1
|
Li L, Zeng Y, Cheng G, Yang H. Acetylation and deacetylation dynamics in stress response to cancer and infections. Semin Immunol 2025; 78:101957. [PMID: 40288003 DOI: 10.1016/j.smim.2025.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
In response to stress stimuli, cells have evolved various mechanisms to integrate internal and external signals to achieve dynamic homeostasis. Lysine acetyltransferase (KATs) and deacetyltransferase (KDACs) are the key modulators of epigenetic modifications, enabling cells to modulate cellular responses through the acetylation and deacetylation of both histone and nonhistone proteins. Understanding the signaling pathways involved in cellular stress response, along with the roles of KATs and KDACs may pave the way for the development of novel therapeutic strategies. This review discusses the molecular mechanisms of acetylation and deacetylation in stress responses related to tumorigenesis, viral and bacterial infections. In tumorigenesis section, we focused on the tumor cells' intrinsic and external molecules and signaling pathways regulated by acetylation and deacetylation modification. In viral and bacterial infections, we summarized the update research on acetylation and deacetylation modification in viral and bacterial infections, which systematical introduction on this topic is not too much. Additionally, we provide an overview of current therapeutic interventions and clinical trials involving KAT and KDAC inhibitors in the treatment of cancer, as well as viral and bacterial infection-related diseases.
Collapse
Affiliation(s)
- Lili Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yanqiong Zeng
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| | - Genhong Cheng
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Heng Yang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Mmatli M, Mbelle NM, Osei Sekyere J. Plasmid-borne mcr-1 and replicative transposition of episomal and chromosomal blaNDM-1, blaOXA-69, and blaOXA-23 carbapenemases in a clinical Acinetobacter baumannii isolate. mSystems 2025; 10:e0168324. [PMID: 39992114 PMCID: PMC11915867 DOI: 10.1128/msystems.01683-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/28/2025] [Indexed: 02/25/2025] Open
Abstract
A multidrug-resistant clinical Acinetobacter baumannii isolate with resistance to most antibiotics was isolated from a patient at an intensive care unit. The genetic environment, transcriptome, mobile, and resistome were characterized. The MicroScan system, disc diffusion, and broth microdilution were used to determine the resistance profile of the isolate. A multiplex PCR assay was also used to screen for carbapenemases and mcr-1 to -5 resistance genes. Efflux-pump inhibitors were used to evaluate efflux activity. The resistome, mobilome, epigenome, and transcriptome were characterized. There was phenotypic resistance to 22 of the 25 antibiotics tested, intermediate resistance to levofloxacin and nalidixic acid, and susceptibility to tigecycline, which corresponded to the 27 resistance genes found in the genome, most of which occurred in multiple copies through replicative transposition. A plasmid-borne (pR-B2.MM_C3) mcr-1 and chromosomal blaPER-7, blaOXA-69, blaOXA-23 (three copies), blaADC-25, blaTEM-1B, and blaNDM-1 were found within composite transposons, ISs, and/or class 1 and 2 integrons on genomic islands. Types I and II methylases and restriction endonucleases were in close synteny to these resistance genes within the genomic islands; chromosomal genomic islands aligned with known plasmids. There was a closer evolutionary relationship between the strain and global strains but not local or regional strains; the resistomes also differed. Significantly expressed/repressed genes (6.2%) included resistance genes, hypothetical proteins, mobile elements, methyltransferases, transcription factors, and membrane and efflux proteins. The genomic evolution observed in this strain explains its adaptability and pandrug resistance and shows its genomic plasticity on exposure to antibiotics. IMPORTANCE A pandrug-resistant pathogen that was susceptible to only a single antibiotic, tigecycline, was isolated from a middle-aged patient in an ICU. This pathogen contained two plasmids and had a chromosome that contained portions that were integrated externally from plasmids. These genomic islands were rich with resistance genes, mobile genetic elements, and restriction-modification systems that protected the pathogen and facilitated gene regulation. The strain contained 35 resistance genes and 12 virulence genes. The strain was of closer evolutionary distance to several international strains suggesting that it was imported into South Africa. However, its resistome was unique, suggesting an independent evolution on exposure to antibiotic therapy mediated by epigenomic factors and MGE transposition events. The varied mechanisms available to this strain to overcome antibiotic resistance and spread to other areas and/or transfer its resistance determinants are worrying. This is ultimately a risk to public health, evincing the need for antibiotic stewardship.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory Service, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Institute of Biomarker Research and Clinical Development, Medical Diagnostic Laboratories, Genesis Biotechnology Group, Hamilton Township, New Jersey, USA
