1
|
Merle L, Rastelli M, Datiche F, Véjux A, Jacquin-Piques A, Bouret SG, Benani A. Maternal Diet and Vulnerability to Cognitive Impairment in Adulthood: Possible Link with Alzheimer's Disease? Neuroendocrinology 2025; 115:242-266. [PMID: 39799941 DOI: 10.1159/000543499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/15/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Aging is the main risk factor for developing cognitive impairments and associated neurodegenerative diseases. However, environmental factors, including nutritional health, are likely to promote or reduce cognitive impairments and neurodegenerative pathologies. An intricate relationship exists between maternal nutrition and adult eating behavior, metabolic phenotype, and cognitive abilities. SUMMARY The objective of the present review was to collect available data, suggesting a link between maternal overnutrition and the latter impairment of cognitive functions in the progeny, and to relate this relationship with Alzheimer's disease (AD). Indeed, cognitive impairments are major behavioral signs of AD. We first reviewed studies showing an association between unbalanced maternal diet and cognitive impairments in the progeny in humans and rodent models. Then we looked for cellular and molecular hallmarks which could constitute a breeding ground for AD in those models. With this end, we focused on synaptic dysfunction, altered neurogenesis, neuroinflammation, oxidative stress, and pathological protein aggregation. Finally, we proposed an indirect mechanism linking maternal unbalanced diet and progeny's vulnerability to cognitive impairments and neurodegeneration through promoting metabolic diseases. We also discussed the involvement of progeny's gut microbiota in the maternal diet-induced vulnerability to metabolic and neurodegenerative diseases. KEY MESSAGES Further investigations are needed to fully decipher how maternal diet programs the fetus and infant brain. Addressing this knowledge gap would pave the way to precise nutrition and personalized medicine to better handle cognitive impairments in adulthood.
Collapse
Affiliation(s)
- Laetitia Merle
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Marialetizia Rastelli
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Inserm UMR-S1172, CHU Lille, University of Lille, Lille, France
| | - Frédérique Datiche
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Anne Véjux
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation, CNRS, Department of Clinical Neurophysiology, INRAE, Institut Agro, Université de Bourgogne, CHU Dijon, Dijon, France
| | - Sébastien G Bouret
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, Inserm UMR-S1172, CHU Lille, University of Lille, Lille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, France
| |
Collapse
|
2
|
Llauradó-Pont J, Stratakis N, Fiorito G, Handakas E, Neumann A, Barros H, Brantsæter AL, Chang K, Chatzi L, Felix JF, Grazuleviciene R, Jaddoe VWV, Karachaliou M, Lecorguillé M, Lopes C, Millett C, McEachan RRC, Papadopoulou E, Slama R, Vamos EP, Vineis P, Vrijheid M, Wright J, Voortman T, Bustamante M, Robinson O, Lassale C. A meta-analysis of epigenome-wide association studies of ultra-processed food consumption with DNA methylation in European children. Clin Epigenetics 2025; 17:3. [PMID: 39773758 PMCID: PMC11706074 DOI: 10.1186/s13148-024-01782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVE There is limited knowledge on how diet affects the epigenome of children. Ultra-processed food (UPF) consumption is emerging as an important factor impacting health, but mechanisms need to be uncovered. We therefore aimed to assess the association between UPF consumption and DNA methylation in children. METHODS We conducted a meta-analysis of epigenome-wide association studies (EWAS) from a total of 3152 children aged 5-11 years from four European studies (HELIX, Generation XXI, ALSPAC, and Generation R). UPF consumption was defined applying the Nova food classification system (group 4), and DNA methylation was measured in blood with Illumina Infinium Methylation arrays. Associations were estimated within each cohort using robust linear regression models, adjusting for relevant covariates, followed by a meta-analysis of the resulting EWAS estimates. RESULTS Although no CpG was significant at FDR level, we found suggestive associations (p-value < 10-5) between UPF consumption and methylation at seven CpG sites. Three of them, cg00339913 (PHYHIP), cg03041696 (intergenic), and cg03999434 (intergenic), were negatively associated, whereas the other four, cg14665028 (NHEJ1), cg18968409 (intergenic), cg24730307 (intergenic), and cg09709951 (ATF7), were positively associated with UPF intake. These CpGs have been previously associated with health outcomes such as carcinomas, and the related genes are mainly involved in pathways related to thyroid hormones and liver function. CONCLUSION We only found suggestive changes in methylation at 7 CpGs associated with UPF intake in a large EWAS among children: although this shows a potential impact of UPF intake on DNAm, this might not be a key mechanism underlying the health effects of UPFs in children. There is a need for more detailed dietary assessment in children studies and of intervention studies to assess potential epigenetic changes linked to a reduction in UPF in the diet.
