1
|
Zhou Y, Yu H, Li Q, Kong L, Liu S, Xu C. Characterization of piRNAs in Diploid and Triploid Pacific Oyster Gonads: Exploring Their Potential Roles in Triploid Sterility. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1017-1029. [PMID: 39073646 DOI: 10.1007/s10126-024-10351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
PIWI-interacting RNAs (piRNAs) are crucial for silencing transposable elements, germ cell development, and gametogenesis. Triploid Pacific oysters (Crassostrea gigas) are vital in the oyster aquaculture industry due to reduced fertility and rapid growth. This study integrates piRNA and mRNA expression analyses to elucidate their potential contributions to the sterility of triploid C. gigas. Bioinformatics analysis reveals a distinct U-bias at the 5' terminal of oyster piRNAs. The abundance of piRNA clusters is reduced in triploid gonads compared to diploid gonads, particularly in sterile gonads, with a significant decrease in piRNA numbers. A specific piRNA cluster is annotated with the PPP4R1 gene, which is downregulated in infertile female triploids and exhibits a negative correlation with three piRNAs within the cluster. Differential expression analysis identified 46 and 88 piRNAs in female and male comparison groups, respectively. In female sterile triploids, the expression of three target genes of differentially expressed piRNAs associated with cell division showed downregulation, suggesting the potential roles of piRNAs in the regulation of cell division-related genes, contributing to the gonad arrest observed in female triploid oysters. In male triploid oysters, piRNAs potentially interact with the target genes associated with spermatogenesis, including TSSK4, SPAG17, and CCDC81. This study provides a concise overview of piRNAs expression in oyster gonads, offering insights into the regulatory role of piRNAs in triploid sterility.
Collapse
Affiliation(s)
- Yaru Zhou
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, (Ocean University of China), Qingdao, 266003, China
| |
Collapse
|
2
|
Roza M, Eriksson ANM, Svanholm S, Berg C, Karlsson O. Male-transmitted transgenerational effects of the herbicide linuron on DNA methylation profiles in Xenopus tropicalis brain and testis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:170949. [PMID: 38365020 DOI: 10.1016/j.scitotenv.2024.170949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
The herbicide linuron can cause endocrine disrupting effects in Xenopus tropicalis frogs, including offspring that were never exposed to the contaminant. The mechanisms by which these effects are transmitted across generations need to be further investigated. Here, we examined transgenerational alterations of brain and testis DNA methylation profiles paternally inherited from grandfathers developmentally exposed to an environmentally relevant concentration of linuron. Reduced representation bisulfite sequencing (RRBS) revealed numerous differentially methylated regions (DMRs) in brain (3060 DMRs) and testis (2551 DMRs) of the adult male F2 generation. Key genes in the brain involved in somatotropic (igfbp4) and thyrotropic signaling (dio1 and tg) were differentially methylated and correlated with phenotypical alterations in body size, weight, hind limb length and plasma glucose levels, indicating that these methylation changes could be potential mediators of the transgenerational effects of linuron. Testis DMRs were found in genes essential for spermatogenesis, meiosis and germ cell development (piwil1, spo11 and tdrd9) and their methylation levels were correlated with the number of germ cells nests per seminiferous tubule, an endpoint of disrupted spermatogenesis. DMRs were also identified in several genes central for the machinery that regulates the epigenetic landscape including DNA methylation (dnmt3a and mbd2) and histone acetylation (hdac8, ep300, elp3, kat5 and kat14), which may at least partly drive the linuron-induced transgenerational effects. The results from this genome-wide DNA methylation profiling contribute to better understanding of potential transgenerational epigenetic inheritance mechanisms in amphibians.
Collapse
Affiliation(s)
- Mauricio Roza
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Sofie Svanholm
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Cecilia Berg
- Department of Environmental Toxicology, Uppsala University, Uppsala, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
3
|
Hong R, Wu J, Chen X, Zhang Z, Liu X, Li M, Zuo F, Zhang GW. mRNA-Seq of testis and liver tissues reveals a testis-specific gene and alternative splicing associated with hybrid male sterility in dzo. J Anim Sci 2024; 102:skae091. [PMID: 38551023 PMCID: PMC11135213 DOI: 10.1093/jas/skae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 05/30/2024] Open
Abstract
Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.
