negatively correlated. ERS and increased 8-OHDG levels were observed in aged C57BL/6 mice. In a model of inner ear cell aging, H2O2 treatment induced increases in miR-204-5p expression and ERS-mediated apoptosis. MiR-204-5p was found to target SIRT1 and inhibit its expression. SIRT1 activation and a miR-204-5p inhibitor promoted HEI-OC1 cell proliferation and reduced apoptosis. The miR-204-5p inhibitor regulated expression of the ERS proteins PERK, ATF4, and CHOP to upregulate Bcl-2 and downregulate Bax. CONCLUSION This study identified the roles of miR-204-5p and SIRT1 in deafness in C57BL/6 mice and investigated the loss of cochlear outer hair cells and the involvement of apoptosis and ERS in deafness.
Collapse
Affiliation(s)
- Yaqin Hu
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Xiaoqin Luo
- Hospital of Traditional Chinese Medicine Affiliated to Southwest Medical University, Luzhou, China
| | - Hongjiang Chen
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Jing Ke
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Menglong Feng
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| | - Wei Yuan
- Chongqing Medical University, Chongqing, China
- Department of Otolaryngology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
3
|
Shen H, Qi X, Hu Y, Wang Y, Zhang J, Liu Z, Qin Z. Targeting sirtuins for cancer therapy: epigenetics modifications and beyond. Theranostics 2024; 14:6726-6767. [PMID: 39479446 PMCID: PMC11519805 DOI: 10.7150/thno.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024] Open
Abstract
Sirtuins (SIRTs) are well-known as nicotinic adenine dinucleotide+(NAD+)-dependent histone deacetylases, which are important epigenetic enzymes consisting of seven family members (SIRT1-7). Of note, SIRT1 and SIRT2 are distributed in the nucleus and cytoplasm, while SIRT3, SIRT4 and SIRT5 are localized in the mitochondria. SIRT6 and SIRT7 are distributed in the nucleus. SIRTs catalyze the deacetylation of various substrate proteins, thereby modulating numerous biological processes, including transcription, DNA repair and genome stability, metabolism, and signal transduction. Notably, accumulating evidence has recently underscored the multi-faceted roles of SIRTs in both the suppression and progression of various types of human cancers. Crucially, SIRTs have been emerging as promising therapeutic targets for cancer therapy. Thus, in this review, we not only present an overview of the molecular structure and function of SIRTs, but elucidate their intricate associations with oncogenesis. Additionally, we discuss the current landscape of small-molecule activators and inhibitors targeting SIRTs in the contexts of cancer and further elaborate their combination therapies, especially highlighting their prospective utility for future cancer drug development.
Collapse
Affiliation(s)
- Hui Shen
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xinyi Qi
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Hu
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zhongyu Liu
- No. 989 Hospital of Joint Logistic Support Force of PLA, Luoyang 471031, China
| | - Zheng Qin
- Department of Respiratory and Critical Care Medicine, Department of Outpatient, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Lawrence M, Goyal A, Pathak S, Ganguly P. Cellular Senescence and Inflammaging in the Bone: Pathways, Genetics, Anti-Aging Strategies and Interventions. Int J Mol Sci 2024; 25:7411. [PMID: 39000517 PMCID: PMC11242738 DOI: 10.3390/ijms25137411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Advancing age is associated with several age-related diseases (ARDs), with musculoskeletal conditions impacting millions of elderly people worldwide. With orthopedic conditions contributing towards considerable number of patients, a deeper understanding of bone aging is the need of the hour. One of the underlying factors of bone aging is cellular senescence and its associated senescence associated secretory phenotype (SASP). SASP comprises of pro-inflammatory markers, cytokines and chemokines that arrest cell growth and development. The accumulation of SASP over several years leads to chronic low-grade inflammation with advancing age, also known as inflammaging. The pathways and molecular mechanisms focused on bone senescence and inflammaging are currently limited but are increasingly being explored. Most of the genes, pathways and mechanisms involved in senescence and inflammaging coincide with those associated with cancer and other ARDs like osteoarthritis (OA). Thus, exploring these pathways using techniques like sequencing, identifying these factors and combatting them with the most suitable approach are crucial for healthy aging and the early detection of ARDs. Several approaches can be used to aid regeneration and reduce senescence in the bone. These may be pharmacological, non-pharmacological and lifestyle interventions. With increasing evidence towards the intricate relationship between aging, senescence, inflammation and ARDs, these approaches may also be used as anti-aging strategies for the aging bone marrow (BM).
