1
|
Cai XY, Tang HT, Wang YZ, Ul Haq I, Wang JD, Hou YM. Salivary effector SfPDI modulates plant defense responses to enhance foraging efficiency of Spodoptera frugiperda. Int J Biol Macromol 2025; 308:142548. [PMID: 40147661 DOI: 10.1016/j.ijbiomac.2025.142548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Research on the interactions between herbivorous insects and plants, facilitated by insect secretions, has increasingly emphasized species with chewing mandibles over time. However, the molecular mechanisms underlying the interaction between Spodoptera frugiperda and plants remain poorly understood. In this study, we identified a protein disulfide isomerase (SfPDI) from the salivary glands of S. frugiperda that regulates the interaction between S. frugiperda and plants. We found that SfPDI is highly expressed in the salivary glands of S. frugiperda and is secreted into plants as a secretory protein. The RNAi revealed that SfPDI contributes to the growth and development of S. frugiperda on host plants, while its overexpression in tobacco induces necrosis in tobacco leaves and triggers a burst of reactive oxygen species (ROS). Differentially expressed genes suggested that SfPDI may suppresses the expression of plant JA by positively regulating MYC2 and TIFYs and negatively regulating WRKYs. Notably, SfPDI may modulate these high expression of receptors (NB-LRR, GL-RLK, and RLK) lead to hypersensitive response (HR) cell death and the accumulation of lignification of plant. This study provides a foundation for further exploring insect-plant interaction mechanisms and a theoretical basis for developing insect-resistant germplasm and environmentally friendly pest control strategies.
Collapse
Affiliation(s)
- Xiang-Yun Cai
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hua-Tao Tang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yu-Zhou Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Inzamam Ul Haq
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin-Da Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - You-Ming Hou
- State Key Laboratory of Agricultural and Forestry Biosecurity, National Engineering Research Center of Sugarcane, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
2
|
Yang L, Fang S, Liu L, Zhao L, Chen W, Li X, Xu Z, Chen S, Wang H, Yu D. WRKY transcription factors: Hubs for regulating plant growth and stress responses. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:488-509. [PMID: 39815727 DOI: 10.1111/jipb.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 01/18/2025]
Abstract
As sessile organisms, plants must directly face various stressors. Therefore, plants have evolved a powerful stress resistance system and can adjust their growth and development strategies appropriately in different stressful environments to adapt to complex and ever-changing conditions. Nevertheless, prioritizing defensive responses can hinder growth; this is a crucial factor for plant survival but is detrimental to crop production. As such, comprehending the impact of adverse environments on plant growth is not only a fundamental scientific inquiry but also imperative for the agricultural industry and for food security. The traditional view that plant growth is hindered during defense due to resource allocation trade-offs is challenged by evidence that plants exhibit both robust growth and defensive capabilities through human intervention. These findings suggest that the growth‒defense trade-off is not only dictated by resource limitations but also influenced by intricate transcriptional regulatory mechanisms. Hence, it is imperative to conduct thorough investigations on the central genes that govern plant resistance and growth in unfavorable environments. Recent studies have consistently highlighted the importance of WRKY transcription factors in orchestrating stress responses and plant-specific growth and development, underscoring the pivotal role of WRKYs in modulating plant growth under stressful conditions. Here, we review recent advances in understanding the dual roles of WRKYs in the regulation of plant stress resistance and growth across diverse stress environments. This information will be crucial for elucidating the intricate interplay between plant stress response and growth and may aid in identifying gene loci that could be utilized in future breeding programs to develop crops with enhanced stress resistance and productivity.
Collapse
Affiliation(s)
- Lu Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Siyu Fang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Lei Liu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Lirong Zhao
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
| | - Wanqin Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xia Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Zhiyu Xu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Shidie Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| | - Houping Wang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Diqiu Yu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
3
|
Xie S, Shi B, Miao M, Zhao C, Bai R, Yan F, Lei C. A B-Box (BBX) Transcription Factor from Cucumber, CsCOL9 Positively Regulates Resistance of Host Plant to Bemisia tabaci. Int J Mol Sci 2025; 26:324. [PMID: 39796180 PMCID: PMC11720035 DOI: 10.3390/ijms26010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/30/2025] Open
Abstract
B-box (BBX) transcription factors play crucial roles in plant growth, development, and defense responses to biotic and abiotic stresses. In this study, we cloned a BBX transcription factor gene, CsCOL9I, from cucumber and analyzed its role in the plant's defense against the feeding of Bemisia tabaci. CsCOL9 is expressed throughout all developmental stages in cucumber, with the highest expression in the leaves. CsCOL9 is induced by B. tabaci feeding, salicylic acid (SA), methyl jasmonate (MeJA), and hydrogen peroxide (H2O2). Cucumber plants with CsCOL9 silence (TRV2-CsCOL9) and overexpression (1301-CsCOL9) were obtained and analyzed. After CsCOL9 silencing, survival rates and host selectivity for B. tabaci increased; however, the expression levels of genes encoding enzymes (CsSOD, CsRBOH, CsPOD), activities of superoxide dismutase (SOD) and peroxidase (POD), and content of H2O2 in plants were all reduced. CsCOL9 overexpression led to decreased survival rates and host selectivity for B. tabaci. Conversely, the expression levels of genes (CsSOD, CsRBOH and CsPOD), activities of SOD and POD, and content of H2O2 increased after CsCOL9 overexpression in plants. Collectively, our results demonstrate CsCOL9 positively regulates cucumber resistance to B. tabaci by activating reactive oxygen species bursts. This study lays a theoretical foundation for the application of CsCOL9 in cucumber resistance breeding and green pest control of B. tabaci.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (S.X.); (B.S.); (M.M.); (C.Z.); (R.B.); (F.Y.)
| |
Collapse
|
4
|
Zhang H, Guo D, Lei Y, Lozano-Torres JL, Deng Y, Xu J, Hu L. Cover crop rotation suppresses root-knot nematode infection by shaping soil microbiota. THE NEW PHYTOLOGIST 2025; 245:363-377. [PMID: 39468918 DOI: 10.1111/nph.20220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Cover crop integration into grain crop rotations is a promising strategy for mitigating nematode-induced diseases in agriculture. However, the precise mechanisms underlying this phenomenon remain elusive. Here, we first assessed the impact of five commonly used cover crops on the suppression of rice root-knot nematodes (RKNs). We then chose ryegrass as a model to explore the mechanistic basis of the suppression effect. Contrary to expectations, while ryegrass rotation significantly enhances soil fertility, this increased fertility has minimal impact on RKN suppression. Furthermore, neither integrated ryegrass residues nor root exudates exhibit direct toxicity towards RKNs. We demonstrated that ryegrass rotation primarily suppresses RKNs by enriching beneficial soil microbiota. By complementing with isolated bacteria strains, we further demonstrated that ryegrass-enriched bacteria not only directly reduce RKN infectivity and preference, but also activate plant immunity via the OsLRR-RLK-MAPK-WRKY-JA cascade, thereby diminishing RKN infection. Our study highlights the crucial role of soil microbiota in plant-nematode interactions, challenging conventional views on the direct effects of cover crops in nematode suppression. It offers a mechanistic understanding of the regulation potential and action modes of cover crops in mitigating nematode diseases, providing valuable insights for sustainable agriculture.