Collapse
Affiliation(s)
| | | | - Giovanni Fiorito
- Clinical Bioinformatics Unit, IRCCS Instituto Giannina Gaslini, Genova, Italy
| | - Evangelos Handakas
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Henrique Barros
- Generation XXI Study Group, EPIUNIT/ITR- Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, Porto, Portugal
| | - Anne Lise Brantsæter
- Department of Food Safety, Centre for Sustainable Diets, Norwegian Institute of Public Health, Oslo, Norway
| | - Kiara Chang
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
| | - Leda Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, USA
| | - Janine F Felix
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Marion Lecorguillé
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and Statistics (CRESS), Paris, France
| | - Carla Lopes
- Generation XXI Study Group, EPIUNIT/ITR- Laboratory for Integrative and Translational Research in Population Health, Institute of Public Health, University of Porto, Porto, Portugal
| | - Christopher Millett
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
- NOVA National School of Public Health, Public Health Research Centre, Comprehensive Health Research Center, CHRC, NOVA University Lisbon, Lisbon, Portugal
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Eleni Papadopoulou
- Division of Health Service, Global Health Cluster, Norwegian Institute of Public Health, Oslo, Norway
| | - Remy Slama
- Team of Environmental Epidemiology, IAB, Institute for Advanced Biosciences, Inserm, CNRS, CHU-Grenoble-Alpes, University Grenoble-Alpes, CNRS, Grenoble, France
| | - Eszter P Vamos
- Public Health Policy Evaluation Unit, School of Public Health, Imperial College London, London, UK
| | - Paolo Vineis
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, West Yorkshire, UK
| | - Trudy Voortman
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mariona Bustamante
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Oliver Robinson
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Camille Lassale
- ISGlobal, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Consortium for Biomedical Research - Pathophysiology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Zhou J, Ren Y, Yu J, Zeng Y, Ren J, Wu Y, Zhang Q, Xiao X. The effect of maternal dietary polyphenol consumption on offspring metabolism. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39698806 DOI: 10.1080/10408398.2024.2442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Danaie M, Yeganegi M, Dastgheib SA, Bahrami R, Jayervand F, Rahmani A, Aghasipour M, Golshan-Tafti M, Azizi S, Marzbanrad Z, Masoudi A, Shiri A, Lookzadeh MH, Noorishadkam M, Neamatzadeh H. The interaction of breastfeeding and genetic factors on childhood obesity. Eur J Obstet Gynecol Reprod Biol X 2024; 23:100334. [PMID: 39224127 PMCID: PMC11367475 DOI: 10.1016/j.eurox.2024.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Childhood obesity represents a pressing global public health concern due to its widespread prevalence and its close connection to early-life exposure to risk factors. The onset of obesity is contingent upon the interplay of genetic composition, lifestyle choices, and environmental as well as nutritional elements encountered during both fetal development and early childhood. This paper critically examines research discoveries in this area and concisely outlines the influence of breastfeeding on genetic predispositions associated with childhood obesity. Studies have demonstrated that breastfeeding has the potential to reduce childhood obesity by impacting anthropometric indicators. Moreover, the duration of breastfeeding is directly correlated with the degree to which it alters the risk of childhood obesity. Current explorations into the link between genetic factors transmitted through breast milk and childhood obesity predominantly focus on genes like FTO, Leptin, RXRα, PPAR-γ, and others. Numerous research endeavors have suggested that an extended period of exclusive breastfeeding is tied to a diminished likelihood of childhood obesity, particularly if sustained during the initial six months. The duration of breastfeeding also correlates with gene methylation, which could serve as the epigenetic mechanism underpinning breastfeeding's preventative influence against obesity. In summary, the thorough evaluation presented in this review underscores the intricate nature of the association between breastfeeding, genetic factors, and childhood obesity, providing valuable insights for future research efforts and policy formulation.