Collapse
Affiliation(s)
- Merin Lawrence
- School of Biological and Chemical Sciences, University of Galway, H91W2TY Galway, Ireland
| | - Abhishek Goyal
- RAS Life Science Solutions, Stresemannallee 61, 60596 Frankfurt, Germany
| | - Shelly Pathak
- Observational and Pragmatic Research Institute, 5 Coles Lane, Oakington, Cambridge CB24 3BA, UK
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK
| |
Collapse
|
5
|
Anggreini P, Kuncoro H, Sumiwi SA, Levita J. Molecular Docking Study of Phytosterols in Lygodium microphyllum Towards SIRT1 and AMPK, the in vitro Brine Shrimp Toxicity Test, and the Phenols and Sterols Levels in the Extract. J Exp Pharmacol 2023; 15:513-527. [PMID: 38148923 PMCID: PMC10751218 DOI: 10.2147/jep.s438435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
Background Lygodium microphyllum is a fern plant with various pharmacological activities, and phytosterols were reported contained in the n-hexane and ethyl acetate extract of this plant. Phytosterols are known to inhibit steatosis, oxidative stress, and inflammation. Sirtuin 1 (SIRT1) and adenosine monophosphate-activated protein kinase (AMPK) are the key proteins that control lipogenesis. However, information about L. microphyllum on SIRT1 and AMPK is still lacking. Purpose This study aims to investigate the binding mode of phytosterols in L. microphyllum extract towards AMPK and SIRT1, and the toxicity of the extract against brine shrimp (Artemia salina) larvae, and to determine the phenols and sterols levels in the extract. Methods The molecular docking was performed towards SIRT1 and AMPK using AutoDock v4.2.6, the toxicity of the extract was assayed against brine shrimp (Artemia salina) larvae, and the phytosterols were analyzed by employing a thin layer chromatography densitometry, and the total phenols were by spectrophotometry. Results The molecular docking study revealed that β-sitosterol and stigmasterol could occupy the active allosteric-binding site of SIRT1 and AMPK by binding to important residues similar to the protein's activators. The cold extraction of the plant yields 15.86% w/w. Phytochemical screening revealed the presence of phenols, steroids, flavonoids, alkaloids, and saponins. The total phenols are equivalent to 126 mg gallic acid (GAE)/g dry extract, the total sterols are 954.04 µg/g, and the β-sitosterol level is 283.55 µg/g. The LC50 value of the extract towards A. salina larvae is 203.704 ppm. Conclusion Lygodium microphyllum extract may have the potential to be further explored for its pharmacology activities, particularly in the discovery of plant-based anti-dyslipidemic drug candidates. However, further studies are needed to confirm their roles in alleviating lipid disorders.
Collapse
Affiliation(s)
- Putri Anggreini
- Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
- Faculty of Pharmacy, Mulawarman University, Samarinda, 75119, Indonesia
| | - Hadi Kuncoro
- Faculty of Pharmacy, Mulawarman University, Samarinda, 75119, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
| | - Jutti Levita
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang, 46363, Indonesia
| |
Collapse
|
6
|
Varghese B, Chianese U, Capasso L, Sian V, Bontempo P, Conte M, Benedetti R, Altucci L, Carafa V, Nebbioso A. SIRT1 activation promotes energy homeostasis and reprograms liver cancer metabolism. J Transl Med 2023; 21:627. [PMID: 37715252 PMCID: PMC10504761 DOI: 10.1186/s12967-023-04440-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Cancer cells are characterized by uncontrolled cell proliferation and impaired bioenergetics. Sirtuins are a family of highly conserved enzymes that play a fundamental role in energy metabolism regulation. SIRT1, in particular, drives many physiological stress responses and metabolic pathways following nutrient deprivation. We previously showed that SIRT1 activation using SCIC2.1 was able to attenuate genotoxic response and senescence. Here, we report that in hepatocellular carcinoma (HCC) cells under glucose-deprived conditions, SCIC2.1 treatment induced overexpression of SIRT1, SIRT3, and SIRT6, modulating metabolic response. METHODS Flow cytometry was used to analyze the cell cycle. The MTT assay and xCELLigence system were used to measure cell viability and proliferation. In vitro enzymatic assays were carried out as directed by the manufacturer, and the absorbance was measured with an automated Infinite M1000 reader. Western blotting and immunoprecipitation were used to evaluate the expression of various proteins described in this study. The relative expression of genes was studied using real-time PCR. We employed a Seahorse XF24 Analyzer to determine the metabolic state of the cells. Oil Red O staining was used to measure lipid accumulation. RESULTS SCIC2.1 significantly promoted mitochondrial biogenesis via the AMPK-p53-PGC1α pathway and enhanced mitochondrial ATP production under glucose deprivation. SIRT1 inhibition by Ex-527 further supported our hypothesis that metabolic effects are dependent on SIRT1 activation. Interestingly, SCIC2.1 reprogrammed glucose metabolism and fatty acid oxidation for bioenergetic circuits by repressing de novo lipogenesis. In addition, SCIC2.1-mediated SIRT1 activation strongly modulated antioxidant response through SIRT3 activation, and p53-dependent stress response via indirect recruitment of SIRT6. CONCLUSION Our results show that SCIC2.1 is able to promote energy homeostasis, attenuating metabolic stress under glucose deprivation via activation of SIRT1. These findings shed light on the metabolic action of SIRT1 in the pathogenesis of HCC and may help determine future therapies for this and, possibly, other metabolic diseases.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Veronica Sian
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy.