Collapse
Affiliation(s)
- Hualiang Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Dongsheng Guo
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, China
| | - Yuting Lei
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, the Netherlands
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, China
| |
Collapse
|
5
|
Chen Y, Zhang J. Multiple functions and regulatory networks of WRKY33 and its orthologs. Gene 2024; 931:148899. [PMID: 39209179 DOI: 10.1016/j.gene.2024.148899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Arabidopsis thaliana WRKY33 is currently one of the most studied members of the Group I WRKY transcription factor family. Research has confirmed that WRKY33 is involved in the regulation of various biological and abiotic stresses and occupies a central position in the regulatory network. The functional studies of orthologous genes of WRKY33 from other species are also receiving increasing attention. In this article, we summarized thirty-eight orthologous genes of AtWKRY33 from twenty-five different species. Their phylogenetic relationship and conserved WRKY domain were analyzed and compared. Similar to AtWKRY33, the well-studied orthologous gene members from rice and tomato also have multiple functions. In addition to playing important regulatory roles in responding to their specific pathogens, they are also involved in regulating various abiotic stresses and development. AtWKRY33 exerts its multiple functions through a complex regulatory network. Upstream transcription factors or other regulatory factors activate or inhibit the expression of AtWKRY33 at the chromatin and transcriptional levels. Interacting proteins affect the transcriptional activity of AtWKRY33 through phosphorylation, ubiquitination, SUMOylation, competition, or cooperation. The downstream genes are diverse and include three major categories: transcription factors, synthesis, metabolism, and signal transduction of various hormones, and disease resistance genes. In the regulatory network of AtWRKY33 orthologs, many conserved regulatory characteristics have been discovered, such as self-activation and phosphorylation by MAP kinases. This can provide a comparative reference for further studying the functions of other orthologous genes of AtWKRY33.
Collapse
Affiliation(s)
- Yanhong Chen
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China.
| | - Jian Zhang
- School of Life Sciences, Nantong University, Nantong, China; Key Laboratory of Landscape Plant Genetics and Breeding, Nantong, China
| |
Collapse
|
6
|
Chen L, Kuai P, Lu J, Li L, Lou Y. A Cytosolic Phosphoglucose Isomerase, OsPGI1c, Enhances Plant Growth and Herbivore Resistance in Rice. Int J Mol Sci 2024; 26:169. [PMID: 39796027 PMCID: PMC11720589 DOI: 10.3390/ijms26010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Glucose-6-phosphate isomerase (PGI), a key enzyme that catalyzes the reversible conversion of glucose-6-phosphate and fructose-6-phosphate, plays an important role in plant growth, development, and responses to abiotic stresses and pathogen infections. However, whether and how PGI modulates herbivore-induced plant defenses remain largely unknown. The Brown planthopper (BPH, Nilaparvata lugens) is a devastating insect pest of rice, causing significant damage to rice plants through feeding, oviposition, and disease transmission, resulting in great yield losses. Here, we isolated a rice cytosolic PGI gene, OsPGI1c, which is ubiquitously expressed in rice plants; the highest transcript levels are found in leaves, outer leaf sheaths, and seeds. The expression of OsPGI1c was induced by infestation by gravid females of the BPH, mechanical wounding, and treatment with jasmonic acid (JA). Overexpressing OsPGI1c in rice (oePGI) enhanced both the masses of plant shoots and roots and basal levels of trehalose; however, when infested by gravid BPH females for 2 days, trehalose levels were significantly lower in oePGI plants than in wild-type (WT) plants. Additionally, the overexpression of OsPGI1c increased the BPH-induced levels of JA, jasmonoyl-L-isoleucine, and abscisic acid, but decreased the levels of ethylene and H2O2. Bioassays revealed that gravid BPH females preferred WT plants over oePGI plants for laying eggs; moreover, BPH eggs exhibited lower hatching rates and required longer developmental durations on oePGI plants than WT plants. These results indicate that OsPGI1c positively modulates both rice growth and BPH resistance.
Collapse
Affiliation(s)
- Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China;
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (P.K.); (J.L.); (L.L.)
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (P.K.); (J.L.); (L.L.)
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (P.K.); (J.L.); (L.L.)
| | - Leilei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (P.K.); (J.L.); (L.L.)
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (P.K.); (J.L.); (L.L.)
| |
Collapse
|
7
|
Ye Y, Xiong S, Guan X, Tang T, Zhu Z, Zhu X, Hu J, Wu J, Zhang S. Insight into Rice Resistance to the Brown Planthopper: Gene Cloning, Functional Analysis, and Breeding Applications. Int J Mol Sci 2024; 25:13397. [PMID: 39769161 PMCID: PMC11678690 DOI: 10.3390/ijms252413397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
This review provides a comprehensive overview of the current understanding of rice resistance to the brown planthopper (BPH), a major pest that poses significant threats to rice production through direct feeding damage and by transmitting viruses such as Rice grassy stunt virus (RGSV) and Rice ragged stunt virus (RRSV). We highlight the emergence of various BPH biotypes that have overcome specific resistance genes in rice. Advances in genetic mapping and cloning have identified 17 BPH resistance genes, classified into typical R genes encoding nucleotide-binding leucine-rich repeat (NLR) proteins and atypical R genes such as lectin receptor kinases and proteins affecting cell wall composition. The molecular mechanisms of these genes involve the activation of plant defense pathways mediated by phytohormones like jasmonic acid (JA), salicylic acid (SA), and ethylene, as well as the production of defensive metabolites. We also examine the complex interactions between BPH salivary proteins and rice defense responses, noting how salivary effectors can both suppress and trigger plant immunity. The development and improvement of BPH-resistant rice varieties through conventional breeding and molecular marker-assisted selection are discussed, including strategies like gene pyramiding to enhance resistance durability. Finally, we outline the challenges and future directions in breeding for durable BPH resistance, emphasizing the need for continued research on resistance mechanisms and the development of rice varieties with broad-spectrum and long-lasting resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (S.X.); (X.G.); (T.T.); (Z.Z.); (X.Z.); (J.H.)
| | - Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Y.); (S.X.); (X.G.); (T.T.); (Z.Z.); (X.Z.); (J.H.)
| |
Collapse
|
8
|
Qing D, Chen W, Li J, Lu B, Huang S, Chen L, Zhou W, Pan Y, Huang J, Wu H, Peng Y, Peng D, Chen L, Zhou Y, Dai G, Deng G. TMT-based quantitative proteomics analysis of defense responses induced by the Bph3 gene following brown planthopper infection in rice. BMC PLANT BIOLOGY 2024; 24:1092. [PMID: 39558244 PMCID: PMC11575174 DOI: 10.1186/s12870-024-05799-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND The brown planthopper (BPH) is an economically significant pest of rice. Bph3 is a key BPH resistance gene. However, the proteomic response of rice to BPH infestation, both in the presence and absence of Bph3, remains largely unexplored. RESULTS In this study, we employed tandem mass tag labeling in conjunction with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis to identify differentially expressed proteins (DEPs) in rice samples. We detected 265 and 125 DEPs via comparison of samples infected with BPH for 2 and 4 days with untreated samples of the BPH-sensitive line R582. For the Bph3 introgression line R373, we identified 29 and 94 DEPs in the same comparisons. Bioinformatic analysis revealed that Bph3 significantly influences the abundance of proteins associated with metabolic pathways, secondary metabolite biosynthesis, microbial metabolism in diverse environments, and phenylpropanoid biosynthesis. Moreover, Bph3 regulates the activity of proteins involved in the calcium signaling pathway, mitogen-activated protein kinase (MAPK) signaling pathway, and plant hormone signal transduction. CONCLUSIONS Our results indicate that Bph3 enhances the resistance of rice to BPH mainly by inhibiting the down-regulation of proteins associated with metabolic pathways; calcium signaling, the MAPK signaling pathway, and plant hormone signal transduction might also be involved in BPH resistance induced by Bph3.
Collapse
Affiliation(s)
- Dongjin Qing
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Baiyi Lu
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Suosheng Huang
- Plant Protection Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Li Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Juan Huang
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Hao Wu
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yujing Peng
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - De Peng
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Lei Chen
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530006, China.