Collapse
Affiliation(s)
- Rui Hong
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Jiaxin Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xining Chen
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Zhenghao Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Xinyue Liu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Meichen Li
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| | - Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460 Chongqing, China
- Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460 Chongqing, China
| |
Collapse
|
4
|
Yang R, Zhang B, Zhu W, Zhu C, Chen L, Zhao Y, Wang Y, Zhang Y, Riaz A, Tang B, Zhang X. Expression of Phospholipase D Family Member 6 in Bovine Testes and Its Molecular Characteristics. Int J Mol Sci 2023; 24:12172. [PMID: 37569546 PMCID: PMC10418416 DOI: 10.3390/ijms241512172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the only primitive spermatogonial cells in males that can naturally transmit genetic information to their offspring and replicate throughout their lives. Phospholipase D family member 6 (PLD6) has recently been found to be a surface marker for SSCs in mice and boars; however, it has not been validated in cattle. The results of reversed transcription-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) found that the relative expression of the PLD6 gene in the testicular tissues of two-year-old Simmental calves was significantly higher than that of six-month-old calves. Immunofluorescent staining further verified the expression of PLD6 protein in bovine spermatogenic cells like germ cell marker DEAD box helicase 4 (DDX4, also known as VASA). Based on multiple bioinformatic databases, PLD6 is a conservative protein which has high homology with mouse Q5SWZ9 protein. It is closely involved in the normal functioning of the reproductive system. Molecular dynamics simulation analyzed the binding of PLD6 as a phospholipase to cardiolipin (CL), and the PLD6-CL complex showed high stability. The protein interaction network analysis showed that there is a significant relationship between PLD6 and piwi-interacting RNA (piRNA) binding protein. PLD6 acts as an endonuclease and participates in piRNA production. In addition, PLD6 in bovine and mouse testes has a similar expression pattern with the spermatogonium-related genes VASA and piwi like RNA-mediated gene silencing 2 (PIWIL2). In conclusion, these analyses imply that PLD6 has a relatively high expression in bovine testes and could be used as a biomarker for spermatogenic cells including SSCs.
Collapse
Affiliation(s)
- Rui Yang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Boyang Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Wenqian Zhu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Chunling Zhu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Lanxin Chen
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Yansen Zhao
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Yueqi Wang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Yan Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Amjad Riaz
- Department of Theriogenolog and University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Bo Tang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| | - Xueming Zhang
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (R.Y.); (B.Z.); (W.Z.); (C.Z.); (B.T.)
| |
Collapse
|
5
|
Zhang J, Sheng H, Hu C, Li F, Cai B, Ma Y, Wang Y, Ma Y. Effects of DNA Methylation on Gene Expression and Phenotypic Traits in Cattle: A Review. Int J Mol Sci 2023; 24:11882. [PMID: 37569258 PMCID: PMC10419045 DOI: 10.3390/ijms241511882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Gene expression in cells is determined by the epigenetic state of chromatin. Therefore, the study of epigenetic changes is very important to understand the regulatory mechanism of genes at the molecular, cellular, tissue and organ levels. DNA methylation is one of the most studied epigenetic modifications, which plays an important role in maintaining genome stability and ensuring normal growth and development. Studies have shown that methylation levels in bovine primordial germ cells, the rearrangement of methylation during embryonic development and abnormal methylation during placental development are all closely related to their reproductive processes. In addition, the application of bovine male sterility and assisted reproductive technology is also related to DNA methylation. This review introduces the principle, development of detection methods and application conditions of DNA methylation, with emphasis on the relationship between DNA methylation dynamics and bovine spermatogenesis, embryonic development, disease resistance and muscle and fat development, in order to provide theoretical basis for the application of DNA methylation in cattle breeding in the future.
Collapse
Affiliation(s)
- Junxing Zhang
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Sheng
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Chunli Hu
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Fen Li
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Bei Cai
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Yanfen Ma
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular Cell Breeding of Ningxia Hui Autonomous Region, College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; (J.Z.); (H.S.); (C.H.); (F.L.); (B.C.); (Y.M.)