- Biogem, Molecular Biology and Genetics Research Institute, Via Camporeale, 83031, Ariano Irpino, Italy.
- IEOS CNR, Via Sergio Pansini 5, 80131, Naples, Italy.
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, Via Camporeale, 83031, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico De Crecchio 7, 80138, Naples, Italy.
| |
Collapse
|
7
|
Campagna R, Vignini A. NAD + Homeostasis and NAD +-Consuming Enzymes: Implications for Vascular Health. Antioxidants (Basel) 2023; 12:376. [PMID: 36829935 PMCID: PMC9952603 DOI: 10.3390/antiox12020376] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a ubiquitous metabolite that takes part in many key redox reactions. NAD+ biosynthesis and NAD+-consuming enzymes have been attracting markedly increasing interest since they have been demonstrated to be involved in several crucial biological pathways, impacting genes transcription, cellular signaling, and cell cycle regulation. As a consequence, many pathological conditions are associated with an impairment of intracellular NAD+ levels, directly or indirectly, which include cardiovascular diseases, obesity, neurodegenerative diseases, cancer, and aging. In this review, we describe the general pathways involved in the NAD+ biosynthesis starting from the different precursors, analyzing the actual state-of-art of the administration of NAD+ precursors or blocking NAD+-dependent enzymes as strategies to increase the intracellular NAD+ levels or to counteract the decline in NAD+ levels associated with ageing. Subsequently, we focus on the disease-related and age-related alterations of NAD+ homeostasis and NAD+-dependent enzymes in endothelium and the consequent vascular dysfunction, which significantly contributes to a wide group of pathological disorders.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60121 Ancona, Italy
| |
Collapse
|
8
|
Ciccone L, Piragine E, Brogi S, Camodeca C, Fucci R, Calderone V, Nencetti S, Martelli A, Orlandini E. Resveratrol-like Compounds as SIRT1 Activators. Int J Mol Sci 2022; 23:ijms232315105. [PMID: 36499460 PMCID: PMC9738298 DOI: 10.3390/ijms232315105] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The sirtuin 1 (SIRT1) activator resveratrol has emerged as a promising candidate for the prevention of vascular oxidative stress, which is a trigger for endothelial dysfunction. However, its clinical use is limited by low oral bioavailability. In this work, we have applied a previously developed computational protocol to identify the most promising derivatives from our in-house chemical library of resveratrol derivatives. The most promising compounds in terms of SIRT1 activation and oral bioavailability, predicted in silico, were evaluated for their ability to activate the isolated SIRT1 enzyme. Then, we assessed the antioxidant effects of the most effective derivative, compound 3d, in human umbilical vein endothelial cells (HUVECs) injured with H2O2 100 µM. The SIRT1 activator 3d significantly preserved cell viability and prevented an intracellular reactive oxygen species increase in HUVECs exposed to the oxidative stimulus. Such effects were partially reduced in the presence of a sirtuin inhibitor, sirtinol, confirming the potential role of sirtuins in the activity of resveratrol and its derivatives. Although 3d appeared less effective than resveratrol in activating the isolated enzyme, the effects exhibited by both compounds in HUVECs were almost superimposable, suggesting a higher ability of 3d to cross cell membranes and activate the intracellular target SIRT1.
Collapse
Affiliation(s)
- Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Eugenia Piragine
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Raffaele Fucci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: (S.N.); (A.M.)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Center for Instrument Sharing, University of Pisa (CISUP), Lungarno Pacinotti 43, 56126 Pisa, Italy
- Correspondence: (S.N.); (A.M.)
