1
|
Zagorchev L, Du Z, Shi Y, Teofanova D, Li J. Cuscuta australis Parasitism-Induced Changes in the Proteome and Photosynthetic Parameters of Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212904. [PMID: 36365357 PMCID: PMC9656692 DOI: 10.3390/plants11212904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/28/2022] [Accepted: 10/26/2022] [Indexed: 05/14/2023]
Abstract
Cuscuta australis is a widely distributed stem parasitic plant, infecting a variety of host plants. Its parasitism has a negative effect on the hosts, mainly due to the exhaustion of nutrients, thus negatively affecting the growth and development. However, recent studies indicated that the effect of parasitism may extend beyond the simple extraction of organic compounds, water, and minerals. In the present study, the model plant Arabidopsis thaliana was used as a host for Cuscuta australis, to study the effect of the parasite on the photosynthetic parameters and the proteome after short-term infection. To test this, a highly sensitive portable photosynthesis system and gel-based MS/MS proteomics were employed. It was found that the parasite has a dramatic negative effect on the photosynthetic ability of the host, as well as causing the up-regulation of stress-related proteins. Simultaneously, proteins involved in both decreased permeability and loosening of the cell wall of the host were found to be up-regulated.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria
| | - Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Yongbin Shi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Denitsa Teofanova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov blvd., 1164 Sofia, Bulgaria
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- Correspondence: ; Tel.: +86-576-88660396
| |
Collapse
|
2
|
Li T, Deng Y, Huang J, Liang J, Zheng Y, Xu Q, Fan S, Li W, Deng X, Zheng Z. Bidirectional mRNA transfer between Cuscuta australis and its hosts. FRONTIERS IN PLANT SCIENCE 2022; 13:980033. [PMID: 36072332 PMCID: PMC9441868 DOI: 10.3389/fpls.2022.980033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
The holoparasitic dodder (Cuscuta spp.) is able to transfer mRNA and certain plant pathogens (e.g., viruses and bacteria) from the host plant. "Candidatus Liberibacter asiaticus," the phloem-limited causative agent of citrus Huanglongbing, can be transferred from citrus to periwinkle (Catharanthus roseus) mediated by dodder. However, characterization of mRNA transport between dodder and citrus/periwinkle remains unclear. In this study, we sequenced transcriptomes of dodder and its parasitizing host, sweet orange (Citrus sinensis "Newhall") and periwinkle (Catharanthus roseus), to identify and characterize mRNA transfer between dodder and the host plant during parasitism. The mRNA transfer between dodder and citrus/periwinkle was bidirectional and most of the transfer events occurred in the interface tissue. Compared with the citrus-dodder system, mRNA transfer in the periwinkle-dodder system was more frequent. Function classification revealed that a large number of mRNAs transferred between dodder and citrus/periwinkle were involved in secondary metabolism and stress response. Dodder transcripts encoding proteins associated with microtubule-based processes and cell wall biogenesis were transferred to host tissues. In addition, transcripts involved in translational elongation, plasmodesmata, and the auxin-activated signaling pathway were transmitted between dodder and citrus/periwinkle. In particular, transcripts involved in shoot system development and flower development were transferred between the host and dodder in both directions. The high abundance of dodder-origin transcripts, encoding MIP aquaporin protein, and S-adenosylmethionine synthetase 1 protein, in citrus and periwinkle tissues indicated they could play an important biological role in dodder-host interaction. In addition, the uptake of host mRNAs by dodder, especially those involved in seed germination and flower development, could be beneficial for the reproduction of dodder. The results of this study provide new insights into the RNA-based interaction between dodder and host plants.
Collapse
|
3
|
Furuta KM, Xiang L, Cui S, Yoshida S. Molecular dissection of haustorium development in Orobanchaceae parasitic plants. PLANT PHYSIOLOGY 2021; 186:1424-1434. [PMID: 33783524 PMCID: PMC8260117 DOI: 10.1093/plphys/kiab153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Characterizing molecular aspects of haustorium development by parasitic plants in the Orobanchaceae family has identified hormone signaling/transport and specific genes as major players.