| |
Collapse
|
3
|
Mourabiti F, Jouga F, Sakoui S, El Hosayny O, Zouheir Y, Soukri A, El Khalfi B. Mechanisms, therapeutic strategies, and emerging therapeutic alternatives for carbapenem resistance in Gram-negative bacteria. Arch Microbiol 2025; 207:58. [PMID: 39948320 DOI: 10.1007/s00203-025-04252-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 03/04/2025]
Abstract
Carbapenem-resistant Gram-negative bacteria (CR-GNB) have experienced an alarming surge in prevalence in recent years, escalating into a critical global healthcare crisis. As carbapenems represent the last line of defense against such pathogens, infections caused by CR-GNB have become increasingly challenging to treat, given the restricted therapeutic options and heightened mortality risks. The discovery and development of alternative therapeutic strategies that present novel avenues against multi-drug-resistant organisms are gaining increased attention, presenting a pressing need for innovative solutions. Our comprehensive review delves into the multifaceted landscape of carbapenem resistance in Gram-negative bacteria in response to this urgent challenge. The scope of this review aims to provide an up-to-date and in-depth exploration regarding the mode of action of carbapenem and the resisting mechanisms of carbapenem in GNB. Additionally, it discusses the state of the art of some clinical therapies for the treatment of infections caused by CR-GNB. Moreover, it describes several combinational and alternative therapies to combat CR-GNB, including the computational approach of "molecular docking". In light of the conclusions of this review, we call for the implementation of these strategies to develop comprehensive approaches to mitigate carbapenem resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Fatima Mourabiti
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Fatimazahra Jouga
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Souraya Sakoui
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Otmane El Hosayny
- Applied Language and Culture Studies Laboratory, Faculty of Letters and Human Sciences, Chouaib Doukkali University, 24000, El Jadida, Morocco
| | - Yassine Zouheir
- Laboratory of Molecular Bacteriology, Pasteur Institute, Casablanca, Morocco
| | - Abdelaziz Soukri
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco
| | - Bouchra El Khalfi
- Laboratory of Physiopathology, Molecular Genetics & Biotechnology, Faculty of Sciences Ain Chock, Research Center of Health & Biotechnology, Hassan II University of Casablanca, 20100, Casablanca, Morocco.
| |
Collapse
|
4
|
Saha A, Ganguly A, Kumar A, Srivastava N, Pathak R. Harnessing Epigenetics: Innovative Approaches in Diagnosing and Combating Viral Acute Respiratory Infections. Pathogens 2025; 14:129. [PMID: 40005506 PMCID: PMC11858160 DOI: 10.3390/pathogens14020129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Acute respiratory infections (ARIs) caused by viruses such as SARS-CoV-2, influenza viruses, and respiratory syncytial virus (RSV), pose significant global health challenges, particularly for the elderly and immunocompromised individuals. Substantial evidence indicates that acute viral infections can manipulate the host's epigenome through mechanisms like DNA methylation and histone modifications as part of the immune response. These epigenetic alterations can persist beyond the acute phase, influencing long-term immunity and susceptibility to subsequent infections. Post-infection modulation of the host epigenome may help distinguish infected from uninfected individuals and predict disease severity. Understanding these interactions is crucial for developing effective treatments and preventive strategies for viral ARIs. This review highlights the critical role of epigenetic modifications following viral ARIs in regulating the host's innate immune defense mechanisms. We discuss the implications of these modifications for diagnosing, preventing, and treating viral infections, contributing to the advancement of precision medicine. Recent studies have identified specific epigenetic changes, such as hypermethylation of interferon-stimulated genes in severe COVID-19 cases, which could serve as biomarkers for early detection and disease progression. Additionally, epigenetic therapies, including inhibitors of DNA methyltransferases and histone deacetylases, show promise in modulating the immune response and improving patient outcomes. Overall, this review provides valuable insights into the epigenetic landscape of viral ARIs, extending beyond traditional genetic perspectives. These insights are essential for advancing diagnostic techniques and developing innovative treatments to address the growing threat of emerging viruses causing ARIs globally.