| | - Elisabetta Orlandini
- Department of Earth Science, University of Pisa, Via Santa Maria 53, 56126 Pisa, Italy
- Research Centre E. Piaggio, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
9
|
The Beneficial Role of Sirtuin 1 in Preventive or Therapeutic Options of Neurodegenerative Diseases. Neuroscience 2022; 504:79-92. [DOI: 10.1016/j.neuroscience.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
|
10
|
SIRT1 activation and its circadian clock control: a promising approach against (frailty in) neurodegenerative disorders. Aging Clin Exp Res 2022; 34:2963-2976. [DOI: 10.1007/s40520-022-02257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/14/2022] [Indexed: 11/01/2022]
|
11
|
SIRT1 pharmacological activation rescues vascular dysfunction and prevents thrombosis in MTHFR deficiency. Cell Mol Life Sci 2022; 79:410. [PMID: 35821533 PMCID: PMC9276577 DOI: 10.1007/s00018-022-04429-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022]
Abstract
Beyond well-assessed risk factors, cardiovascular events could be also associated with the presence of epigenetic and genetic alterations, such as the methylenetetrahydrofolate-reductase (MTHFR) C677T polymorphism. This gene variant is related to increased circulating levels of homocysteine (Hcy) and cardiovascular risk. However, heterozygous carriers have an augmented risk of cardiovascular accidents independently from normal Hcy levels, suggesting the presence of additional deregulated processes in MTHFR C677T carriers. Here, we hypothesize that targeting Sirtuin 1 (SIRT1) could be an alternative mechanism to control the cardiovascular risk associated to MTHFR deficiency condition. Flow Mediated Dilatation (FMD) and light transmission aggregometry assay were performed in subjects carrying MTHFR C677T allele after administration of resveratrol, the most powerful natural clinical usable compound that owns SIRT1 activating properties. MTHFR C677T carriers with normal Hcy levels revealed endothelial dysfunction and enhanced platelet aggregation associated with SIRT1 downregulation. SIRT1 activity stimulation by resveratrol intake was able to override these abnormalities without affecting Hcy levels. Impaired endothelial function, bleeding time, and wire-induced thrombus formation were rescued in a heterozygous Mthfr-deficient (Mthfr+/–) mouse model after resveratrol treatment. Using a cell-based high-throughput multiplexed screening (HTS) assay, a novel selective synthetic SIRT1 activator, namely ISIDE11, was identified. Ex vivo and in vivo treatment of Mthfr+/– mice with ISIDE11 rescues endothelial vasorelaxation and reduces wire-induced thrombus formation, effects that were abolished by SIRT1 inhibitor. Moreover, platelets from MTHFR C677T allele carriers treated with ISIDE11 showed normalization of their typical hyper-reactivity. These results candidate SIRT1 activation as a new therapeutic strategy to contain cardio and cerebrovascular events in MTHFR carriers.
Collapse
|
12
|
Deniz FSŞ, Eren G, Orhan IE. Flavonoids as Sirtuin Modulators. Curr Top Med Chem 2022; 22:790-805. [PMID: 35466876 DOI: 10.2174/1568026622666220422094744] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022]
Abstract
Sirtuins (SIRTs) are described as NAD+-dependent deacetylases, also known as class III histone deacetylases. So far, seven sirtuin genes (SIRTS 1-7) have been identified and characterized in mammals and also known to occur in bacteria and eukaryotes. SIRTs are involved in various biological processes including endocrine system, apoptosis, aging and longevity, diabetes, rheumatoid arthritis, obesity, inflammation, etc. Among them, the best characterized one is SIRT1. Actually, small molecules seem to be the most effective SIRT modulators. Flavonoids have been reported to possess many positive effects favrable for human health, while a relatively less research has been reported so far on their funcions as SIRT modulation mechanisms. In this regard, we herein aimed to focus on modulatory effects of flavonoids on SIRTs as the most common secondary metabolites in natural products. Our literature survey covering the years of 2006-2021 pointed out that flavonoids frequently interact with SIRT1 and SIRT3 followed by SIRT6. It can be also concluded that some popular flavonoid derivatives, e.g. resveratrol, quercetin, and catechin derivatives came forward in terms of SIRT modulation.
Collapse
Affiliation(s)
| | - Gökçen Eren
- Faculty of Pharmacy, Gazi University, 06330 Ankara
| | | |
Collapse
|
13
|
Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. Eur J Med Chem 2021; 226:113867. [PMID: 34607244 DOI: 10.1016/j.ejmech.2021.113867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Imidazo[1,2-b]pyridazine scaffold represents an important class of heterocyclic nucleus which provides various bioactives molecules. Among them, the successful kinase inhibitor ponatinib led to a resurgence of interest in exploring new imidazo[1,2-b]pyridazine-containing derivatives for their putative therapeutic applications in medicine. This present review intends to provide a state-of-the-art of this framework in medicinal chemistry from 1966 to nowadays, unveiling different aspects of its structure-activity relationships (SAR). This extensive literature surveil may guide medicinal chemists for the quest of novel imidazo[1,2-b]pyridazine compounds with enhanced pharmacokinetics profile and efficiency.
Collapse
|
14
|
Begum MK, Konja D, Singh S, Chlopicki S, Wang Y. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges. J Cardiovasc Pharmacol 2021; 78:S63-S77. [PMID: 34840264 DOI: 10.1097/fjc.0000000000001154] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Musammat Kulsuma Begum
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Daniels Konja
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Sandeep Singh
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland; and
- Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Yu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology
- The Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
15
|
Ministrini S, Puspitasari YM, Beer G, Liberale L, Montecucco F, Camici GG. Sirtuin 1 in Endothelial Dysfunction and Cardiovascular Aging. Front Physiol 2021; 12:733696. [PMID: 34690807 PMCID: PMC8527036 DOI: 10.3389/fphys.2021.733696] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023] Open
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase belonging to the family of Sirtuins, a class of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes with multiple metabolic functions. SIRT1 localizes in the nucleus and cytoplasm, and is implicated in the regulation of cell survival in response to several stimuli, including metabolic ones. The expression of SIRT1 is associated with lifespan and is reduced with aging both in animal models and in humans, where the lack of SIRT1 is regarded as a potential mediator of age-related cardiovascular diseases. In this review, we will summarize the extensive evidence linking SIRT1 functional and quantitative defects to cellular senescence and aging, with particular regard to their role in determining endothelial dysfunction and consequent cardiovascular diseases. Ultimately, we outline the translational perspectives for this topic, in order to highlight the missing evidence and the future research steps.