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| | - Guofu Deng
- Rice Research Institute, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utillzation of Subtropical Agro-bioresources, Guangxi Academy of Agricultural Sciences, Nanning, 530007, People's Republic of China.
| |
Collapse
|
9
|
Pei T, Zhan M, Niu D, Liu Y, Deng J, Jing Y, Li P, Liu C, Ma F. CERK1 compromises Fusarium solani resistance by reducing jasmonate level and undergoes a negative feedback regulation via the MMK2-WRKY71 module in apple. PLANT, CELL & ENVIRONMENT 2024; 47:2491-2509. [PMID: 38515330 DOI: 10.1111/pce.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Fusarium spp., a necrotrophic soil-borne pathogen, causes root rot disease on many crops. CERK1, as a typical pattern recognition receptor, has been widely studied. However, the function of CERK1 during plant-Fusarium interaction has not been well described. We determined that MdCERK1 is a susceptibility gene in the apple-Fusarium solani (Fs) interaction, and jasmonic acid (JA) plays a crucial role in this process. MdCERK1 directly targets and phosphorylates the lipoxygenase MdLOX2.1, an enzyme initiating the JA biosynthesis, at positions Ser326 and Thr327. These phosphorylations inhibit its translocation from the cytosol to the chloroplasts, leading to a compromised JA biosynthesis. Fs upregulates MdCERK1 expression during infection. In turn, when the JA level is low, the apple MdWRKY71, a transcriptional repressor of MdCERK1, is markedly upregulated and phosphorylated at Thr99 and Thr102 residues by the MAP kinase MdMMK2. The phosphorylation of MdWRKY71 enhances its transcription inhibition on MdCERK1. Taken together, MdCERK1 plays a novel role in limiting JA biosynthesis. There seems to be an arms race between apple and Fs, in which Fs activates MdCERK1 expression to reduce the JA level, while apple senses the low JA level and activates the MdMMK2-MdWRKY71 module to elevate JA level by inhibiting MdCERK1 expression.
Collapse
Affiliation(s)
- Tingting Pei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongshan Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuerong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Jing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
10
|
Abbas W, Shalmani A, Zhang J, Sun Q, Zhang C, Li W, Cui Y, Xiong M, Li Y. The GW5-WRKY53-SGW5 module regulates grain size variation in rice. THE NEW PHYTOLOGIST 2024; 242:2011-2025. [PMID: 38519445 DOI: 10.1111/nph.19704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Grain size is a crucial agronomic trait that affects stable yield, appearance, milling quality, and domestication in rice. However, the molecular and genetic relationships among QTL genes (QTGs) underlying natural variation for grain size remain elusive. Here, we identified a novel QTG SGW5 (suppressor of gw5) by map-based cloning using an F2 segregation population by fixing same genotype of the master QTG GW5. SGW5 positively regulates grain width by influencing cell division and cell size in spikelet hulls. Two nearly isogenic lines exhibited a significant differential expression of SGW5 and a 12.2% increase in grain yield. Introducing the higher expression allele into the genetic background containing the lower expression allele resulted in increased grain width, while its knockout resulted in shorter grain hulls and dwarf plants. Moreover, a cis-element variation in the SGW5 promoter influenced its differential binding affinity for the WRKY53 transcription factor, causing the differential SGW5 expression, which ultimately leads to grain size variation. GW5 physically and genetically interacts with WRKY53 to suppress the expression of SGW5. These findings elucidated a new pathway for grain size regulation by the GW5-WRKY53-SGW5 module and provided a novel case for generally uncovering QTG interactions underlying the genetic diversity of an important trait in crops.
Collapse
Affiliation(s)
- Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jian Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Qi Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wei Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yana Cui
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Meng Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yibo Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Chen S, Ye M, Kuai P, Chen L, Lou Y. Silencing an ATP-Dependent Caseinolytic Protease Proteolytic Subunit Gene Enhances the Resistance of Rice to Nilaparvata lugens. Int J Mol Sci 2024; 25:3699. [PMID: 38612510 PMCID: PMC11011769 DOI: 10.3390/ijms25073699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The ATP-dependent caseinolytic protease (Clp) system has been reported to play an important role in plant growth, development, and defense against pathogens. However, whether the Clp system is involved in plant defense against herbivores remains largely unclear. We explore the role of the Clp system in rice defenses against brown planthopper (BPH) Nilaparvata lugens by combining chemical analysis, transcriptome, and molecular analyses, as well as insect bioassays. We found the expression of a rice Clp proteolytic subunit gene, OsClpP6, was suppressed by infestation of BPH gravid females and mechanical wounding. Silencing OsClpP6 enhanced the level of BPH-induced jasmonic acid (JA), JA-isoleucine (JA-Ile), and ABA, which in turn promoted the production of BPH-elicited rice volatiles and increased the resistance of rice to BPH. Field trials showed that silencing OsClpP6 decreased the population densities of BPH and WBPH. We also observed that silencing OsClpP6 decreased chlorophyll content in rice leaves at early developmental stages and impaired rice root growth and seed setting rate. These findings demonstrate that an OsClpP6-mediated Clp system in rice was involved in plant growth-defense trade-offs by affecting the biosynthesis of defense-related signaling molecules in chloroplasts. Moreover, rice plants, after recognizing BPH infestation, can enhance rice resistance to BPH by decreasing the Clp system activity. The work might provide a new way to breed rice varieties that are resistant to herbivores.
Collapse
Affiliation(s)
| | | | | | | | - Yonggen Lou
- State Key Laboratory of Rice Breeding and Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (S.C.); (M.Y.); (P.K.); (L.C.)
| |
Collapse
|
12
|
Wang Y, Lu C, Guo S, Guo Y, Wei T, Chen Q. Leafhopper salivary vitellogenin mediates virus transmission to plant phloem. Nat Commun 2024; 15:3. [PMID: 38167823 PMCID: PMC10762104 DOI: 10.1038/s41467-023-43488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
Salivary effectors of piercing-sucking insects can suppress plant defense to promote insect feeding, but it remains largely elusive how they facilitate plant virus transmission. Leafhopper Nephotettix cincticeps transmits important rice reovirus via virus-packaging exosomes released from salivary glands and then entering the rice phloem. Here, we report that intact salivary vitellogenin of N. cincticeps (NcVg) is associated with the GTPase Rab5 of N. cincticeps (NcRab5) for release from salivary glands. In virus-infected salivary glands, NcVg is upregulated and packaged into exosomes mediated by virus-induced NcRab5, subsequently entering the rice phloem. The released NcVg inherently suppresses H2O2 burst of rice plants by interacting with rice glutathione S-transferase F12, an enzyme catalyzing glutathione-dependent oxidation, thus facilitating leafhoppers feeding. When leafhoppers transmit virus, virus-upregulated NcVg thus promotes leafhoppers feeding and enhances viral transmission. Taken together, the findings provide evidence that viruses exploit insect exosomes to deliver virus-hijacked effectors for efficient transmission.
Collapse
Affiliation(s)
- Yanfei Wang
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Chengcong Lu
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shude Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuxin Guo
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qian Chen
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Li J, Chen Y, Zhang R, Wu B, Xiao G. Expression identification of three OsWRKY genes in response to abiotic stress and hormone treatments in rice. PLANT SIGNALING & BEHAVIOR 2023; 18:2292844. [PMID: 38110190 PMCID: PMC10730230 DOI: 10.1080/15592324.2023.2292844] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/11/2023] [Indexed: 12/20/2023]
Abstract
WRKY transcription factors are critical for plant growth, development, and adaptation to stress. This paper focuses on the expression characteristic to abiotic stress and phytohormones of OsWRKY24, OsWRKY53, and OsWRKY70. Three OsWRKY TFs contained two conserved domains and there were multiple cis-elements in response to adversity stress and hormone signaling in their promoters. Real-time PCR analysis revealed their widespread expression in normal tissues during seedling and heading stages. Under various stresses such as darkness, low temperature, salt, and drought, or treatment with hormones like ABA, SA, MeJA, and GA, transcript levels of these genes had changed significantly in wild-type seedlings. The expression level of OsWRKY24 was upregulated by darkness, cold, SA, and MeJA but downregulated by salt, drought, ABA, and GA treatments. The transcripts of OsWRKY53 were induced by darkness, low-temperature, salt, drought, ABA, and JA, while inhibited by SA and GA. In addition, OsWRKY70 expression level was elevated under darkness, low-temperature, SA, and JA but suppressed with salt, drought, ABA, and GA. These findings provide valuable insights into the regulatory mechanisms by which WRKY TFs adapt to stress via plant-hormone signaling.