Collapse
Affiliation(s)
- Ankita Saha
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Anirban Ganguly
- Department of Biochemistry, All India Institute of Medical Sciences, Deoghar 814152, India;
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, India;
| | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; (A.S.); (N.S.)
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
5
|
Nieuwenhuizen NE, Ji L. Editorial: Factors associated with drug resistance and virulence of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1504923. [PMID: 39748886 PMCID: PMC11693506 DOI: 10.3389/fcimb.2024.1504923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
| | - Lei Ji
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Barbachowska M, Arimondo PB. To target or not to target? The role of DNA and histone methylation in bacterial infections. Epigenetics 2023; 18:2242689. [PMID: 37731322 PMCID: PMC10515666 DOI: 10.1080/15592294.2023.2242689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/22/2023] Open
Abstract
Epigenetics describes chemical modifications of the genome that do not alter DNA sequence but participate in the regulation of gene expression and cellular processes such as proliferation, division, and differentiation of eukaryotic cell. Disruption of the epigenome pattern in a human cell is associated with different diseases, including infectious diseases. During infection pathogens induce epigenetic modifications in the host cell. This can occur by controlling expression of genes involved in immune response. That enables bacterial survival and replication within the host and evasion of the immune response. Methylation is an example of epigenetic modification that occurs on DNA and histones. Reasoning that DNA and histone methylation of human host cells plays a crucial role during pathogenesis, these modifications are promising targets for the development of alternative treatment strategies in infectious diseases. Here, we discuss the role of DNA and histone methyltransferases in human host cell upon bacterial infections. We further hypothesize that compounds targeting methyltransferases are tools to study epigenetics in the context of host-pathogen interactions and can open new avenues for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Magdalena Barbachowska
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
- Universite Paris Cité, Ecole Doctorale MTCI, Paris, France
- Institut Pasteur, Pasteur- Paris University (PPU)- Oxford International Doctoral Program, Paris, France
| | - Paola B. Arimondo
- Institut Pasteur, Université Paris Cité, CNRS UMR n°3523 Chem4Life, Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Paris, France
| |
Collapse
|
7
|
Napoli C, Coscioni E, Trama U, Strozziero MG, Benincasa G. An evidence-based debate on epigenetics and immunosenescence in COVID-19. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100069. [PMID: 37781451 PMCID: PMC10539895 DOI: 10.1016/j.crimmu.2023.100069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Immunosenescence contributes to the decline of immune function leading to a reduced ability to respond to severe coronavirus disease 2019 (COVID-19) in elderly patients. Clinical course of COVID-19 is widely heterogeneous and guided by the possible interplay between genetic background and epigenetic-sensitive mechanisms underlying the immunosenescence which could explain, at least in part, the higher percentage of disease severity in elderly individuals. The most convincing evidence regards the hypomethylation of the angiotensin-converting enzyme 2 (ACE2) promoter gene in lungs as well as the citrullination of histone H3 in neutrophils which have been associated with worsening of COVID-19 outcome in elderly patients. In contrast, centenarians who have showed milder symptoms have been associated to a younger "epigenetic age" based on DNA methylation profiles at specific genomic sites (epigenetic clock). Some large prospective studies showed that the acceleration of epigenetic aging as well as the shortening of telomeres were significantly associated with lymphopenia and poor outcome suggesting prognostic biomarkers in elderly COVID-19 patients. Furthermore, randomized clinical trials showed that statins, L-arginine, and resveratrol could mediate anti-inflammatory effects via indirect epigenetic interference and might improve COVID-19 outcome. Here, we discuss the epigenetic-sensitive events which might contribute to increase the risk of severity and mortality in older subjects and possible targeted therapies to counteract immunosenescence.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Enrico Coscioni