Collapse
Affiliation(s)
- Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Georgia Beer
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Luca Liberale
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- Istituto di Ricerca e Cura a Carattere Scientifico Ospedale Policlinico San Martino Genoa–Italian Cardiovascular Network, Genoa, Italy
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Flori L, Petrarolo G, Brogi S, La Motta C, Testai L, Calderone V. Identification of novel SIRT1 activators endowed with cardioprotective profile. Eur J Pharm Sci 2021; 165:105930. [PMID: 34265406 DOI: 10.1016/j.ejps.2021.105930] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 07/03/2021] [Indexed: 12/25/2022]
Abstract
Drugs targeting epigenetic mechanisms are attracting the attention of scientists since it was observed that the modulation of this post-translational apparatus, could help to identify innovative therapeutic strategies. Among the epigenetic druggable targets, the positive modulation of SIRT1 has also been related to significant cardioprotective effects. Unfortunately, actual SIRT1 activators (natural products and synthetic molecules) suffer from several drawbacks, particularly poor pharmacokinetic profiles. Accordingly, in this article we present the development of an integrated screening platform aimed at identifying novel SIRT1 activators with favorable drug-like features as cardioprotective agents. Encompassing several competencies (in silico, medicinal chemistry, and pharmacology), we describe a multidisciplinary approach for rapidly identifying SIRT1 activators and their preliminary pharmacological characterization. In the first step, we virtually screened an in-house chemical library comprising synthetic molecules inspired by nature, against SIRT1 enzyme. To this end, we combined molecular docking-based approach with the estimation of relative ligand binding energy, using the crystal structure of SIRT1 enzyme in complex with resveratrol. Eleven computational hits were identified, synthesized and tested against the isolated enzyme for validating the in silico strategy. Among the tested molecules, five of them behave as SIRT1 enzyme activators. Due to the superior response in activating the enzyme and its favorable calculated physico-chemical properties, compound 8 was further characterized in ex vivo studies on isolated and perfused rat hearts submitted to ischemia/reperfusion (I/R) period. The pharmacological profile of compound 8, suggests that this molecule represents a prototypic SIRT1 activator with satisfactory drug-like profile, paving the way for developing novel epigenetic cardioprotective agents.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Giovanni Petrarolo
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy.
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy.
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy.
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno, 6, I-56126 Pisa, Italy
| |
Collapse
|
17
|
Salekeen R, Siam MHB, Sharif DI, Lustgarten MS, Billah MM, Islam KMD. In silico insights into potential gut microbial modulation of NAD+ metabolism and longevity. J Biochem Mol Toxicol 2021; 35:e22925. [PMID: 34580953 DOI: 10.1002/jbt.22925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 11/08/2022]
Abstract
Recent evidence has prompted the notion of gut-microbial signatures as an indirect marker of aging and aging-associated decline in humans. However, the underlying host-symbiont molecular interactions contributing to these signatures remain poorly understood. In this study, we address this gap using cheminformatic analyses to elucidate potential gut microbial metabolites that may perturb the longevity-associated NAD+ metabolic network. In silico ADMET, KEGG interaction analysis, molecular docking, molecular dynamics simulation, and molecular mechanics calculation predict a large number of safe and bioavailable microbial metabolites to be direct and/or indirect activators of NAD+-dependent sirtuin proteins. Our simulation results suggest dihydropteroate, phenylpyruvic acid, indole-3-propionic acid, phenyllactic acid, all-trans-retinoic acid, and multiple deoxy-, methyl-, and cyclic nucleotides from intestinal microbiota as the best-performing regulators of NAD+ metabolism. Retracing these molecules to their source microorganisms also suggest commensal Escherichia, Bacteroides, Bifidobacteria, and Lactobacilli to be associated with the highest number of pro-longevity metabolites. These findings from our early-stage study, therefore, provide an informatics-based context for previous evidence in the area and grant novel insights for future clinical investigation intersecting anti-aging drug discovery, probiotics, and gut microbial signatures.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Hasanul Banna Siam
- Department of Microbiology, Faculty of Biological Science, University of Dhaka, Dhaka, Bangladesh
| | - Dilara Islam Sharif
- Department of Genetic Engineering and Biotechnology, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, Bangladesh
| | - Michael S Lustgarten
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center, Tufts University, Boston, Massachusetts, USA
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
18
|
Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD +-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. Int J Mol Sci 2021; 22:ijms22189666. [PMID: 34575829 PMCID: PMC8467074 DOI: 10.3390/ijms22189666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) is largely used as a monomer in some types of plastics. It accumulates in tissues and fluids and is able to bypass the placental barrier, affecting various organs and systems. Due to huge developmental processes, children, foetuses, and neonates could be more sensitive to BPA-induced toxicity. To investigate the multi-systemic effects of chronic exposure to a low BPA dose (100 μg/L), pregnant Wistar rats were exposed to BPA in drinking water during gestation and lactation. At weaning, newborn rats received the same treatments as dams until sex maturation. Free and conjugated BPA levels were measured in plasma and adipose tissue; the size of cerebral ventricles was analysed in the brain; morpho-functional and molecular analyses were carried out in the liver with a focus on the expression of inflammatory cytokines and Sirtuin 1 (Sirt1). Higher BPA levels were found in plasma and adipose tissue from BPA treated pups (17 PND) but not in weaned animals. Lateral cerebral ventricles were significantly enlarged in lactating and weaned BPA-exposed animals. In addition, apart from microvesicular steatosis, liver morphology did not exhibit any statistically significant difference for morphological signs of inflammation, hypertrophy, or macrovesicular steatosis, but the expression of inflammatory cytokines, Sirt1, its natural antisense long non-coding RNA (Sirt1-AS LncRNA) and histone deacetylase 1 (Hdac1) were affected in exposed animals. In conclusion, chronic exposure to a low BPA dose could increase the risk for disease in adult life as a consequence of higher BPA circulating levels and accumulation in adipose tissue during the neonatal period.
Collapse
|
19
|
Blasl AT, Schulze S, Qin C, Graf LG, Vogt R, Lammers M. Post-translational lysine ac(et)ylation in health, ageing and disease. Biol Chem 2021; 403:151-194. [PMID: 34433238 DOI: 10.1515/hsz-2021-0139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022]
Abstract
The acetylation/acylation (ac(et)ylation) of lysine side chains is a dynamic post-translational modification (PTM) regulating fundamental cellular processes with implications on the organisms' ageing process: metabolism, transcription, translation, cell proliferation, regulation of the cytoskeleton and DNA damage repair. First identified to occur on histones, later studies revealed the presence of lysine ac(et)ylation in organisms of all kingdoms of life, in proteins covering all essential cellular processes. A remarkable finding showed that the NAD+-dependent sirtuin deacetylase Sir2 has an impact on replicative lifespan in Saccharomyces cerevisiae suggesting that lysine acetylation has a direct role in the ageing process. Later studies identified sirtuins as mediators for beneficial effects of caloric/dietary restriction on the organisms' health- or lifespan. However, the molecular mechanisms underlying these effects are only incompletely understood. Progress in mass-spectrometry, structural biology, synthetic and semi-synthetic biology deepened our understanding of this PTM. This review summarizes recent developments in the research field. It shows how lysine ac(et)ylation regulates protein function, how it is regulated enzymatically and non-enzymatically, how a dysfunction in this post-translational machinery contributes to disease development. A focus is set on sirtuins and lysine acyltransferases as these are direct sensors and mediators of the cellular metabolic state. Finally, this review highlights technological advances to study lysine ac(et)ylation.
Collapse
Affiliation(s)
- Anna-Theresa Blasl
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Sabrina Schulze
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Chuan Qin
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Leonie G Graf
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Robert Vogt
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| | - Michael Lammers
- Department Synthetic and Structural Biochemistry, Institute for Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, D-17487Greifswald, Germany
| |
Collapse
|
20
|
Zullo A, Mancini FP, Schleip R, Wearing S, Klingler W. Fibrosis: Sirtuins at the checkpoints of myofibroblast differentiation and profibrotic activity. Wound Repair Regen 2021; 29:650-666. [PMID: 34077595 DOI: 10.1111/wrr.12943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Fibrotic diseases are still a serious concern for public health, due to their high prevalence, complex etiology and lack of successful treatments. Fibrosis consists of excessive accumulation of extracellular matrix components. As a result, the structure and function of tissues are impaired, thus potentially leading to organ failure and death in several chronic diseases. Myofibroblasts represent the principal cellular mediators of fibrosis, due to their extracellular matrix producing activity, and originate from different types of precursor cells, such as mesenchymal cells, epithelial cells and fibroblasts. Profibrotic activation of myofibroblasts can be triggered by a variety of mechanisms, including the transforming growth factor-β signalling pathway, which is a major factor driving fibrosis. Interestingly, preclinical and clinical studies showed that fibrotic degeneration can stop and even reverse by using specific antifibrotic treatments. Increasing scientific evidence is being accumulated about the role of sirtuins in modulating the molecular pathways responsible for the onset and development of fibrotic diseases. Sirtuins are NAD+ -dependent protein deacetylases that play a crucial role in several molecular pathways within the cells, many of which at the crossroad between health and disease. In this context, we will report the current knowledge supporting the role of sirtuins in the balance between healthy and diseased myofibroblast activity. In particular, we will address the signalling pathways and the molecular targets that trigger the differentiation and profibrotic activation of myofibroblasts and can be modulated by sirtuins.