Collapse
Affiliation(s)
- Mahsa Danaie
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Yeganegi
- Department of Obstetrics and Gynecology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Seyed Alireza Dastgheib
- Department of Medical Genetics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Bahrami
- Neonatal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Jayervand
- Department of Obstetrics and Gynecology, Iran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Rahmani
- Department of Plastic Surgery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Maryam Aghasipour
- Department of Cancer Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | - Sepideh Azizi
- Shahid Akbarabadi Clinical Research Development Unit, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Marzbanrad
- Department of Obstetrics and Gynecology, Firoozgar Hospital, Firoozgar Clinical Research Development Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Masoudi
- General Practitioner, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amirmasoud Shiri
- General Practitioner, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohamad Hosein Lookzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahmood Noorishadkam
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Neamatzadeh
- Mother and Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
5
|
Deng WQ, Pigeyre M, Azab SM, Wilson SL, Campbell N, Cawte N, Morrison KM, Atkinson SA, Subbarao P, Turvey SE, Moraes TJ, Mandhane P, Azad MB, Simons E, Pare G, Anand SS. Consistent cord blood DNA methylation signatures of gestational age between South Asian and white European cohorts. Clin Epigenetics 2024; 16:74. [PMID: 38840168 PMCID: PMC11155053 DOI: 10.1186/s13148-024-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Epigenetic modifications, particularly DNA methylation (DNAm) in cord blood, are an important biological marker of how external exposures during gestation can influence the in-utero environment and subsequent offspring development. Despite the recognized importance of DNAm during gestation, comparative studies to determine the consistency of these epigenetic signals across different ethnic groups are largely absent. To address this gap, we first performed epigenome-wide association studies (EWAS) of gestational age (GA) using newborn cord blood DNAm comparatively in a white European (n = 342) and a South Asian (n = 490) birth cohort living in Canada. Then, we capitalized on established cord blood epigenetic GA clocks to examine the associations between maternal exposures, offspring characteristics and epigenetic GA, as well as GA acceleration, defined as the residual difference between epigenetic and chronological GA at birth. RESULTS Individual EWASs confirmed 1,211 and 1,543 differentially methylated CpGs previously reported to be associated with GA, in white European and South Asian cohorts, respectively, with a similar distribution of effects. We confirmed that Bohlin's cord blood GA clock was robustly correlated with GA in white Europeans (r = 0.71; p = 6.0 × 10-54) and South Asians (r = 0.66; p = 6.9 × 10-64). In both cohorts, Bohlin's clock was positively associated with newborn weight and length and negatively associated with parity, newborn female sex, and gestational diabetes. Exclusive to South Asians, the GA clock was positively associated with the newborn ponderal index, while pre-pregnancy weight and gestational weight gain were strongly predictive of increased epigenetic GA in white Europeans. Important predictors of GA acceleration included gestational diabetes mellitus, newborn sex, and parity in both cohorts. CONCLUSIONS These results demonstrate the consistent DNAm signatures of GA and the utility of Bohlin's GA clock across the two populations. Although the overall pattern of DNAm is similar, its connections with the mother's environment and the baby's anthropometrics can differ between the two groups. Further research is needed to understand these unique relationships.
Collapse
Affiliation(s)
- Wei Q Deng
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada.
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
| | - Marie Pigeyre
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON, Canada
| | - Sandi M Azab
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Samantha L Wilson
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Canada
| | - Natalie Campbell
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Nathan Cawte
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
| | | | | | - Padmaja Subbarao
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, The University of British Columbia, Vancouver, Canada
| | - Theo J Moraes
- Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, Canada
- Program in Translational Medicine, SickKids Research Institute, Toronto, Canada
| | - Piush Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada
| | - Elinor Simons
- Section of Allergy and Immunology, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Canada
| | - Guillaume Pare
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Canada
| | - Sonia S Anand
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada.
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Canada.
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.
| |
Collapse
|
6
|
Faienza MF, Urbano F, Anaclerio F, Moscogiuri LA, Konstantinidou F, Stuppia L, Gatta V. Exploring Maternal Diet-Epigenetic-Gut Microbiome Crosstalk as an Intervention Strategy to Counter Early Obesity Programming. Curr Issues Mol Biol 2024; 46:4358-4378. [PMID: 38785533 PMCID: PMC11119222 DOI: 10.3390/cimb46050265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Alterations in a mother's metabolism and endocrine system, due to unbalanced nutrition, may increase the risk of both metabolic and non-metabolic disorders in the offspring's childhood and adulthood. The risk of obesity in the offspring can be determined by the interplay between maternal nutrition and lifestyle, intrauterine environment, epigenetic modifications, and early postnatal factors. Several studies have indicated that the fetal bowel begins to colonize before birth and that, during birth and nursing, the gut microbiota continues to change. The mother's gut microbiota is primarily transferred to the fetus through maternal nutrition and the environment. In this way, it is able to impact the establishment of the early fetal and neonatal microbiome, resulting in epigenetic signatures that can possibly predispose the offspring to the development of obesity in later life. However, antioxidants and exercise in the mother have been shown to improve the offspring's metabolism, with improvements in leptin, triglycerides, adiponectin, and insulin resistance, as well as in the fetal birth weight through epigenetic mechanisms. Therefore, in this extensive literature review, we aimed to investigate the relationship between maternal diet, epigenetics, and gut microbiota in order to expand on current knowledge and identify novel potential preventative strategies for lowering the risk of obesity in children and adults.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “A. Moro”, 70124 Bari, Italy
| | - Flavia Urbano
- Giovanni XXIII Pediatric Hospital, 70126 Bari, Italy; (F.U.); (L.A.M.)
