1
|
West-Szymanski DC, Zhang Z, Cui XL, Kowitwanich K, Gao L, Deng Z, Dougherty U, Williams C, Merkle S, He C, Zhang W, Bissonnette M. 5-Hydroxymethylated Biomarkers in Cell-Free DNA Predict Occult Colorectal Cancer up to 36 Months Before Diagnosis in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. JCO Precis Oncol 2024; 8:e2400277. [PMID: 39393034 PMCID: PMC11729496 DOI: 10.1200/po.24.00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 10/13/2024] Open
Abstract
PURPOSE Using the prostate, lung, colorectal, and ovarian (PLCO) Cancer Screening Trial samples, we identified cell-free DNA (cfDNA) candidate biomarkers bearing the epigenetic mark 5-hydroxymethylcytosine (5hmC) that detected occult colorectal cancer (CRC) up to 36 months before clinical diagnosis. MATERIALS AND METHODS We performed the 5hmC-seal assay and sequencing on ≤8 ng cfDNA extracted from PLCO study participant plasma samples, including n = 201 cases (diagnosed with CRC within 36 months of blood collection) and n = 401 controls (no cancer diagnosis on follow-up). We conducted association studies and machine learning modeling to analyze the genome-wide 5hmC profiles within training and validation groups that were randomly selected at a 2:1 ratio. RESULTS We successfully obtained 5hmC profiles from these decades-old samples. A weighted Cox model of 32 5hmC-modified gene bodies showed a predictive detection value for CRC as early as 36 months before overt tumor diagnosis (training set AUC, 77.1% [95% CI, 72.2 to 81.9] and validation set AUC, 72.8% [95% CI, 65.8 to 79.7]). Notably, the 5hmC-based predictive model showed comparable performance regardless of sex and race/ethnicity, and significantly outperformed risk factors such as age and obesity (assessed as BMI). Finally, when splitting cases at median weighted prediction scores, Kaplan-Meier analyses showed significant risk stratification for CRC occurrence in both the training set (hazard ratio, [HR], 3.3 [95% CI, 2.6 to 5.8]) and validation set (HR, 3.1 [95% CI, 1.8 to 5.8]). CONCLUSION Candidate 5hmC biomarkers and a scoring algorithm have the potential to predict CRC occurrence despite the absence of clinical symptoms and effective predictors. Developing a minimally invasive clinical assay that detects 5hmC-modified biomarkers holds promise for improving early CRC detection and ultimately patient outcomes.
Collapse
Affiliation(s)
| | - Zhou Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiao-Long Cui
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Lu Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Zifeng Deng
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Craig Williams
- Information Management Services, Inc., Rockville, MD, USA
| | - Shannon Merkle
- Information Management Services, Inc., Rockville, MD, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- The Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, USA
| | - Wei Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marc Bissonnette
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
West-Szymanski DC, Zhang Z, Cui XL, Kowitwanich K, Gao L, Deng Z, Dougherty U, Williams C, Merkle S, Moore M, He C, Bissonnette M, Zhang W. Machine learning identifies cell-free DNA 5-hydroxymethylation biomarkers that detect occult colorectal cancer in PLCO Screening Trial subjects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581955. [PMID: 38464122 PMCID: PMC10925134 DOI: 10.1101/2024.02.25.581955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Colorectal cancer (CRC) is a leading cause of cancer-related mortality, and CRC detection through screening improves survival rates. A promising avenue to improve patient screening compliance is the development of minimally-invasive liquid biopsy assays that target CRC biomarkers on circulating cell-free DNA (cfDNA) in peripheral plasma. In this report, we identify cfDNA biomarker candidate genes bearing the epigenetic mark 5-hydroxymethylcytosine (5hmC) that diagnose occult CRC up to 36 months prior to clinical diagnosis using the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial samples. Methods Archived PLCO Trial plasma samples containing cfDNA were obtained from the National Cancer Institute (NCI) biorepositories. Study subjects included those who were diagnosed with CRC within 36 months of blood collection (i.e., case, n = 201) and those who were not diagnosed with any cancer during an average of 16.3 years of follow-up (i.e., controls, n = 402). Following the extraction of 3 - 8 ng cfDNA from less than 300 microliters plasma, we employed the sensitive 5hmC-Seal chemical labeling approach, followed by next-generation sequencing (NGS). We then conducted association studies and machine-learning modeling to analyze the genome-wide 5hmC profiles within training and validation groups that were randomly selected at a 2:1 ratio. Results Despite the technical challenges associated with the PLCO samples (e.g., limited plasma volumes, low cfDNA amounts, and long archival times), robust genome-wide 5hmC profiles were successfully obtained from these samples. Association analyses using the Cox proportional hazards models suggested several epigenetic pathways relevant to CRC development distinguishing cases from controls. A weighted Cox model, comprised of 32-associated gene bodies, showed predictive detection value for CRC as early as 24-36 months prior to overt tumor presentation, and a trend for increased predictive power was observed for blood samples collected closer to CRC diagnosis. Notably, the 5hmC-based predictive model showed comparable performance regardless of sex and self-reported race/ethnicity, and significantly outperformed risk factors such as age and obesity according to BMI (body mass index). Additionally, further improvement of predictive performance was achieved by combining the 5hmC-based model and risk factors for CRC. Conclusions An assay of 5hmC epigenetic signals on cfDNA revealed candidate biomarkers with the potential to predict CRC occurrence despite the absence of clinical symptoms or the availability of effective predictors. Developing a minimally-invasive clinical assay that detects 5hmC-modified biomarkers holds promise for improving early CRC detection and ultimately patient survival through higher compliance screening and earlier intervention. Future investigation to expand this strategy to prospectively collected samples is warranted.
Collapse
|