Collapse
Affiliation(s)
- Kaori Miyashima Furuta
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Lei Xiang
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Songkui Cui
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Satoko Yoshida
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- JST, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
4
|
Hromadová D, Soukup A, Tylová E. Arabinogalactan Proteins in Plant Roots - An Update on Possible Functions. FRONTIERS IN PLANT SCIENCE 2021; 12:674010. [PMID: 34079573 PMCID: PMC8165308 DOI: 10.3389/fpls.2021.674010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
Responsiveness to environmental conditions and developmental plasticity of root systems are crucial determinants of plant fitness. These processes are interconnected at a cellular level with cell wall properties and cell surface signaling, which involve arabinogalactan proteins (AGPs) as essential components. AGPs are cell-wall localized glycoproteins, often GPI-anchored, which participate in root functions at many levels. They are involved in cell expansion and differentiation, regulation of root growth, interactions with other organisms, and environmental response. Due to the complexity of cell wall functional and regulatory networks, and despite the large amount of experimental data, the exact molecular mechanisms of AGP-action are still largely unknown. This dynamically evolving field of root biology is summarized in the present review.
Collapse
|
5
|
Shimizu K, Aoki K. Development of Parasitic Organs of a Stem Holoparasitic Plant in Genus Cuscuta. FRONTIERS IN PLANT SCIENCE 2019; 10:1435. [PMID: 31781146 PMCID: PMC6861301 DOI: 10.3389/fpls.2019.01435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 05/18/2023]
Abstract
Parasitic plants infect a broad range of plant species including economically important crops. They survive by absorbing water, minerals, and photosynthates from their hosts. To support their way of life, parasitic plants generally establish parasitic organs that allow them to attach to their hosts and to efficiently absorb substances from the vascular system of the host. Here, we summarize the recent progress in understanding the mechanisms underlying the formation of these parasitic organs, focusing on the process depicted in the stem holoparasitic genus, Cuscuta. An attachment structure called "holdfast" on the stem surface is induced by the light and contact stimuli. Concomitantly with holdfast formation, development of an intrusive structure called haustorium initiates in the inner cortex of the Cuscuta stem, and it elongates through apoplastic space of the host tissue. When haustoria reaches to host vascular tissues, they begin to form vascular conductive elements to connect vascular tissue of Cuscuta stem to those of host. Recent studies have shown parasite-host interaction in the interfacial cell wall, and regulation of development of these parasitic structures in molecular level. We also briefly summarize the role of host receptor in the control of compatibility between Cuscuta and hosts, on which occurrence of attachment structure depends, and the role of plant-to-plant transfer of long-distance signals after the establishment of conductive structure.
Collapse
Affiliation(s)
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
6
|
Castilleux R, Plancot B, Ropitaux M, Carreras A, Leprince J, Boulogne I, Follet-Gueye ML, Popper ZA, Driouich A, Vicré M. Cell wall extensins in root-microbe interactions and root secretions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4235-4247. [PMID: 29945246 DOI: 10.1093/jxb/ery238] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/18/2018] [Indexed: 05/27/2023]
Abstract
Extensins are cell wall glycoproteins, belonging to the hydroxyproline-rich glycoprotein (HRGP) family, which are involved in many biological functions, including plant growth and defence. Several reviews have described the involvement of HRGPs in plant immunity but little focus has been given specifically to cell wall extensins. Yet, a large set of recently published data indicates that extensins play an important role in plant protection, especially in root-microbe interactions. Here, we summarise the current knowledge on this topic and discuss the importance of extensins in root defence. We first provide an overview of the distribution of extensin epitopes recognised by different monoclonal antibodies among plants and discuss the relevance of some of these epitopes as markers of the root defence response. We also highlight the implication of extensins in different types of plant interactions elicited by either pathogenic or beneficial micro-organisms. We then present and discuss the specific importance of extensins in root secretions, as these glycoproteins are not only found in the cell walls but are also released into the root mucilage. Finally, we propose a model to illustrate the impact of cell wall extensin on root secretions.