- Division of Cardiac Surgery, AOU San Giovanni di Dio e Ruggid'Aragona, 84131, Salerno, Italy
| | - Ugo Trama
- Regional Pharmaceutical Unit, Campania Region, 80143 Naples, Italy
| | - Maria Grazia Strozziero
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
- IRCCS Synlab SDN Naples Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
8
|
Charpentier LA, Dolben EF, Hendricks MR, Hogan DA, Bomberger JM, Stanton BA. Bacterial Outer Membrane Vesicles and Immune Modulation of the Host. MEMBRANES 2023; 13:752. [PMID: 37755174 PMCID: PMC10536716 DOI: 10.3390/membranes13090752] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/28/2023]
Abstract
This article reviews the role of outer membrane vesicles (OMVs) in mediating the interaction between Gram-negative bacteria and their human hosts. OMVs are produced by a diverse range of Gram-negative bacteria during infection and play a critical role in facilitating host-pathogen interactions without requiring direct cell-to-cell contact. This article describes the mechanisms by which OMVs are formed and subsequently interact with host cells, leading to the transport of microbial protein virulence factors and short interfering RNAs (sRNA) to their host targets, exerting their immunomodulatory effects by targeting specific host signaling pathways. Specifically, this review highlights mechanisms by which OMVs facilitate chronic infection through epigenetic modification of the host immune response. Finally, this review identifies critical knowledge gaps in the field and offers potential avenues for future OMV research, specifically regarding rigor and reproducibility in OMV isolation and characterization methods.
Collapse
Affiliation(s)
- Lily A. Charpentier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Emily F. Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Matthew R. Hendricks
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| | - Jennifer M. Bomberger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; (L.A.C.); (E.F.D.); (D.A.H.); (J.M.B.)
| |
Collapse
|
9
|
Sengupta S, Pattanaik KP, Mishra S, Sonawane A. Epigenetic orchestration of host immune defences by Mycobacterium tuberculosis. Microbiol Res 2023; 273:127400. [PMID: 37196490 DOI: 10.1016/j.micres.2023.127400] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/09/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
Being among the top 10 causes of adult deaths, tuberculosis (TB) disease is considered a major global public health concern to address. The human tuberculosis pathogen, Mycobacterium tuberculosis (Mtb), is an extremely competent and well-versed pathogen that promotes pathogenesis by evading the host immune systems through numerous tactics. Investigations revealed that Mtb could evade the host defense mechanisms by reconfiguring the host gene transcription and causing epigenetic changes. Although results indicate the link between epigenetics and disease manifestation in other bacterial infections, little is known regarding the kinetics of the epigenetic alterations in mycobacterial infection. This literature review discusses the studies in Mtb-induced epigenetic alterations inside the host and its contribution in the host immune evasion strategies. It also discusses how the Mtb-induced alterations could be used as 'epibiomarkers' to diagnose TB. Additionally, this review also discusses therapeutic interventions to be enhanced through remodification by 'epidrugs'.