Collapse
Affiliation(s)
- Jiangdi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yating Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Rui Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Bin Wu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Guiqing Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
14
|
Lu L, Sun Z, Wang R, Du Y, Zhang Z, Lan T, Song Y, Zeng R. Integration of transcriptome and metabolome analyses reveals the role of OsSPL10 in rice defense against brown planthopper. PLANT CELL REPORTS 2023; 42:2023-2038. [PMID: 37819387 DOI: 10.1007/s00299-023-03080-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/13/2023]
Abstract
KEY MESSAGE OsSPL10 is a negative regulator of rice defense against BPH, knockout of OsSPL10 enhances BPH resistance through upregulation of defense-related genes and accumulation of secondary metabolites. Rice (Oryza sativa L.), one of the most important staple foods worldwide, is frequently attacked by various herbivores, including brown planthopper (BPH, Nilaparvata lugens). BPH is a typical monophagous, phloem-sucking herbivore that has been a substantial threat to rice production and global food security. Understanding the regulatory mechanism of defense responses to BPH is essential for improving BPH resistance in rice. In this study, a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 10 (OsSPL10) transcription factor was found to play a negative role in the defenses of rice against BPH. To gain insights into the molecular and biochemical mechanisms of OsSPL10, we performed combined analyses of transcriptome and metabolome, and revealed that knockout of OsSPL10 gene improved rice resistance against BPH by enhancing the direct and indirect defenses. Genes involved in plant hormone signal transduction, MAPK signaling pathway, phenylpropanoid biosynthesis, and plant-pathogen interaction pathway were significantly upregulated in spl10 mutant. Moreover, spl10 mutant exhibited increased accumulation of defense-related secondary metabolites in the phenylpropanoid and terpenoid pathways. Our findings reveal a novel role for OsSPL10 gene in regulating the rice defense responses, which can be used as a potential target for genetic improvement of BPH resistance in rice.
Collapse
Affiliation(s)
- Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zhongxiang Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
- State Key Laboratory of Conservation and Utilization of Biological Resources of Yunnan, College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Rumeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Yifei Du
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Tao Lan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
15
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
16
|
Li X, Zhang J, Shangguan X, Yin J, Zhu L, Hu J, Du B, Lv W. Knockout of OsWRKY71 impairs Bph15-mediated resistance against brown planthopper in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1260526. [PMID: 38023936 PMCID: PMC10652391 DOI: 10.3389/fpls.2023.1260526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
The Bph15 gene, known for its ability to confer resistance to the brown planthopper (BPH; Nilaparvata lugens Stål), has been extensively employed in rice breeding. However, the molecular mechanism by which Bph15 provides resistance against BPH in rice remains poorly understood. In this study, we reported that the transcription factor OsWRKY71 was highly responsive to BPH infestation and exhibited early-induced expression in Bph15-NIL (near-isogenic line) plants, and OsWRKY71 was localized in the nucleus of rice protoplasts. The knockout of OsWRKY71 in the Bph15-NIL background by CRISPR-Cas9 technology resulted in an impaired Bph15-mediated resistance against BPH. Transcriptome analysis revealed that the transcript profiles responsive to BPH differed between the wrky71 mutant and Bph15-NIL, and the knockout of OsWRKY71 altered the expression of defense genes. Subsequent quantitative RT-PCR analysis identified three genes, namely sesquiterpene synthase OsSTPS2, EXO70 family gene OsEXO70J1, and disease resistance gene RGA2, which might participate in BPH resistance conferred by OsWRKY71 in Bph15-NIL plants. Our investigation demonstrated the pivotal involvement of OsWRKY71 in Bph15-mediated resistance and provided new insights into the rice defense mechanisms against BPH.
Collapse
Affiliation(s)
- Xiaozun Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jian Zhang
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xinxin Shangguan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou, China
| | - Jingjing Yin
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Hu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wentang Lv
- Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
17
|
Wang Y, Li W, Qu J, Li F, Du W, Weng J. Genome-Wide Characterization of the Maize ( Zea mays L.) WRKY Transcription Factor Family and Their Responses to Ustilago maydis. Int J Mol Sci 2023; 24:14916. [PMID: 37834371 PMCID: PMC10573107 DOI: 10.3390/ijms241914916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Members of the WRKY transcription factor (TF) family are unique to plants and serve as important regulators of diverse physiological processes, including the ability of plants to manage biotic and abiotic stressors. However, the functions of specific WRKY family members in the context of maize responses to fungal pathogens remain poorly understood, particularly in response to Ustilago maydis (DC.) Corda (U. maydis), which is responsible for the devastating disease known as corn smut. A systematic bioinformatic approach was herein employed for the characterization of the maize WRKY TF family, leading to the identification of 120 ZmWRKY genes encoded on 10 chromosomes. Further structural and phylogenetic analyses of these TFs enabled their classification into seven different subgroups. Segmental duplication was established as a major driver of ZmWRKY family expansion in gene duplication analyses, while the Ka/Ks ratio suggested that these ZmWRKY genes had experienced strong purifying selection. When the transcriptional responses of these genes to pathogen inoculation were evaluated, seven U. maydis-inducible ZmWRKY genes were identified, as validated using a quantitative real-time PCR approach. All seven of these WKRY proteins were subsequently tested using a yeast one-hybrid assay approach, which revealed their ability to directly bind the ZmSWEET4b W-box element, thereby controlling the U. maydis-inducible upregulation of ZmSWEET4b. These results suggest that these WRKY TFs can control sugar transport in the context of fungal infection. Overall, these data offer novel insight into the evolution, transcriptional regulation, and functional characteristics of the maize WRKY family, providing a basis for future research aimed at exploring the mechanisms through which these TFs control host plant responses to common smut and other fungal pathogens.
Collapse
Affiliation(s)
- Yang Wang
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Wangshu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| | - Jianzhou Qu
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Fenghai Li
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Wanli Du
- Specialty Corn Institute, College of Agronomy, Shenyang Agricultural University, Dongling Street, Shenhe District, Shenyang 110866, China; (Y.W.); (J.Q.); (F.L.)
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing 100081, China;
| |
Collapse
|
18
|
Zhou S, Gao Q, Chen M, Zhang Y, Li J, Guo J, Lu J, Lou Y. Silencing a dehydration-responsive element-binding gene enhances the resistance of plants to a phloem-feeding herbivore. PLANT, CELL & ENVIRONMENT 2023; 46:3090-3101. [PMID: 36788431 DOI: 10.1111/pce.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Herbivore-induced plant defence responses share common components with plant responses to abiotic stresses. However, whether abiotic stress-responsive factors influence the resistance of plants to herbivores by regulating these components remains largely unknown. Here, we cloned a dehydration-responsive element-binding gene in rice, OsDREB1A, and investigated its role in the resistance of rice to the phloem-feeding herbivore, brown planthopper (BPH, Nilaparvata lugens), under normal and low temperatures. We found that OsDREB1A localized to the nucleus, and its transcripts in rice were up-regulated in response to BPH infestation, low temperatures and treatment with methyl jasmonate or salicylic acid. Silencing OsDREB1A changed transcript levels of two defence-related WRKY and two PLD genes, enhanced levels of jasmonic acid (JA), JA-isoleucine and abscisic acid, and decreased the ethylene level in rice; these changes subsequently enhanced the resistance of plants to BPH, especially at 17°C, by decreasing the hatching rate and delaying the development of BPH eggs. Moreover, silencing OsDREB1A increased the growth of rice plants. These findings suggest that OsDREB1A, which positively regulates the resistance of rice to abiotic stresses, negatively regulates the resistance of rice to BPH.