Collapse
Affiliation(s)
- Romain Castilleux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Barbara Plancot
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Marc Ropitaux
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Alexis Carreras
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Jérôme Leprince
- INSERM U1239, Différenciation et Communication Neuronale et Neuroendocrine, Normandie Université, Rouen, France
| | - Isabelle Boulogne
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Marie-Laure Follet-Gueye
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Zoë A Popper
- Botany and Plant Science and The Ryan Institute for Environmental, Marine and Energy Research, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Azeddine Driouich
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| | - Maïté Vicré
- Normandie Université, UNIROUEN, Laboratoire Glyco-MEV EA 4358, Fédération de Recherche "Normandie Végétal" FED, Rouen, France
| |
Collapse
|
7
|
Hozumi A, Bera S, Fujiwara D, Obayashi T, Yokoyama R, Nishitani K, Aoki K. Arabinogalactan Proteins Accumulate in the Cell Walls of Searching Hyphae of the Stem Parasitic Plants, Cuscuta campestris and Cuscuta japonica. PLANT & CELL PHYSIOLOGY 2017; 58:1868-1877. [PMID: 29016904 DOI: 10.1093/pcp/pcx121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 05/06/2023]
Abstract
Stem parasitic plants (Cuscuta spp.) develop a specialized organ called a haustorium to penetrate their hosts' stem tissues. To reach the vascular tissues of the host plant, the haustorium needs to overcome the physical barrier of the cell wall, and the parasite-host interaction via the cell wall is a critical process. However, the cell wall components responsible for the establishment of parasitic connections have not yet been identified. In this study, we investigated the spatial distribution patterns of cell wall components at a parasitic interface using parasite-host complexes of Cuscuta campestris-Arabidopsis thaliana and Cuscuta japonica-Glycine max. We focused on arabinogalactan proteins (AGPs), because AGPs accumulate in the cell walls of searching hyphae of both C. campestris and C. japonica. We found more AGPs in elongated haustoria than in pre haustoria, indicating that AGP accumulation is developmentally regulated. Using in situ hybridization, we identified five genes in C. campestris that encode hyphal-expressed AGPs that belong to the fasciclin-like AGP (FLA) family, which were named CcFLA genes. Three of the five CcFLA genes were expressed in the holdfast, which develops on the Cuscuta stem epidermis at the attachment site for the host's stem epidermis. Our results suggest that AGPs are involved in hyphal elongation and adhesion to host cells, and in the adhesion between the epidermal tissues of Cuscuta and its host.
Collapse
Affiliation(s)
- Akitaka Hozumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Subhankar Bera
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Daiki Fujiwara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kazuhiko Nishitani
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| |
Collapse
|
8
|
Olsen S, Striberny B, Hollmann J, Schwacke R, Popper Z, Krause K. Getting ready for host invasion: elevated expression and action of xyloglucan endotransglucosylases/hydrolases in developing haustoria of the holoparasitic angiosperm Cuscuta. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:695-708. [PMID: 26561437 PMCID: PMC4737069 DOI: 10.1093/jxb/erv482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Changes in cell walls have been previously observed in the mature infection organ, or haustorium, of the parasitic angiosperm Cuscuta, but are not equally well charted in young haustoria. In this study, we focused on the molecular processes in the early stages of developing haustoria; that is, before the parasite engages in a physiological contact with its host. We describe first the identification of differentially expressed genes in young haustoria whose development was induced by far-red light and tactile stimuli in the absence of a host plant by suppression subtractive hybridization. To improve sequence information and to aid in the identification of the obtained candidates, reference transcriptomes derived from two species of Cuscuta, C. gronovii and C. reflexa, were generated. Subsequent quantitative gene expression analysis with different tissues of C. reflexa revealed that among the genes that were up-regulated in young haustoria, two xyloglucan endotransglucosylase/hydrolase (XTH) genes were highly expressed almost exclusively at the onset of haustorium development. The same expression pattern was also found for the closest XTH homologues from C. gronovii. In situ assays for XTH-specific action suggested that xyloglucan endotransglucosylation was most pronounced in the cell walls of the swelling area of the haustorium facing the host plant, but was also detectable in later stages of haustoriogenesis. We propose that xyloglucan remodelling by Cuscuta XTHs prepares the parasite for host infection and possibly aids the invasive growth of the haustorium.
Collapse
Affiliation(s)
- Stian Olsen
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Dramsveien 201, 9037 Tromsø, Norway
| | - Bernd Striberny
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Dramsveien 201, 9037 Tromsø, Norway * Present address: ArcticZymes AS, Sykehusveien 23, 9019 Tromsø, Norway
| | - Julien Hollmann
- Institute of Botany, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Rainer Schwacke
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Dramsveien 201, 9037 Tromsø, Norway Present address: Institute of Bio- and Geosciences (IBG-2: Plant Sciences), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Zoë Popper
- Botany and Plant Science and Ryan Institute for Environmental, Marine and Energy Research, National University of Ireland Galway, Galway, Ireland
| | - Kirsten Krause
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Dramsveien 201, 9037 Tromsø, Norway
| |
Collapse
|