| |
Collapse
|
6
|
Zhang GW, Wang L, Wu J, Ye Y, Zhao J, Du Y, Tu Y, Luo Z, Fu S, Zuo F. Evaluation of MYBL1 as the master regulator for pachytene spermatocyte genes dysregulated in interspecific hybrid dzo. J Dairy Sci 2023; 106:4366-4379. [PMID: 37059660 DOI: 10.3168/jds.2022-22963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/08/2022] [Indexed: 04/16/2023]
Abstract
Misregulation of spermatogenesis transcription factors (TF) in hybrids can lead to misexpression, which is a mechanism for hybrid male sterility (HMS). We used dzo (male offspring of Bos taurus ♂ × Bos grunniens ♀) in bovines to investigate the relationship of the key TF with HMS via RNA sequencing and assay for transposase-accessible chromatin with high-throughput sequencing analyses. RNA sequencing showed that the widespread misexpression in dzo was associated with spermatogenesis-related genes and somatic or progenitor genes. The transition from leptotene or zygotene spermatocytes to pachytene spermatocytes may be the key stage for meiosis arrest in dzo. The analysis of TF-binding motif enrichment revealed that the male meiosis-specific master TF MYB proto-oncogene like 1 (MYBL1, known as A-MYB) motif was enriched on the promoters of downregulated pachytene spermatocyte genes in dzo. Assay for transposase-accessible chromatin with high-throughput sequencing revealed that TF-binding sites for MYBL1, nuclear transcription factor Y, and regulatory factor X were enriched in the low-chromatin accessibility region of dzo. The target genes of the MYBL1-binding motif were associated with meiosis-specific genes and significantly downregulated in dzo testis. The transcription factor MYBL1 may be the candidate master regulator for pachytene spermatocyte genes dysregulated in interspecific HMS dzo. This study reported that a few upstream TF regulation changes might exert a cascading effect downstream in a regulatory network as a mechanism for HMS.
Collapse
Affiliation(s)
- Gong-Wei Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China.
| | - Ling Wang
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China
| | - Jingjing Wu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yiru Ye
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yanan Du
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Yun Tu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Zonggang Luo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China
| | - Shubing Fu
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China
| | - Fuyuan Zuo
- College of Animal Science and Technology, Southwest University, Rongchang, 402460, Chongqing, China; Beef Cattle Engineering and Technology Research Center of Chongqing, Southwest University, Rongchang, 402460, Chongqing, China.
| |
Collapse
|
7
|
Mipam T, Chen X, Zhao W, Zhang P, Chai Z, Yue B, Luo H, Wang J, Wang H, Wu Z, Wang J, Wang M, Wang H, Zhang M, Wang H, Jing K, Zhong J, Cai X. Single-cell transcriptome analysis and in vitro differentiation of testicular cells reveal novel insights into male sterility of the interspecific hybrid cattle-yak. BMC Genomics 2023; 24:149. [PMID: 36973659 PMCID: PMC10045231 DOI: 10.1186/s12864-023-09251-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Interspecific hybridization plays vital roles in enriching animal diversity, while male hybrid sterility (MHS) of the offspring commonly suffered from spermatogenic arrest constitutes the postzygotic reproductive isolation. Cattle-yak, the hybrid offspring of cattle (Bos taurus) and yak (Bos grunniens) can serve as an ideal MHS animal model. Although meiotic arrest was found to contribute to MHS of cattle-yak, yet the cellular characteristics and developmental potentials of male germline cell in pubertal cattle-yak remain to be systematically investigated. RESULTS Single-cell RNA-seq analysis of germline and niche cell types in pubertal testis of cattle-yak and yak indicated that dynamic gene expression of developmental germ cells was terminated at late primary spermatocyte (meiotic arrest) and abnormal components of niche cell in pubertal cattle-yak. Further in vitro proliferation and differentially expressed gene (DEG) analysis of specific type of cells revealed that undifferentiated spermatogonia of cattle-yak exhibited defects in viability and proliferation/differentiation potentials. CONCLUSION Comparative scRNA-seq and in vitro proliferation analysis of testicular cells indicated that not only meiotic arrest contributed to MHS of cattle-yak. Spermatogenic arrest of cattle-yak may originate from the differentiation stage of undifferentiated spermatogonia and niche cells of cattle-yak may provide an adverse microenvironment for spermatogenesis.