Collapse
Affiliation(s)
- Shuxing Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qing Gao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Mengting Chen
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuebai Zhang
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jiancai Li
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingran Guo
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Xiang X, Liu S, Li H, Danso Ofori A, Yi X, Zheng A. Defense Strategies of Rice in Response to the Attack of the Herbivorous Insect, Chilo suppressalis. Int J Mol Sci 2023; 24:14361. [PMID: 37762665 PMCID: PMC10531896 DOI: 10.3390/ijms241814361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice's resistance to the SSB.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (S.L.); (H.L.); (A.D.O.); (X.Y.)
| |
Collapse
|
20
|
Wang X, Ye ZX, Wang YZ, Wang XJ, Chen JP, Huang HJ. Transcriptomic Analysis of Tobacco Plants in Response to Whitefly Infection. Genes (Basel) 2023; 14:1640. [PMID: 37628691 PMCID: PMC10454835 DOI: 10.3390/genes14081640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The whitefly Bemisia tabaci is one of the most destructive pests worldwide, and causes tremendous economic losses. Tobacco Nicotiana tabacum serves as a model organism for studying fundamental biological processes and is severely damaged by whiteflies. Hitherto, our knowledge of how tobacco perceives and defends itself against whiteflies has been scare. In this study, we analyze the gene expression patterns of tobacco in response to whitefly infestation. A total of 244 and 2417 differentially expressed genes (DEGs) were identified at 12 h and 24 h post whitefly infestation, respectively. Enrichment analysis demonstrates that whitefly infestation activates plant defense at both time points, with genes involved in plant pattern recognition, transcription factors, and hormonal regulation significantly upregulated. Notably, defense genes are more intensely upregulated at 24 h post infestation than at 12 h, indicating an increased immunity induced by whitefly infestation. In contrast, genes associated with energy metabolism, carbohydrate metabolism, ribosomes, and photosynthesis are suppressed, suggesting impaired plant development. Taken together, our study provides comprehensive insights into how plants respond to phloem-feeding insects, and offers a theoretical basis for better research on plant-insect interactions.
Collapse
Affiliation(s)
- Xin Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-X.Y.); (Y.-Z.W.); (X.-J.W.)
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-X.Y.); (Y.-Z.W.); (X.-J.W.)
| | - Yi-Zhe Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-X.Y.); (Y.-Z.W.); (X.-J.W.)
| | - Xiao-Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-X.Y.); (Y.-Z.W.); (X.-J.W.)
| | - Jian-Ping Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-X.Y.); (Y.-Z.W.); (X.-J.W.)
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (Z.-X.Y.); (Y.-Z.W.); (X.-J.W.)
| |
Collapse
|
21
|
Yan L, Luo T, Huang D, Wei M, Ma Z, Liu C, Qin Y, Zhou X, Lu Y, Li R, Qin G, Zhang Y. Recent Advances in Molecular Mechanism and Breeding Utilization of Brown Planthopper Resistance Genes in Rice: An Integrated Review. Int J Mol Sci 2023; 24:12061. [PMID: 37569437 PMCID: PMC10419156 DOI: 10.3390/ijms241512061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Over half of the world's population relies on rice as their staple food. The brown planthopper (Nilaparvata lugens Stål, BPH) is a significant insect pest that leads to global reductions in rice yields. Breeding rice varieties that are resistant to BPH has been acknowledged as the most cost-effective and efficient strategy to mitigate BPH infestation. Consequently, the exploration of BPH-resistant genes in rice and the development of resistant rice varieties have become focal points of interest and research for breeders. In this review, we summarized the latest advancements in the localization, cloning, molecular mechanisms, and breeding of BPH-resistant rice. Currently, a total of 70 BPH-resistant gene loci have been identified in rice, 64 out of 70 genes/QTLs were mapped on chromosomes 1, 2, 3, 4, 6, 8, 10, 11, and 12, respectively, with 17 of them successfully cloned. These genes primarily encode five types of proteins: lectin receptor kinase (LecRK), coiled-coil-nucleotide-binding-leucine-rich repeat (CC-NB-LRR), B3-DNA binding domain, leucine-rich repeat domain (LRD), and short consensus repeat (SCR). Through mediating plant hormone signaling, calcium ion signaling, protein kinase cascade activation of cell proliferation, transcription factors, and miRNA signaling pathways, these genes induce the deposition of callose and cell wall thickening in rice tissues, ultimately leading to the inhibition of BPH feeding and the formation of resistance mechanisms against BPH damage. Furthermore, we discussed the applications of these resistance genes in the genetic improvement and breeding of rice. Functional studies of these insect-resistant genes and the elucidation of their network mechanisms establish a strong theoretical foundation for investigating the interaction between rice and BPH. Furthermore, they provide ample genetic resources and technical support for achieving sustainable BPH control and developing innovative insect resistance strategies.
Collapse
Affiliation(s)
- Liuhui Yan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuanyuan Qin
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiaolong Zhou
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yingping Lu
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| |
Collapse
|
22
|
Liu K, Ma X, Zhao L, Lai X, Chen J, Lang X, Han Q, Wan X, Li C. Comprehensive transcriptomic analysis of three varieties with different brown planthopper-resistance identifies leaf sheath lncRNAs in rice. BMC PLANT BIOLOGY 2023; 23:367. [PMID: 37480003 PMCID: PMC10362764 DOI: 10.1186/s12870-023-04374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been brought great attention for their crucial roles in diverse biological processes. However, systematic identification of lncRNAs associated with specialized rice pest, brown planthopper (BPH), defense in rice remains unexplored. RESULTS In this study, a genome-wide high throughput sequencing analysis was performed using leaf sheaths of susceptible rice Taichung Native 1 (TN1) and resistant rice IR36 and R476 with and without BPH feeding. A total of 2283 lncRNAs were identified, of which 649 lncRNAs were differentially expressed. During BPH infestation, 84 (120 in total), 52 (70 in total) and 63 (94 in total) of differentially expressed lncRNAs were found only in TN1, IR36 and R476, respectively. Through analyzing their cis-, trans-, and target mimic-activities, not only the lncRNAs targeting resistance genes (NBS-LRR and RLKs) and transcription factors, but also the lncRNAs acting as the targets of the well-studied stress-related miRNAs (miR2118, miR528, and miR1320) in each variety were identified. Before the BPH feeding, 238 and 312 lncRNAs were found to be differentially expressed in TN1 vs. IR36 and TN1 vs. R476, respectively. Among their putative targets, the plant-pathogen interaction pathway was significantly enriched. It is speculated that the resistant rice was in a priming state by the regulation of lncRNAs. Furthermore, the lncRNAs extensively involved in response to BPH feeding were identified by Weighted Gene Co-expression Network Analysis (WGCNA), and the possible regulation networks of the key lncRNAs were constructed. These lncRNAs regulate different pathways that contribute to the basal defense and specific resistance of rice to the BPH. CONCLUSION In summary, we identified the specific lncRNAs targeting the well-studied stress-related miRNAs, resistance genes, and transcription factors in each variety during BPH infestation. Additionally, the possible regulating network of the lncRNAs extensively responding to BPH feeding revealed by WGCNA were constructed. These findings will provide further understanding of the regulatory roles of lncRNAs in BPH defense, and lay a foundation for functional research on the candidate lncRNAs.
Collapse
Affiliation(s)
- Kai Liu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaozhi Ma
- Guangdong Provincial Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510642, China
| | - Luyao Zhao
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaofeng Lai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Jie Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xingxuan Lang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Qunxin Han
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| | - Chunmei Li
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
23
|
Zhu X, Wei Q, Wan P, Wang W, Lai F, He J, Fu Q. Effect of Paclobutrazol Application on Enhancing the Efficacy of Nitenpyram against the Brown Planthopper, Nilaparvata lugens. Int J Mol Sci 2023; 24:10490. [PMID: 37445669 PMCID: PMC10341613 DOI: 10.3390/ijms241310490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is one of the most destructive rice pests in Asia. It has already developed a high level of resistance to many commonly used insecticides including nitenpyram (NIT), which is a main synthetic insecticide that is used to control BPH with a much shorter persistence compared to other neonicotinoid insecticides. Recently, we found that an exogenous supplement of paclobutrazol (PZ) could significantly enhance the efficacy of NIT against BPH, and the molecular mechanism underlying this synergistic effect was explored. The results showed that the addition of a range of 150-300 mg/L PZ increased the toxicity of NIT against BPH with the highest mortalities of 78.0-87.0% on the 16th day after treatments, and PZ could also significantly prolong the persistence of the NIT efficacies. Further investigation suggested that PZ directly increased the content of flavonoids and H2O2 in rice and increased the activity of polyphenol oxidase, which might be involved in the constitutive defense of rice in advance. Additionally, there was an interaction between PZ and BPH infestation, indicating that PZ might activate the host defense responses. Therefore, PZ increased the efficacy of NIT against the brown planthoppers by enhancing the constitutive and inducible defense responses of rice. Our study showed for the first time that PZ could contribute to improving the control effects of insecticides via inducing the defense responses in rice plants against BPH, which provided an important theoretical basis for developing novel pest management strategies in the field.