Collapse
Affiliation(s)
- Alberto Zullo
- Department of Sciences and Technologies, Benevento, Italy.,CEINGE Advanced Biotechnologies s.c.a.r.l. Naples, Italy
| | | | - Robert Schleip
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Diploma University of Applied Sciences, Bad Sooden-Allendorf, Germany
| | - Scott Wearing
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Werner Klingler
- Department of Sport and Health Sciences, Technical University Munich, Germany.,Fascia Research Group, Department of Neurosurgery, Ulm University, Germany.,Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia.,Department of Anaesthesiology, SRH Hospital Sigmaringen, Germany
| |
Collapse
|
21
|
Pawge G, Khatik GL. p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochem Pharmacol 2021; 190:114651. [PMID: 34118220 DOI: 10.1016/j.bcp.2021.114651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Multiple co-morbidities are associated with age, and there is a need for the broad-spectrum drug to prevent multiple regimens that may cause an adverse effect in the geriatric population. Cellular senescence is a primary mechanism for ageing in various tissues. p53, a tumor suppressor protein, plays a significant role in forming DNA damage foci and post different stress responses. DNA damage foci can be transient or persistent that can progress to DNA-SCARS inducing senescence. p53 also plays a role in apoptosis and negative regulation of SASP. Few upstream targets like FOXO4, MDM2, MDM4, USP7 control the availability of p53 for apoptosis. Hence, the senolytic therapies, modulating p53 upstream targets, can be a good approach for preventing age-related disorders. This review discusses the insights on the role of p53 in the formation of DNA-SCARS, various upstream target proteins, and pathways involved in p53 regulation. Further, the review aimed to include recently discovered small molecules acting on these upstream targets, and those can be modified using medicinal chemistry approaches to give successful senotherapeutics.
Collapse
Affiliation(s)
- Girija Pawge
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research- Raebareli, New Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226301, India.
| |
Collapse
|
22
|
Gupta A, Behl T, Sehgal A, Bhardwaj S, Singh S, Sharma N, Hafeez A. Exploring the recent molecular targets for diabetes and associated complications. Mol Biol Rep 2021; 48:2863-2879. [PMID: 33763776 DOI: 10.1007/s11033-021-06294-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022]
Abstract
Diabetes is likely one of the centenarian diseases which is apprehended with certainty to humans. According to established protocols of the World Health Organisation (WHO) and numerous investigated studies diabetes is analyzed as a stellar and leading health issue worldwide. Although, the implicit costs of this pathology are increasing every year, thus, there is a need to find a novel method which can provide promising results in the management of diabetes and can overcome the side effects associated with the conventional medication. Comprehensive review of this topic was undertaken through various research and review papers which were conducted using MEDLINE, BIOSIS and EMBASE database. Using various keywords, we retrieve the most relevant content for the thorough review on recent targets and novel molecular pathways for targeting diabetes and associated complications. From the detailed analysis, we have highlighted some molecular pathways and novel targets which had shown promising results in both in-vitro and in-vivo studies and may be considered as pipeline target for clinical trials. Furthermore, these targets not only abetted amelioration of diabetes but also helped in mitigation of diabetes associated complications as well. Thus, based on the available information and literature on these potential molecules, conclusive evidence can be drawn which confirms targeting these novel pathways may unleash an array of benefits that have the potential to overpower the benefits obtained from conventional therapy in the management of diabetes thereby decreasing morbidity and mortality associated with diabetic complications.
Collapse
Affiliation(s)
- Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shaveta Bhardwaj
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Uttar Pradesh, India
| |
Collapse
|
23
|
Prašnikar E, Borišek J, Perdih A. Senescent cells as promising targets to tackle age-related diseases. Ageing Res Rev 2021; 66:101251. [PMID: 33385543 DOI: 10.1016/j.arr.2020.101251] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
As the world's population progressively ages, the burden on the socio-economic and health systems is escalating, demanding sustainable and lasting solutions. Cellular senescence, one of the hallmarks of ageing, is a state of irreversible cell cycle arrest that occurs in response to various genotoxic stressors and is considered an important factor in the development of many age-related diseases and therefore a potential therapeutic target. Here, the role of senescent cells in age-related diseases is discussed, focusing on their formation and main characteristics. The mechanisms leading to senescent cells are presented, including replicative and premature senescence as well as senescence that occurs in various physiological processes, such as wound healing. The second part comprises a comprehensive description of various biomarkers currently used for the detection of senescent cells along with the investigated therapeutic approaches, namely senolytics, senomorphics and the clearance of senescent cells by the immune system. Potential delivery systems suitable for such therapies and model organisms to study senescence are also briefly examined. This in-depth overview of cellular senescence contributes to a deeper understanding of a rapidly evolving area aimed to tackle the age-related diseases in a more mechanistic way, as well as highlights future research opportunities.