Collapse
Affiliation(s)
- TserangDonko Mipam
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Xuemei Chen
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Peng Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhixin Chai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Binglin Yue
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jikun Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Zhijuan Wu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jiabo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Mingxiu Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Ming Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Hongying Wang
- College of Chemistry & Environment, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Kemin Jing
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
The epigenetic regulatory mechanism of PIWI/piRNAs in human cancers. Mol Cancer 2023; 22:45. [PMID: 36882835 PMCID: PMC9990219 DOI: 10.1186/s12943-023-01749-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
PIWI proteins have a strong correlation with PIWI-interacting RNAs (piRNAs), which are significant in development and reproduction of organisms. Recently, emerging evidences have indicated that apart from the reproductive function, PIWI/piRNAs with abnormal expression, also involve greatly in varieties of human cancers. Moreover, human PIWI proteins are usually expressed only in germ cells and hardly in somatic cells, so the abnormal expression of PIWI proteins in different types of cancer offer a promising opportunity for precision medicine. In this review, we discussed current researches about the biogenesis of piRNA, its epigenetic regulatory mechanisms in human cancers, such as N6-methyladenosine (m6A) methylation, histone modifications, DNA methylation and RNA interference, providing novel insights into the markers for clinical diagnosis, treatment and prognosis in human cancers.
Collapse
|
9
|
Analysis of Chromatin Openness in Testicle Tissue of Yak and Cattle-Yak. Int J Mol Sci 2022; 23:ijms232415810. [PMID: 36555451 PMCID: PMC9785434 DOI: 10.3390/ijms232415810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Cattle-yak, a crossbreed of yak and cattle, which can exhibit obvious heterosis and can adapt to the harsh environmental conditions of the Qinghai Tibet Plateau (QTP). However, F1 cattle-yak were found to be sterile because they were unable to produce sperm, which adversely restricted the fixation of heterosis. Many prior attempts have been made to decipher the mechanism underlying the spermatogenesis stagnation of cattle-yak. However, the open chromatin region (OCR) map of yak and cattle-yak testes has not been generated yet. Here, we have analyzed the OCRs landscape of testicular tissues of cattle-yak and yaks by performing ATAC-seq technology. The OCRs of cattle-yak and yak testes displayed similar genome distribution and showed priority in intergenic regions, introns and promoters. The pathway enrichment analysis indicated that the differential OCRs-related genes were involved in spermatogenesis, involving the cell cycle, as well as Hippo, mTOR, MAPK, Notch, and Wnt signaling pathways. The integration of ATAC-seq and mRNA-seq indicated that the majority of the gene expression levels were positively correlated with chromatin openness. At the same time, we have identified a number of transcription factors (TFs) related to spermatogenesis and the differential expression of these TFs may contribute to the spermatogenesis stagnation of the cattle-yak. Overall, the findings of this study provide valuable information for advancing the research related to yak crossbreeding improvement and sperm production stagnation of cattle-yak.
Collapse
|
10
|
Chen H, Zhang J, Yan Y, Zhu C, Wang L, Fu S, Zuo F, Zhang GW. N6-methyladenosine RNA demethylase ALKBH5 is testis-specifically downregulated in hybrid male sterile dzo and is a target gene of bta-miR-200a. Theriogenology 2022; 187:51-57. [DOI: 10.1016/j.theriogenology.2022.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/23/2022] [Accepted: 04/23/2022] [Indexed: 01/29/2023]
|
11
|
Jia DD, Jiang H, Zhang YF, Zhang Y, Qian LL, Zhang YF. The regulatory function of piRNA/PIWI complex in cancer and other human diseases: The role of DNA methylation. Int J Biol Sci 2022; 18:3358-3373. [PMID: 35637965 PMCID: PMC9134905 DOI: 10.7150/ijbs.68221] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of short chain noncoding RNAs that are constituted by 26-30 nucleotides (nt) and can couple with PIWI protein family. piRNAs were initially described in germline cells and are believed to be critical regulators of the maintenance of reproductive line. Increasing evidence has extended our perspectives on the biological significance of piRNAs and indicated that they could still affect somatic gene expression through DNA methylation, chromatin modification and transposon silencing, etc. Many studies have revealed that the dysregulation of piRNAs might contribute to diverse diseases through epigenetic changes represented by DNA methylation and chromatin modification. In this review, we summarized piRNA/PIWI protein-mediated DNA methylation regulation mechanisms and methylation changes caused by piRNA/PIWI proteins in different diseases, especially cancers. Since DNA methylation and inhibitory chromatin marks represented by histone H3 lysine 9 (H3K9) methylation frequently cooperate to silence genomic regions, we also included methylation in chromatin modification within this discussion. Furthermore, we discussed the potential clinical applications of piRNAs as a new type promising biomarkers for cancer diagnosis, as well as the significance of piRNA/PIWI protein-associated methylation changes in treatment, providing disparate insights into the potential applications of them.