| | - Federico Anaclerio
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | | | - Fani Konstantinidou
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Liborio Stuppia
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Valentina Gatta
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.A.); (F.K.); (L.S.); (V.G.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Panagiotidou A, Chatzakis C, Ververi A, Eleftheriades M, Sotiriadis A. The Effect of Maternal Diet and Physical Activity on the Epigenome of the Offspring. Genes (Basel) 2024; 15:76. [PMID: 38254965 PMCID: PMC10815371 DOI: 10.3390/genes15010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
The aim of this review was to examine the current literature regarding the effect of maternal lifestyle interventions (i.e., diet and physical activity) on the epigenome of the offspring. PubMed, Scopus and Cochrane-CENTRAL were screened until 8 July 2023. Only randomized controlled trials (RCTs) where a lifestyle intervention was compared to no intervention (standard care) were included. Outcome variables included DNA methylation, miRNA expression, and histone modifications. A qualitative approach was used for the consideration of the studies' results. Seven studies and 1765 mother-child pairs were assessed. The most common types of intervention were dietary advice, physical activity, and following a specific diet (olive oil). The included studies correlated the lifestyle and physical activity intervention in pregnancy to genome-wide or gene-specific differential methylation and miRNA expression in the cord blood or the placenta. An intervention of diet and physical activity in pregnancy was found to be associated with slight changes in the epigenome (DNA methylation and miRNA expression) in fetal tissues. The regions involved were related to adiposity, metabolic processes, type 2 diabetes, birth weight, or growth. However, not all studies showed significant differences in DNA methylation. Further studies with similar parameters are needed to have robust and comparable results and determine the biological role of such modifications.
Collapse
Affiliation(s)
- Anastasia Panagiotidou
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
| | - Christos Chatzakis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| | - Athina Ververi
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Genetic Unit, First Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, “Papageorgiou” General Hospital, 564 03 Thessaloniki, Greece
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 115 28 Athens, Greece;
| | - Alexandros Sotiriadis
- School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece; (A.P.); (C.C.); (A.V.)
- Second Department of Obstetrics and Gynecology, School of Medicine, Aristotle University of Thessaloniki, 546 22 Thessaloniki, Greece
| |
Collapse
|
8
|
Sasaki T, Kawamura M, Okuno C, Lau K, Riel J, Lee MJ, Miller C. Impact of Maternal Mediterranean-Type Diet Adherence on Microbiota Composition and Epigenetic Programming of Offspring. Nutrients 2023; 16:47. [PMID: 38201877 PMCID: PMC10780434 DOI: 10.3390/nu16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Understanding how maternal diet affects in utero neonatal gut microbiota and epigenetic regulation may provide insight into disease origins and long-term health. The impact of Mediterranean diet pattern adherence (MDA) on fetal gut microbiome and epigenetic regulation was assessed in 33 pregnant women. Participants completed a validated food frequency questionnaire in each trimester of pregnancy; the alternate Mediterranean diet (aMED) score was applied. Umbilical cord blood, placental tissue, and neonatal meconium were collected from offspring. DNA methylation patterns were probed using the Illumnia EPICarray Methylation Chip in parturients with high versus low MDA. Meconium microbial abundance in the first 24 h after birth was identified using 16s rRNA sequencing and compared among neonates born to mothers with high and low aMED scores. Twenty-one mothers were classified as low MDA and 12 as high MDA. Pasteurellaceae and Bacteroidaceae trended towards greater abundance in the high-MDA group, as well as other short-chain fatty acid-producing species. Several differentially methylated regions varied between groups and overlapped gene regions including NCK2, SNED1, MTERF4, TNXB, HLA-DPB, BAG6, and LMO3. We identified a beneficial effect of adherence to a Mediterranean diet on fetal in utero development. This highlights the importance of dietary counseling for mothers and can be used as a guide for future studies of meconium and immuno-epigenetic modulation.