Collapse
|
24
|
Yeong KY, Berdigaliyev N, Chang Y. Sirtuins and Their Implications in Neurodegenerative Diseases from a Drug Discovery Perspective. ACS Chem Neurosci 2020; 11:4073-4091. [PMID: 33280374 DOI: 10.1021/acschemneuro.0c00696] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sirtuins are class III histone deacetylase (HDAC) enzymes that target both histone and non-histone substrates. They are linked to different brain functions and the regulation of different isoforms of these enzymes is touted to be an emerging therapy for the treatment of neurodegenerative diseases (NDs), including Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). The level of sirtuins affects brain health as many sirtuin-regulated pathways are responsible for the progression of NDs. Certain sirtuins are also implicated in aging, which is a risk factor for many NDs. In addition to SIRT1-3, it has been suggested that the less studied sirtuins (SIRT4-7) also play critical roles in brain health. This review delineates the role of each sirtuin isoform in NDs from a disease centric perspective and provides an up-to-date overview of sirtuin modulators and their potential use as therapeutics in these diseases. Furthermore, the future perspectives for sirtuin modulator development and their therapeutic application in neurodegeneration are outlined in detail, hence providing a research direction for future studies.
Collapse
Affiliation(s)
- Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Nurken Berdigaliyev
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor, Malaysia
| | - Yuin Chang
- Faculty of Applied Sciences, Tunku Abdul Rahman University College (TARUC), Jalan Genting Kelang, 53300 Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Sirt1-PPARS Cross-Talk in Complex Metabolic Diseases and Inherited Disorders of the One Carbon Metabolism. Cells 2020; 9:cells9081882. [PMID: 32796716 PMCID: PMC7465293 DOI: 10.3390/cells9081882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (Sirt1) has a NAD (+) binding domain and modulates the acetylation status of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) and Fork Head Box O1 transcription factor (Foxo1) according to the nutritional status. Sirt1 is decreased in obese patients and increased in weight loss. Its decreased expression explains part of the pathomechanisms of the metabolic syndrome, diabetes mellitus type 2 (DT2), cardiovascular diseases and nonalcoholic liver disease. Sirt1 plays an important role in the differentiation of adipocytes and in insulin signaling regulated by Foxo1 and phosphatidylinositol 3′-kinase (PI3K) signaling. Its overexpression attenuates inflammation and macrophage infiltration induced by a high fat diet. Its decreased expression plays a prominent role in the heart, liver and brain of rat as manifestations of fetal programming produced by deficit in vitamin B12 and folate during pregnancy and lactation through imbalanced methylation/acetylation of PGC1α and altered expression and methylation of nuclear receptors. The decreased expression of Sirt1 produced by impaired cellular availability of vitamin B12 results from endoplasmic reticulum stress through subcellular mislocalization of ELAVL1/HuR protein that shuttles Sirt1 mRNA between the nucleus and cytoplasm. Preclinical and clinical studies of Sirt1 agonists have produced contrasted results in the treatment of the metabolic syndrome. A preclinical study has produced promising results in the treatment of inherited disorders of vitamin B12 metabolism.
Collapse
|
26
|
Wu CM, Zheng L, Wang Q, Hu YW. The emerging role of cell senescence in atherosclerosis. Clin Chem Lab Med 2020; 59:27-38. [PMID: 32692694 DOI: 10.1515/cclm-2020-0601] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 12/15/2022]
Abstract
Cell senescence is a fundamental mechanism of aging and appears to play vital roles in the onset and prognosis of cardiovascular disease, fibrotic pulmonary disease, liver disease and tumor. Moreover, an increasing body of evidence shows that cell senescence plays an indispensable role in the formation and development of atherosclerosis. Multiple senescent cell types are associated with atherosclerosis, senescent human vascular endothelial cells participated in atherosclerosis via regulating the level of endothelin-1 (ET-1), nitric oxide (NO), angiotensin II and monocyte chemoattractant protein-1 (MCP-1), senescent human vascular smooth muscle cells-mediated plaque instability and vascular calcification via regulating the expression level of BMP-2, OPN, Runx-2 and inflammatory molecules, and senescent macrophages impaired cholesterol efflux and promoted the development of senescent-related cardiovascular diseases. This review summarizes the characteristics of cell senescence and updates the molecular mechanisms underlying cell senescence. Moreover, we also discuss the recent advances on the molecular mechanisms that can potentially regulate the development and progression of atherosclerosis.
Collapse
Affiliation(s)
- Chang-Meng Wu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Lei Zheng
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Qian Wang
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yan-Wei Hu
- Department of Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P. R. China.,Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| |
Collapse
|