Collapse
Affiliation(s)
- Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Jiang
- Department of Radiation Oncology, Sun Yat - Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Li-Li Qian
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
12
|
Phakdeedindan P, Wittayarat M, Tharasanit T, Techakumphu M, Shimazaki M, Sambuu R, Hirata M, Tanihara F, Taniguchi M, Otoi T, Sato Y. Aberrant levels of DNA methylation and H3K9 acetylation in the testicular cells of crossbred cattle-yak showing infertility. Reprod Domest Anim 2021; 57:304-313. [PMID: 34854139 DOI: 10.1111/rda.14061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Although the interspecies hybridization of bovids, such as cattle-yak (Bos taurus × Bos grunniens), has heterosis benefits, the infertility of hybrid males affects the maintenance of dominant traits in subsequent generations. To achieve reproductive capacity, male germ cell development requires coordinated changes in gene expression, including DNA methylation and generalized histone modifications. Although gene expression-related mechanisms underlying hybrid male sterility have been investigated recently, information on the cell types and stage-specific controls remains limited. Here, we used immunohistochemistry and image analyses to evaluate the 5-methylcytosine (5MC) and acetyl-histone H3 Lys9 (AcK9) expression in all spermatogonia and testicular somatic cell types to determine their roles in cattle-yak spermatogenesis. Testicular tissues from yak (1-3 years old) and backcrossed hybrids (2 years old) were used. In yak, the AcK9 expression levels increased in all cell types during maturation, but the 5MC expression levels did not change until reaching 3 years when they increased in all testicular cell types, except spermatogonia. Cattle-yak hybrids showed higher 5MC expression levels and different AcK9 expression levels in all cell types compared to the same-aged yak. These results suggested that both gene modulation by AcK9 and constant levels of DNA methylation are required for spermatogenesis during maturation in yak. Therefore, inappropriate expression levels of both AcK9 and DNA methylation might be the major factors for disruption of normal germ cell development in cattle-yak. Additionally, various modulations occurred depending on the cell type. Further experiments are needed to identify the stage-specific gene expression modulations in each cell type in yak and cattle-yak to potentially solve the infertility issue in crossbreeding.
Collapse
Affiliation(s)
- Praopilas Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.,Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Theerawat Tharasanit
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Mongkol Techakumphu
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Megumi Shimazaki
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Rentsenkhand Sambuu
- Institute for Extension of Agricultural Advanced Technology, Ulaanbaatar, Mongolia
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Masayasu Taniguchi
- Department of Animal Reproduction, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima, Japan
| | - Yoko Sato
- Department of Medical Engineering, Faculty of Allied Sciences, University of East Asia, Yamaguchi, Japan
| |
Collapse
|
13
|
Lite C, Sridhar VV, Sriram S, Juliet M, Arshad A, Arockiaraj J. Functional role of piRNAs in animal models and its prospects in aquaculture. REVIEWS IN AQUACULTURE 2021; 13:2038-2052. [DOI: 10.1111/raq.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 10/16/2023]
Abstract
AbstractThe recent advances in the field of aquaculture over the last decade has helped the cultured‐fish industry production sector to identify problems and choose the best approaches to achieve high‐volume production. Understanding the emerging roles of non‐coding RNA (ncRNA) in the regulation of fish physiology and health will assist in gaining knowledge on the possible applications of ncRNAs for the advancement of aquaculture. There is information available on the practical considerations of epigenetic mechanisms like DNA methylation, histone modification and ncRNAs, such as microRNA in aquaculture, for both fish and shellfish. Among the non‐coding RNAs, PIWI‐interacting RNA (piRNA) is 24–31 bp long transcripts, which is primarily involved in silencing the germline transposons. Besides, the burgeoning reports and studies establish piRNAs' role in various aspects of biology. Till date, there are no reviews that summarize the recent findings available on piRNAs in animal models, especially on piRNAs biogenesis and biological action. To gain a better understanding and get an overview on the process of piRNA genesis among the different animals, this work reviews the literature available on the processes of piRNA biogenesis in animal models with special reference to aquatic animal model zebrafish. This review also presents a short discussion and prospects of piRNA’s application in relevance to the aquaculture industry.