Collapse
Affiliation(s)
| | - Qi Wei
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China; (X.Z.); (P.W.); (W.W.); (F.L.); (J.H.)
| | | | | | | | | | - Qiang Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311401, China; (X.Z.); (P.W.); (W.W.); (F.L.); (J.H.)
| |
Collapse
|
24
|
Wang H, Cheng X, Yin D, Chen D, Luo C, Liu H, Huang C. Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Curr Issues Mol Biol 2023; 45:2861-2880. [PMID: 37185711 PMCID: PMC10136515 DOI: 10.3390/cimb45040187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The WRKY transcription factors are a class of transcriptional regulators that are ubiquitous in plants, wherein they play key roles in various physiological activities, including responses to stress. Specifically, WRKY transcription factors mediate plant responses to biotic and abiotic stresses through the binding of their conserved domain to the W-box element of the target gene promoter and the subsequent activation or inhibition of transcription (self-regulation or cross-regulation). In this review, the progress in the research on the regulatory effects of WRKY transcription factors on plant responses to external stresses is summarized, with a particular focus on the structural characteristics, classifications, biological functions, effects on plant secondary metabolism, regulatory networks, and other aspects of WRKY transcription factors. Future research and prospects in this field are also proposed.
Collapse
Affiliation(s)
- Hongli Wang
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xi Cheng
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dongmei Yin
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongliang Chen
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chang Luo
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Liu
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
25
|
Planthopper salivary sheath protein LsSP1 contributes to manipulation of rice plant defenses. Nat Commun 2023; 14:737. [PMID: 36759625 PMCID: PMC9911632 DOI: 10.1038/s41467-023-36403-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Salivary elicitors secreted by herbivorous insects can be perceived by host plants to trigger plant immunity. However, how insects secrete other salivary components to subsequently attenuate the elicitor-induced plant immunity remains poorly understood. Here, we study the small brown planthopper, Laodelphax striatellus salivary sheath protein LsSP1. Using Y2H, BiFC and LUC assays, we show that LsSP1 is secreted into host plants and binds to salivary sheath via mucin-like protein (LsMLP). Rice plants pre-infested with dsLsSP1-treated L. striatellus are less attractive to L. striatellus nymphs than those pre-infected with dsGFP-treated controls. Transgenic rice plants with LsSP1 overexpression rescue the insect feeding defects caused by a deficiency of LsSP1 secretion, consistent with the potential role of LsSP1 in manipulating plant defenses. Our results illustrate the importance of salivary sheath proteins in mediating the interactions between plants and herbivorous insects.
Collapse
|
26
|
Transcriptome Profiling of the Resistance Response of Musa acuminata subsp. burmannicoides, var. Calcutta 4 to Pseudocercospora musae. Int J Mol Sci 2022; 23:ijms232113589. [DOI: 10.3390/ijms232113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Banana (Musa spp.), which is one of the world’s most popular and most traded fruits, is highly susceptible to pests and diseases. Pseudocercospora musae, responsible for Sigatoka leaf spot disease, is a principal fungal pathogen of Musa spp., resulting in serious economic damage to cultivars in the Cavendish subgroup. The aim of this study was to characterize genetic components of the early immune response to P. musae in Musa acuminata subsp. burmannicoides, var. Calcutta 4, a resistant wild diploid. Leaf RNA samples were extracted from Calcutta 4 three days after inoculation with fungal conidiospores, with paired-end sequencing conducted in inoculated and non-inoculated controls using lllumina HiSeq 4000 technology. Following mapping to the reference M. acuminata ssp. malaccensis var. Pahang genome, differentially expressed genes (DEGs) were identified and expression representation analyzed on the basis of gene ontology enrichment, Kyoto Encyclopedia of Genes and Genomes orthology and MapMan pathway analysis. Sequence data mapped to 29,757 gene transcript models in the reference Musa genome. A total of 1073 DEGs were identified in pathogen-inoculated cDNA libraries, in comparison to non-inoculated controls, with 32% overexpressed. GO enrichment analysis revealed common assignment to terms that included chitin binding, chitinase activity, pattern binding, oxidoreductase activity and transcription factor (TF) activity. Allocation to KEGG pathways revealed DEGs associated with environmental information processing, signaling, biosynthesis of secondary metabolites, and metabolism of terpenoids and polyketides. With 144 up-regulated DEGs potentially involved in biotic stress response pathways, including genes involved in cell wall reinforcement, PTI responses, TF regulation, phytohormone signaling and secondary metabolism, data demonstrated diverse early-stage defense responses to P. musae. With increased understanding of the defense responses occurring during the incompatible interaction in resistant Calcutta 4, these data are appropriate for the development of effective disease management approaches based on genetic improvement through introgression of candidate genes in superior cultivars.
Collapse
|
27
|
Tang J, Tian X, Mei E, He M, Gao J, Yu J, Xu M, Liu J, Song L, Li X, Wang Z, Guan Q, Zhao Z, Wang C, Bu Q. WRKY53 negatively regulates rice cold tolerance at the booting stage by fine-tuning anther gibberellin levels. THE PLANT CELL 2022; 34:4495-4515. [PMID: 35972376 PMCID: PMC9614489 DOI: 10.1093/plcell/koac253] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/09/2022] [Indexed: 05/31/2023]
Abstract
Cold tolerance at the booting (CTB) stage is a major factor limiting rice (Oryza sativa L.) productivity and geographical distribution. A few cold-tolerance genes have been identified, but they either need to be overexpressed to result in CTB or cause yield penalties, limiting their utility for breeding. Here, we characterize the function of the cold-induced transcription factor WRKY53 in rice. The wrky53 mutant displays increased CTB, as determined by higher seed setting. Low temperature is associated with lower gibberellin (GA) contents in anthers in the wild type but not in the wrky53 mutant, which accumulates slightly more GA in its anthers. WRKY53 directly binds to the promoters of GA biosynthesis genes and transcriptionally represses them in anthers. In addition, we uncover a possible mechanism by which GA regulates male fertility: SLENDER RICE1 (SLR1) interacts with and sequesters two critical transcription factors for tapetum development, UNDEVELOPED TAPETUM1 (UDT1), and TAPETUM DEGENERATION RETARDATION (TDR), and GA alleviates the sequestration by SLR1, thus allowing UDT1 and TDR to activate transcription. Finally, knocking out WRKY53 in diverse varieties increases cold tolerance without a yield penalty, leading to a higher yield in rice subjected to cold stress. Together, these findings provide a target for improving CTB in rice.
Collapse
Affiliation(s)
- Jiaqi Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaojie Tian
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Enyang Mei
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingliang He
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwen Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Min Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiali Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Lu Song
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiufeng Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenyu Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Qingjie Guan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Zhigang Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingyun Bu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Tang J, Mei E, He M, Bu Q, Tian X. Functions of OsWRKY24, OsWRKY70 and OsWRKY53 in regulating grain size in rice. PLANTA 2022; 255:92. [PMID: 35322309 DOI: 10.1007/s00425-022-03871-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
OsWRKY24 functions redundantly with OsWRKY53, while OsWRKY70 functions differently from OsWRKY53 in regulating grain size. Grain size is a key agronomic trait that affects grain yield and quality in rice (Oryza sativa L.). The transcription factor OsWRKY53 positively regulates grain size through brassinosteroid (BR) signaling and Mitogen-Activated Protein Kinase (MAPK) cascades. However, whether the OsWRKY53 homologs OsWRKY24 and OsWRKY70 also contribute to grain size which remains unknown. Here, we report that grain size in OsWRKY24 overexpression lines and oswrky24 mutants is similar to that of the wild type. However, the oswrky24 oswrky53 double mutant produced smaller grains than the oswrky53 single mutant, indicating functional redundancy between OsWRKY24 and OsWRKY53. In addition, OsWRKY70 overexpression lines displayed an enlarged leaf angle, reduced plant height, longer grains, and higher BR sensitivity, phenotypes similar to those of OsWRKY53 overexpression lines. Importantly, a systematic characterization of seed length in the oswrky70 single, the oswrky53 oswrky70 double and the oswrky24 oswrky53 oswrky70 triple mutant indicated that loss of OsWRKY70 also leads to increased seed length, suggesting that OsWRKY70 might play a role distinct from that of OsWRKY53 in regulating grain size. Taken together, these findings suggest that OsWRKY24 and OsWRKY70 regulate rice grain size redundantly and independently from OsWRKY53.