Collapse
Affiliation(s)
- Tamlyn Sasaki
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Megan Kawamura
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Chirstyn Okuno
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Kayleen Lau
- John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Jonathan Riel
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96826, USA
| | - Men-Jean Lee
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96826, USA
| | - Corrie Miller
- Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96826, USA
| |
Collapse
|
9
|
Rowley CE, Lodge S, Egan S, Itsiopoulos C, Christophersen CT, Silva D, Kicic-Starcevich E, O’Sullivan TA, Wist J, Nicholson J, Frost G, Holmes E, D’Vaz N. Altered dietary behaviour during pregnancy impacts systemic metabolic phenotypes. Front Nutr 2023; 10:1230480. [PMID: 38111603 PMCID: PMC10725961 DOI: 10.3389/fnut.2023.1230480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/25/2023] [Indexed: 12/20/2023] Open
Abstract
Rationale Evidence suggests consumption of a Mediterranean diet (MD) can positively impact both maternal and offspring health, potentially mediated by a beneficial effect on inflammatory pathways. We aimed to apply metabolic profiling of serum and urine samples to assess differences between women who were stratified into high and low alignment to a MD throughout pregnancy and investigate the relationship of the diet to inflammatory markers. Methods From the ORIGINS cohort, 51 pregnant women were stratified for persistent high and low alignment to a MD, based on validated MD questionnaires. 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to investigate the urine and serum metabolite profiles of these women at 36 weeks of pregnancy. The relationship between diet, metabolite profile and inflammatory status was investigated. Results There were clear differences in both the food choice and metabolic profiles of women who self-reported concordance to a high (HMDA) and low (LMDA) Mediterranean diet, indicating that alignment with the MD was associated with a specific metabolic phenotype during pregnancy. Reduced meat intake and higher vegetable intake in the HMDA group was supported by increased levels of urinary hippurate (p = 0.044) and lower creatine (p = 0.047) levels. Serum concentrations of the NMR spectroscopic inflammatory biomarkers GlycA (p = 0.020) and GlycB (p = 0.016) were significantly lower in the HDMA group and were negatively associated with serum acetate, histidine and isoleucine (p < 0.05) suggesting a greater level of plant-based nutrients in the diet. Serum branched chain and aromatic amino acids were positively associated with the HMDA group while both urinary and serum creatine, urine creatinine and dimethylamine were positively associated with the LMDA group. Conclusion Metabolic phenotypes of pregnant women who had a high alignment with the MD were significantly different from pregnant women who had a poor alignment with the MD. The metabolite profiles aligned with reported food intake. Differences were most significant biomarkers of systemic inflammation and selected gut-microbial metabolites. This research expands our understanding of the mechanisms driving health outcomes during the perinatal period and provides additional biomarkers for investigation in pregnant women to assess potential health risks.
Collapse
Affiliation(s)
- Charlotte E. Rowley
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Samantha Lodge
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | - Siobhon Egan
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
| | | | - Claus T. Christophersen
- WA Human Microbiome Collaboration Centre, Curtin University, Bentley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Desiree Silva
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, Australia
- Joondalup Health Campus, Joondalup, WA, Australia
| | | | - Therese A. O’Sullivan
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Julien Wist
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Chemistry Department, Universidad del Valle, Cali, Colombia
| | - Jeremy Nicholson
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Faculty of Medicine, Imperial College London, Institute of Global Health Innovation, London, United Kingdom
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Gary Frost
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elaine Holmes
- Australian National Phenome Centre, and Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Faculty of Medicine, Imperial College London, Institute of Global Health Innovation, London, United Kingdom
- Section of Nutrition Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nina D’Vaz
- Telethon Kids Institute, Perth Children’s Hospital, Nedlands, WA, Australia
| |
Collapse
|
10
|
Bakulski KM, Blostein F, London SJ. Linking Prenatal Environmental Exposures to Lifetime Health with Epigenome-Wide Association Studies: State-of-the-Science Review and Future Recommendations. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:126001. [PMID: 38048101 PMCID: PMC10695268 DOI: 10.1289/ehp12956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter < 10 μ m and < 2.5 μ m , nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.