Collapse
Affiliation(s)
- Christy Lite
- Endocrine and Exposome (E2) Laboratory Department of Zoology Madras Christian College Chennai India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Swati Sriram
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery SRM Dental College and Hospital, SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
- Department of Biotechnology, Faculty of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
14
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
15
|
Hong Y, Wu Y, Zhang J, Yu C, Shen L, Chen H, Chen L, Zhou X, Gao F. Decreased piRNAs in Infertile Semen Are Related to Downregulation of Sperm MitoPLD Expression. Front Endocrinol (Lausanne) 2021; 12:696121. [PMID: 34326815 PMCID: PMC8315149 DOI: 10.3389/fendo.2021.696121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/11/2021] [Indexed: 01/14/2023] Open
Abstract
Currently, the molecular mechanisms underlining male infertility are still poorly understood. Our previous study has demonstrated that PIWI-interacting RNAs (piRNAs) are downregulated in seminal plasma of infertile patients and can serve as molecular biomarkers for male infertility. However, the source and mechanism for the dysregulation of piRNAs remain obscure. In this study, we found that exosomes are present in high concentrations in human seminal plasma and confirmed that piRNAs are predominantly present in the exosomal fraction of seminal plasma. Moreover, we showed that piRNAs were significantly decreased in exosomes of asthenozoospermia patients compared with normozoospermic men. By systematically screening piRNA profiles in sperms of normozoospermic men and asthenozoospermia patients, we found that piRNAs were parallelly reduced during infertility. At last, we investigated the expression of some proteins that are essential for piRNAs biogenesis in sperms and therefore identified a tight correlation between the levels of spermatozoa piRNA and MitoPLD protein, suggesting that the loss-of-function of MitoPLD could cause a severe defect of piRNA accumulation in sperms. In summary, this study identified a parallel reduction of piRNAs and MitoPLD protein in sperms of asthenozoospermia patients, which may provide pathophysiological clues about sperm motility.
Collapse
Affiliation(s)
- Yeting Hong
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Yeting Hong,
| | - Yanqian Wu
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jianbin Zhang
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chong Yu
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lu Shen
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hanxiao Chen
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Linjie Chen
- College of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xue Zhou
- Department of Andrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fang Gao
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
16
|
Abeysinghe P, Turner N, Morean Garcia I, Mosaad E, Peiris HN, Mitchell MD. The Role of Exosomal Epigenetic Modifiers in Cell Communication and Fertility of Dairy Cows. Int J Mol Sci 2020; 21:ijms21239106. [PMID: 33266010 PMCID: PMC7731370 DOI: 10.3390/ijms21239106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal uterine function affects conception rate and embryo development, thereby leading to poor fertility and reproduction failure. Exosomes are a nanosized subclass of extracellular vesicles (EV) that have important functions as intercellular communicators. They contain and carry transferable bioactive substances including micro RNA (miRNA) for target cells. Elements of the cargo can provide epigenetic modifications of the recipient cells and may have crucial roles in mechanisms of reproduction. The dairy industry accounts for a substantial portion of the economy of many agricultural countries. Exosomes can enhance the expression of inflammatory mediators in the endometrium, which contribute to various inflammatory diseases in transition dairy cows. This results in reduced fertility which leads to reduced milk production and increased cow maintenance costs. Thus, gaining a clear knowledge of exosomal epigenetic modifiers is critical to improving the breeding success and profitability of dairy farms. This review provides a brief overview of how exosomal miRNA contributes to inflammatory diseases and hence to poor fertility, particularly in dairy cows.