Collapse
Affiliation(s)
- Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Enyang Mei
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
29
|
Genome-Wide Analysis of WRKY Gene Family and the Dynamic Responses of Key WRKY Genes Involved in Ostrinia furnacalis Attack in Zea mays. Int J Mol Sci 2021; 22:ijms222313045. [PMID: 34884854 PMCID: PMC8657575 DOI: 10.3390/ijms222313045] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
WRKY transcription factors comprise one of the largest gene families and serve as key regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided into seven subgroups (groups I, IIa–e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional regulation prediction showed that six key WRKY genes contribute to four major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA) biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression levels were highly correlated with predicted target genes, suggesting that these genes have important functions in the response to O. furnacalis. Our results provide a comprehensive understanding of the WRKY gene family based on the new assembly of the maize genome and lay the foundation for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses against O. furnacalis in the field.
Collapse
|
30
|
Zhang Y, Chen M, Zhou S, Lou Y, Lu J. Silencing an E3 Ubiquitin Ligase Gene OsJMJ715 Enhances the Resistance of Rice to a Piercing-Sucking Herbivore by Activating ABA and JA Signaling Pathways. Int J Mol Sci 2021; 22:13020. [PMID: 34884830 PMCID: PMC8657654 DOI: 10.3390/ijms222313020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
The RING-type E3 ubiquitin ligases play an important role in plant growth, development, and defense responses to abiotic stresses and pathogens. However, their roles in the resistance of plants to herbivorous insects remain largely unknown. In this study, we isolated the rice gene OsJMJ715, which encodes a RING-domain containing protein, and investigated its role in rice resistance to brown planthopper (BPH, Nilaparvata lugens). OsJMJ715 is a nucleus-localized E3 ligase whose mRNA levels were upregulated by the infestation of gravid BPH females, mechanical wounding, and treatment with JA or ABA. Silencing OsJMJ715 enhanced BPH-elicited levels of ABA, JA, and JA-Ile as well as the amount of callose deposition in plants, which in turn increased the resistance of rice to BPH by reducing the feeding of BPH and the hatching rate of BPH eggs. These findings suggest that OsJMJ715 negative regulates the BPH-induced biosynthesis of ABA, JA, and JA-Ile and that BPH benefits by enhancing the expression of OsJMJ715.
Collapse
Affiliation(s)
- Yuebai Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mengting Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuxing Zhou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute, Zhejiang University, Sanya 572025, China
| | - Jing Lu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Silencing a Simple Extracellular Leucine-Rich Repeat Gene OsI-BAK1 Enhances the Resistance of Rice to Brown Planthopper Nilaparvata lugens. Int J Mol Sci 2021; 22:ijms222212182. [PMID: 34830062 PMCID: PMC8622231 DOI: 10.3390/ijms222212182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/11/2023] Open
Abstract
Many plant proteins with extracellular leucine-rich repeat (eLRR) domains play an important role in plant immunity. However, the role of one class of eLRR plant proteins—the simple eLRR proteins—in plant defenses against herbivores remains largely unknown. Here, we found that a simple eLRR protein OsI-BAK1 in rice localizes to the plasma membrane. Its expression was induced by mechanical wounding, the infestation of gravid females of brown planthopper (BPH) Nilaparvata lugens or white-backed planthopper Sogatella furcifera and treatment with methyl jasmonate or abscisic acid. Silencing OsI-BAK1 (ir-ibak1) in rice enhanced the BPH-induced transcript levels of three defense-related WRKY genes (OsWRKY24, OsWRKY53 and OsWRKY70) but decreased the induced levels of ethylene. Bioassays revealed that the hatching rate was significantly lower in BPH eggs laid on ir-ibak1 plants than wild-type (WT) plants; moreover, gravid BPH females preferred to oviposit on WT plants over ir-ibak1 plants. The exogenous application of ethephon on ir-ibak1 plants eliminated the BPH oviposition preference between WT and ir-ibak1 plants but had no effect on the hatching rate of BPH eggs. These findings suggest that OsI-BAK1 acts as a negative modulator of defense responses in rice to BPH and that BPH might exploit this modulator for its own benefit.
Collapse
|
32
|
Identification of the Group III WRKY Subfamily and the Functional Analysis of GhWRKY53 in Gossypium hirsutum L. PLANTS 2021; 10:plants10061235. [PMID: 34204463 PMCID: PMC8233714 DOI: 10.3390/plants10061235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 11/30/2022]
Abstract
WRKY transcription factors had multiple functions in plant secondary metabolism, leaf senescence, fruit ripening, adaptation to biotic and abiotic stress, and plant growth and development. However, knowledge of the group III WRKY subfamily in fiber development in upland cotton (Gossypium hirsutum L.) is largely absent. Previous studies have shown that there were 21 putative group III WRKY members in G. hirsutum L. These putative amino acid sequences from the III WRKY group were phylogenetically clustered into three clades. Multiple alignment, conservative motif analysis, and gene structure analysis showed that the members clustered together in the phylogenetic tree had similar motifs and gene structures. Expression pattern analysis revealed that variation in the expression levels of these genes in different tissues and fiber development stages. To better understand the functions of putative group III WRKY genes in G. hirsutum L., we selected the cotton fiber initiation-related gene GhWRKY53 for cloning and functional identification. The subcellular localization experiment of GhWRKY53 in Nicotiana tabacum leaves showed that it was located in the nucleus. The heterologous expression of GhWRKY53 in Arabidopsis thaliana could significantly increase the density of trichomes. Twelve proteins that interacted with GhWRKY53 were screened from the cotton fiber cDNA library by yeast two-hybrid experiment. This study findings lay a foundation for further research on the role of the GhWRKY53 during cotton fiber development and provide a new insight for further studying putative group III WRKY genes in G. hirsutum L. Our research results also provide vital information for the genetic mechanism of high-quality cotton fiber formation and essential genetic resources for cotton fiber quality improvement.