Collapse
Affiliation(s)
| | - Freida Blostein
- University of Michigan, Ann Arbor, Michigan, USA
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Stephanie J. London
- National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
11
|
Harris HA, Friedman C, Starling AP, Dabelea D, Johnson SL, Fuemmeler BF, Jima D, Murphy SK, Hoyo C, Jansen PW, Felix JF, Mulder R. An epigenome-wide association study of child appetitive traits and DNA methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549289. [PMID: 37503194 PMCID: PMC10370073 DOI: 10.1101/2023.07.17.549289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Childhood appetitive traits are consistently associated with obesity risk, and yet their etiology is poorly understood. Appetitive traits are complex phenotypes which are hypothesized to be influenced by both genetic and environmental factors, as well as their interactions. Early-life epigenetic processes, such as DNA methylation (DNAm), may be involved in the developmental programming of appetite regulation in childhood. In the current study, we meta-analyzed epigenome-wide association studies (EWASs) of cord blood DNAm and early-childhood appetitive traits. Data were from two independent cohorts: the Generation R Study (n=1,086, Rotterdam, the Netherlands) and the Healthy Start study (n=236, Colorado, USA). DNAm at autosomal methylation sites in cord blood was measured using the Illumina Infinium HumanMethylation450 BeadChip. Parents reported on their child's food responsiveness, emotional undereating, satiety responsiveness and food fussiness using the Children's Eating Behaviour Questionnaire at age 4-5 years. Multiple regression models were used to examine the association of DNAm (predictor) at the individual site- and regional-level (using DMRff) with each appetitive trait (outcome), adjusting for covariates. Bonferroni-correction was applied to adjust for multiple testing. There were no associations of DNAm and any appetitive trait at the individual site-level. However, at the regional level, we identified 45 associations of DNAm with food responsiveness, 7 associations of DNAm with emotional undereating, 13 associations of DNAm with satiety responsiveness, and 9 associations of DNAm with food fussiness. This study shows that DNAm in the newborn may partially explain variation in appetitive traits expressed in early childhood and provides preliminary support for early programming of child appetitive traits through DNAm. Investigating differential DNAm associated with appetitive traits could be an important first step in identifying biological pathways underlying the development of these behaviors.
Collapse
Affiliation(s)
- Holly A. Harris
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands
| | - Chloe Friedman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne P. Starling
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dana Dabelea
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan L. Johnson
- Department of Pediatrics, Section of Nutrition, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Bernard F. Fuemmeler
- Virginia Commonwealth University, Mase Comprehensive Cancer Center, Richmond, VA, USA
| | - Dereje Jima
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Susan K. Murphy
- Duke University Medical Center, Department of Obstetrics and Gynecology, Reproductive Sciences, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Pauline W. Jansen
- Department of Child & Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam, Department of Psychology, Education & Child Studies, Rotterdam, the Netherlands
| | - Janine F. Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rosa Mulder
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
12
|
Vargas LN, Nochi ARF, de Castro PS, Cunha ATM, Silva TCF, Togawa RC, Silveira MM, Caetano AR, Franco MM. Differentially methylated regions identified in bovine embryos are not observed in adulthood. Anim Reprod 2023; 20:e20220076. [PMID: 36938311 PMCID: PMC10023072 DOI: 10.1590/1984-3143-ar2022-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023] Open
Abstract
The establishment of epigenetic marks during the reprogramming window is susceptible to environmental influences, and stimuli during this critical stage can cause altered DNA methylation in offspring. In a previous study, we found that low levels of sulphur and cobalt (low S/Co) in the diet offered to oocyte donors altered the DNA methylome of bovine embryos. However, due to the extensive epigenetic reprogramming that occurs during embryogenesis, we hypothesized that the different methylation regions (DMRs) identified in the blastocysts may not maintain in adulthood. Here, we aimed to characterize DMRs previously identified in embryos, in the blood and sperm of adult progenies of two groups of heifers (low S/Co and control). We used six bulls and characterized the DNA methylation levels of KDM2A, KDM5A, KMT2D, and DOT1L genes. Our results showed that all DMRs analysed in both groups and tissues were hypermethylated unlike that noticed in the embryonic methylome profiles. These results suggest that embryo DMRs were reprogrammed during the final stages of de novo methylation during embryogenesis or later in development. Therefore, due to the highly dynamic epigenetic state during early embryonic development, we suggest that is essential to validate the DMRs found in embryos in adult individuals.
Collapse
Affiliation(s)
- Luna Nascimento Vargas
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | - Paloma Soares de Castro
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | - Thainara Christie Ferreira Silva
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
| | | | | | | | - Maurício Machaim Franco
- Laboratório de Reprodução Animal, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brasil
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, Brasil
- Corresponding author:
| |
Collapse
|