Collapse
|
17
|
Histological Analysis, Bioinformatics Profile, and Expression of Methylenetetrahydrofolate Reductase (MTHFR) in Bovine Testes. Animals (Basel) 2020; 10:ani10101731. [PMID: 32977696 PMCID: PMC7598625 DOI: 10.3390/ani10101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/29/2020] [Accepted: 09/17/2020] [Indexed: 11/29/2022] Open
Abstract
Simple Summary To date, several genes have been sequenced but their corresponding protein characteristics remain unknown. This study highlights the histological structure of bovine (yellow-cattle and yak) testes as a build-up to exploring the bioinformatics profile and expression characteristics of methylenetetrahydrofolate reductase (MTHFR) in bovine testes. Our findings suggest that yellow-cattle testis have similar anatomical characteristics with that of yak, except for the weight or size, for which that of yellow-cattle is significantly higher or greater than yak. We also found that the secondary and 3D protein structures of MTHFR were similar to that of humans, with differences in the number of nucleotides, amino acids, and some physico-chemical characteristics. Moreover, MTHFR mRNA expression was higher in adult yellow-cattle and yak compared to their juvenile ones, however, its protein expression was higher but not statistically significant in adult yellow-cattle and yak compared to the juvenile ones. This provides a basis for further investigations into the regulatory function of MTHFR in bovine testes. Abstract Methylenetetrahydrofolate reductase (MTHFR), an enzyme expressed in mammalian testes, exerts a direct effect on spermatogenesis; however, its protein characteristics in bovine testes remain unknown. Here, we analysed bovine testicular structure, MTHFR bioinformatics profile, mRNA, and protein expression characteristics in yellow-cattle (y-c) and yak testis using histological procedures, bioinformatics analysis, qRT-PCR, and western blot. Testes from 13 bovines, ≤2 years juvenile (y-c, n = 3; yak, n = 3) and ≥3 years adult (y-c, n = 3; yak, n = 4) were collected and analysed. Anatomical characteristics of testis in y-c and yak were similar except the weight or size for which that of y-c was significantly higher or greater than yak. In y-c, an open reading frame (ORF) for 2600 nucleotides sequence, encoding 655 amino acids showed high homology with zebu cattle (99.51%) and wild yak (98.68%). Secondary and 3D protein structures were similar to that of humans with differences in the number of nucleotides, amino acids, and some physico-chemical characteristics. MTHFR mRNA expression in y-c and yak were significantly higher in adult testes compared with juvenile ones. However, its protein expression was higher, but not statistically significant, in adult y-c and yak compared to the juvenile ones. The highlights and inferences of these and other findings are discussed.
Collapse
|
18
|
Zhou Y, Liu S, Hu Y, Fang L, Gao Y, Xia H, Schroeder SG, Rosen BD, Connor EE, Li CJ, Baldwin RL, Cole JB, Van Tassell CP, Yang L, Ma L, Liu GE. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biol 2020; 18:85. [PMID: 32631327 PMCID: PMC7339546 DOI: 10.1186/s12915-020-00793-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Efforts to improve animal health, and understand genetic bases for production, may benefit from a comprehensive analysis of animal genomes and epigenomes. Although DNA methylation has been well studied in humans and other model species, its distribution patterns and regulatory impacts in cattle are still largely unknown. Here, we present the largest collection of cattle DNA methylation epigenomic data to date. RESULTS Using Holstein cattle, we generated 29 whole genome bisulfite sequencing (WGBS) datasets for 16 tissues, 47 corresponding RNA-seq datasets, and 2 whole genome sequencing datasets. We did read mapping and DNA methylation calling based on two different cattle assemblies, demonstrating the high quality of the long-read-based assembly markedly improved DNA methylation results. We observed large differences across cattle tissues in the methylation patterns of global CpG sites, partially methylated domains (PMDs), hypomethylated regions (HMRs), CG islands (CGIs), and common repeats. We detected that each tissue had a distinct set of PMDs, which showed tissue-specific patterns. Similar to human PMD, cattle PMDs were often linked to a general decrease of gene expression and a decrease in active histone marks and related to long-range chromatin organizations, like topologically associated domains (TADs). We tested a classification of the HMRs based on their distributions relative to transcription start sites (TSSs) and detected tissue-specific TSS-HMRs and genes that showed strong tissue effects. When performing cross-species comparisons of paired genes (two opposite strand genes with their TSS located in the same HMR), we found out they were more consistently co-expressed among human, mouse, sheep, goat, yak, pig, and chicken, but showed lower consistent ratios in more divergent species. We further used these WGBS data to detect 50,023 experimentally supported CGIs across bovine tissues and found that they might function as a guard against C-to-T mutations for TSS-HMRs. Although common repeats were often heavily methylated, some young Bov-A2 repeats were hypomethylated in sperm and could affect the promoter structures by exposing potential transcription factor binding sites. CONCLUSIONS This study provides a comprehensive resource for bovine epigenomic research and enables new discoveries about DNA methylation and its role in complex traits.
Collapse
Affiliation(s)
- Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lingzhao Fang
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU UK
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Han Xia
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Steven G. Schroeder
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Erin E. Connor
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 USA
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Ransom L. Baldwin
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Curtis P. Van Tassell
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705 USA
| |
Collapse
|