Collapse
Affiliation(s)
- Srabasti Sengupta
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Kali Prasad Pattanaik
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Snehasish Mishra
- School of Biotechnology, Campus-11, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Avinash Sonawane
- Discipline of Biosciences and Biomedical Engineering, Indian Institutes of Technology Indore, Khandwa Road, Simrol, Indore 453552, India.
| |
Collapse
|
10
|
Pal D, Sahu P, Mishra AK, Hagelgans A, Sukocheva O. Histone Deacetylase Inhibitors as Cognitive Enhancers and Modifiers of Mood and Behavior. Curr Drug Targets 2023; 24:728-750. [PMID: 36475351 DOI: 10.2174/1389450124666221207090108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Epigenetic regulation of gene signalling is one of the fundamental molecular mechanisms for the generation and maintenance of cellular memory. Histone acetylation is a common epigenetic mechanism associated with increased gene transcription in the central nervous system (CNS). Stimulation of gene transcription by histone acetylation is important for the development of CNS-based long-term memory. Histone acetylation is a target for cognitive enhancement via the application of histone deacetylase (HDAC) inhibitors. The promising potential of HDAC inhibitors has been observed in the treatment of several neurodevelopmental and neurodegenerative diseases. OBJECTIVE This study assessed the current state of HDAC inhibition as an approach to cognitive enhancement and treatment of neurodegenerative diseases. Our analysis provides insights into the mechanism of action of HDAC inhibitors, associated epigenetic priming, and describes the therapeutic success and potential complications after unsupervised use of the inhibitors. RESULTS AND CONCLUSION Several chromatin-modifying enzymes play key roles in the regulation of cognitive processes. The importance of HDAC signaling in the brain is highlighted in this review. Recent advancements in the field of cognitive epigenetics are supported by the successful development of various HDAC inhibitors, demonstrating effective treatment of mood-associated disorders. The current review discusses the therapeutic potential of HDAC inhibition and observed complications after mood and cognitive enhancement therapies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | - Pooja Sahu
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495 009, India
| | | | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Olga Sukocheva
- College of Nursing and Health Sciences, Flinders University of South Australia, Bedford Park, 5042, SA, Australia
| |
Collapse
|
11
|
Gupta MM, Gilhotra R, Deopa D, Bhat AA, Thapa R, Singla N, Kulshrestha R, Gupta G. Epigenetics of Pulmonary Tuberculosis. TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:127-144. [DOI: 10.1007/978-981-99-4780-5_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
12
|
Sui J, Qiao W, Xiang X, Luo Y. Epigenetic Changes in Mycobacterium tuberculosis and its Host Provide Potential Targets or Biomarkers for Drug Discovery and Clinical Diagnosis. Pharmacol Res 2022; 179:106195. [DOI: 10.1016/j.phrs.2022.106195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 11/26/2022]
|
13
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
14
|
Wang J, Huo C, Yin J, Tian L, Ma L, Wang D. Hypermethylation of the Promoter of miR-338-5p Mediates Aberrant Expression of ETS-1 and Is Correlated With Disease Severity Of Astrocytoma Patients. Front Oncol 2021; 11:773644. [PMID: 34858853 PMCID: PMC8632532 DOI: 10.3389/fonc.2021.773644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
The pro-oncogene ETS-1 (E26 transformation-specific sequence 1) is a key regulator of the proliferation and invasion of cancer cells. The present work examined the correlation of the aberrant expression of ETS-1 with histological or clinical classification of astrocytoma: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). MicroRNA, miR-338-5p, was predicted by an online tool (miRDB) to potentially target the 3' untranslated region of ETS-1; this was confirmed by multi-assays, including western blot experiments or the point mutation of the targeting sites of miR-338-5p in ETS-1's 3'untralation region (3'UTR). The expression of miR-338-5p was negatively associated with that of ETS-1 in astrocytoma, and deficiency of miR-338-5p would mediate aberrant expression of ETS-1 in astrocytoma. Mechanistically, hypermethylation of miR-338-5p by DNA methyltransferase 1 (DNMT1) resulted in repression of miR-338-5p expression and the aberrant expression of ETS-1. Knockdown or deactivation of DNMT1 decreased the methylation rate of the miR-338-5p promoter, increased the expression of miR-338-5p, and repressed the expression of ETS-1 in astrocytoma cell lines U251 and U87. These results indicate that hypermethylation of the miR-338-5p promoter by DNMT1 mediates the aberrant expression of ETS-1 related to disease severity of patients with astrocytoma.
Collapse
Affiliation(s)
- Junping Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Cheng Huo
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Jinzhu Yin
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Lixia Tian
- Department of Neurosurgery, The Sinopharm Tongmei General Hospital, Datong, China
| | - Lili Ma
- Department of Neurology, The Yantaishan Hospital, Yantai, China
| | - Dongsheng Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
|
16
|
Vasco M, Benincasa G, Fiorito C, Faenza M, De Rosa P, Maiello C, Santangelo M, Vennarecci G, Napoli C. Clinical epigenetics and acute/chronic rejection in solid organ transplantation: An update. Transplant Rev (Orlando) 2021; 35:100609. [PMID: 33706201 DOI: 10.1016/j.trre.2021.100609] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
The lack of a precise stratification algorithm for predicting patients at high risk of graft rejection challenges the current solid organ transplantation (SOT) clinical setting. In fact, the established biomarkers for transplantation outcomes are unable to accurately predict the onset time and severity of graft rejection (acute or chronic) as well as the individual response to immunosuppressive drugs. Thus, identifying novel molecular pathways underlying early immunological responses which can damage transplant integrity is needed to reach precision medicine and personalized therapy of SOT. Direct epigenetic-sensitive mechanisms, mainly DNA methylation and histone modifications, may play a relevant role for immune activation and long-term effects (e.g., activation of fibrotic processes) which may be translated in new non-invasive biomarkers and drug targets. In particular, the measure of DNA methylation by using the blood-based "epigenetic clock" system may be an added value to the donor eligibility criteria providing an estimation of the heart biological age as well as a predictive biomarkers. Besides, monitoring of DNA methylation changes may aid to predict acute vs chronic graft damage in kidney transplantation (KT) patients. For example, hypermethylation of genes belonging to the Notch and Wnt pathways showed a higher predictive value for chronic injury occurring at 12 months post-KT with respect to established clinical parameters. Detecting higher circulating cell-free DNA (cfDNA) fragments carrying hepatocyte-specific unmethylated loci in the inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4), insulin like growth factor 2 receptor (IGF2R), and vitronectin (VTN) genes may be useful to predict acute graft injury after liver transplantation (LT) in serum samples. Furthermore, hypomethylation in the forkhead box P3 (FOXP3) gene may serve as a marker of infiltrating natural Treg percentage in the graft providing the ability to predict acute rejection events after heart transplantation (HTx). We aim to update on the possible clinical relevance of DNA methylation changes regulating immune-related pathways underlying acute or chronic graft rejection in KT, LT, and HTx which might be useful to prevent, monitor, and treat solid organ rejection at personalized level.
Collapse
Affiliation(s)
- Maria Vasco
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuditta Benincasa
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Carmela Fiorito
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Faenza
- Multidisciplinary Department of Medical Surgical and Dental Sciences-Plastic Surgery Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paride De Rosa
- General Surgery and Transplantation Unit, "San Giovanni di Dio e Ruggi D'Aragona" University Hospital, Scuola Medica Salernitana, Salerno, Italy
| | - Ciro Maiello
- Department of Cardiovascular Surgery and Transplants, Monaldi Hospital, Azienda dei Colli, Naples, Italy
| | - Michele Santangelo
- General Surgery and Kidney Transplantation Unit, "Federico II" University Hospital, Naples, Italy
| | - Giovanni Vennarecci
- Division of General Surgery and Liver Transplantation, AO Cardarelli, Naples, Italy
| | - Claudio Napoli
- U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy; IRCCS SDN, Naples, Italy
| |
Collapse
|
17
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
18
|
COVID-19 and the second wave during autumn: preventive strategies in cardiac and thoracic surgery divisions. Eur Surg 2020; 53:37-39. [PMID: 33318750 PMCID: PMC7726736 DOI: 10.1007/s10353-020-00682-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022]
|