Collapse
|
33
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Amina Z, Saleem S, Zaffar Iqbal M, Muhammad Atif R, Wang X. Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives. Saudi J Biol Sci 2021; 28:2323-2341. [PMID: 33911947 PMCID: PMC8071895 DOI: 10.1016/j.sjbs.2021.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Crop plants should be resilient to climatic factors in order to feed ever-increasing populations. Plants have developed stress-responsive mechanisms by changing their metabolic pathways and switching the stress-responsive genes. The discovery of plant transcriptional factors (TFs), as key regulators of different biotic and abiotic stresses, has opened up new horizons for plant scientists. TFs perceive the signal and switch certain stress-responsive genes on and off by binding to different cis-regulatory elements. More than 50 families of plant TFs have been reported in nature. Among them, DREB, bZIP, MYB, NAC, Zinc-finger, HSF, Dof, WRKY, and NF-Y are important with respect to biotic and abiotic stresses, but the potential of many TFs in the improvement of crops is untapped. In this review, we summarize the role of different stress-responsive TFs with respect to biotic and abiotic stresses. Further, challenges and future opportunities linked with TFs for developing climate-resilient crops are also elaborated.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zarmaha Amina
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shazmina Saleem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Zaffar Iqbal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, University Road, 38040, Faisalabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
34
|
Zeng J, Zhang T, Huangfu J, Li R, Lou Y. Both Allene Oxide Synthases Genes Are Involved in the Biosynthesis of Herbivore-Induced Jasmonic Acid and Herbivore Resistance in Rice. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030442. [PMID: 33652695 PMCID: PMC7996763 DOI: 10.3390/plants10030442] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 05/15/2023]
Abstract
Allene oxide synthase (AOS) is the second enzyme in the biosynthesis of the plant defensive hormone jasmonic acid (JA). In rice, there are two AOSs, OsAOS1 and OsAOS2. However, the role of these two AOS genes in herbivore-induced defenses in rice remains unidentified. We cloned the two rice AOS genes and observed that the transcript level of both OsAOS1 and OsAOS2 was enhanced by mechanical wounding, the infestation of the striped stem borer (SSB) (Chilo suppressalis) or brown planthopper (BPH) (Niaparvata lugens), and treatment with JA; however, OsAOS1 responded more rapidly to SSB infestation and JA treatment than did OsAOS2. The antisense expression of OsAOS1 (as-aos1) or OsAOS2 (as-aos2) decreased levels of SSB- or BPH-induced JA, which, in turn, reduced the production of SSB-induced trypsin protease inhibitor (TrypPI) and volatiles as well as the resistance of rice to SSB. In contrast, BPH preferred to feed and oviposit on wild-type (WT) plants over as-aos1 and as-aos2 plants. Moreover, the survival of BPH nymphs on as-aos1 or as-aos2 lines was significantly lower than on WT plants. The increased resistance of as-aos1 or as-aos2 plants to BPH correlated with higher levels of BPH-induced H2O2 and SA. These results indicate that OsAOS1 and OsAOS2 are both involved in herbivore-induced JA biosynthesis and play a vital role in determining the resistance of rice to chewing and phloem-feeding herbivores.
Collapse
Affiliation(s)
- Jiamei Zeng
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (T.Z.); (J.H.); (R.L.)
| | - Tongfang Zhang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (T.Z.); (J.H.); (R.L.)
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiayi Huangfu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (T.Z.); (J.H.); (R.L.)
| | - Ran Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (T.Z.); (J.H.); (R.L.)
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; (J.Z.); (T.Z.); (J.H.); (R.L.)
- Correspondence: ; Tel.: +86-571-8898-2622
| |
Collapse
|
35
|
Yu X, Pan Y, Dong Y, Lu B, Zhang C, Yang M, Zuo L. Cloning and overexpression of PeWRKY31 from Populus × euramericana enhances salt and biological tolerance in transgenic Nicotiana. BMC PLANT BIOLOGY 2021; 21:80. [PMID: 33549055 PMCID: PMC7866765 DOI: 10.1186/s12870-021-02856-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/26/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND As important forest tree species, biological stress and soil salinization are important factors that restrict the growth of Populus × euramericana. WRKYs are important transcription factors in plants that can regulate plant responses to biotic and abiotic stresses. In this study, PeWRKY31 was isolated from Populus × euramericana, and its bioinformation, salt resistance and insect resistance were analyzed. This study aims to provide guidance for producing salt-resistant and insect-resistant poplars. RESULTS PeWRKY31 has a predicted open reading frame (ORF) of 1842 bp that encodes 613 amino acids. The predicted protein is the unstable, acidic, and hydrophilic protein with a molecular weight of 66.34 kDa, and it has numerous potential phosphorylation sites, chiefly on serines and threonines. PeWRKY31 is a zinc-finger C2H2 type-II WRKY TF that is closely related to WRKY TFs of Populus tomentosa, and localizes to the nucleus. A PeWRKY31 overexpression vector was constructed and transformed into Nicotiana tabacum L. Overexpression of PeWRKY31 improved the salt tolerance and insect resistance of the transgenic tobacco. Transcriptome sequencing and KEGG enrichment analysis showed the elevated expression of genes related to glutathione metabolism, plant hormone signal transduction, and MAPK signaling pathways, the functions of which were important in plant salt tolerance and insect resistance in the overexpressing tobacco line. CONCLUSIONS PeWRKY31 was isolated from Populus × euramericana. Overexpression of PeWRKY31 improved the resistance of transgenic plant to salt stress and pest stress. The study provides references for the generation of stress-resistant lines with potentially great economic benefit.
Collapse
Affiliation(s)
- Xiaoyue Yu
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China
| | - Yu Pan
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Tianjin nuohe medical laboratory co. LTD, Tianjin, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China
| | - Bin Lu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Chao Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, P. R. China.
| | - Lihui Zuo
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- College of Landscape and Ecological Engineering, Hebei University of Engineering, 056000, Handan, P. R. China.
| |
Collapse
|
36
|
Cruz DF, De Meyer S, Ampe J, Sprenger H, Herman D, Van Hautegem T, De Block J, Inzé D, Nelissen H, Maere S. Using single-plant-omics in the field to link maize genes to functions and phenotypes. Mol Syst Biol 2020; 16:e9667. [PMID: 33346944 PMCID: PMC7751767 DOI: 10.15252/msb.20209667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/29/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Most of our current knowledge on plant molecular biology is based on experiments in controlled laboratory environments. However, translating this knowledge from the laboratory to the field is often not straightforward, in part because field growth conditions are very different from laboratory conditions. Here, we test a new experimental design to unravel the molecular wiring of plants and study gene-phenotype relationships directly in the field. We molecularly profiled a set of individual maize plants of the same inbred background grown in the same field and used the resulting data to predict the phenotypes of individual plants and the function of maize genes. We show that the field transcriptomes of individual plants contain as much information on maize gene function as traditional laboratory-generated transcriptomes of pooled plant samples subject to controlled perturbations. Moreover, we show that field-generated transcriptome and metabolome data can be used to quantitatively predict individual plant phenotypes. Our results show that profiling individual plants in the field is a promising experimental design that could help narrow the lab-field gap.
Collapse
Affiliation(s)
- Daniel Felipe Cruz
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Sam De Meyer
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Joke Ampe
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Heike Sprenger
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dorota Herman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Tom Van Hautegem
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Jolien De Block
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Dirk Inzé
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Steven Maere
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
37
|
Overexpression of a Cytosolic 6-Phosphogluconate Dehydrogenase Gene Enhances the Resistance of Rice to Nilaparvata lugens. PLANTS 2020; 9:plants9111529. [PMID: 33182659 PMCID: PMC7696191 DOI: 10.3390/plants9111529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/24/2022]
Abstract
The pentose phosphate pathway (PPP) plays an important role in plant growth and development, and plant responses to biotic and abiotic stresses. Yet, whether the PPP regulates plant defenses against herbivorous insects remains unclear. In this study, we cloned a rice cytosolic 6-phosphogluconate dehydrogenase gene, Os6PGDH1, which encodes the key enzyme catalyzing the third step in the reaction involving the oxidative phase of the PPP, and explored its role in rice defenses induced by brown planthopper (BPH) Nilaparvata lugens. Levels of Os6PGDH1 transcripts were detected in all five examined tissues, with the highest in outer leaf sheaths and lowest in inner leaf sheaths. Os6PGDH1 expression was strongly induced by mechanical wounding, infestation of gravid BPH females, and jasmonic acid (JA) treatment. Overexpressing Os6PGDH1 (oe6PGDH) decreased the height of rice plants and the mass of the aboveground part of plants, but slightly increased the length of plant roots. In addition, the overexpression of Os6PGDH1 enhanced levels of BPH-induced JA, jasmonoyl-isoleucine (JA-Ile), and H2O2, but decreased BPH-induced levels of ethylene. Bioassays revealed that gravid BPH females preferred to feed and lay eggs on wild-type (WT) plants over oe6PGDH plants; moreover, the hatching rate of BPH eggs raised on oe6PGDH plants and the fecundity of BPH females fed on these were significantly lower than the eggs and the females raised and fed on WT plants. Taken together, these results indicate that Os6PGDH1 plays a pivotal role not only in rice growth but also in the resistance of rice to BPH by modulating JA, ethylene, and H2O2 pathways.
Collapse
|
38
|
Ye M, Kuai P, Hu L, Ye M, Sun H, Erb M, Lou Y. Suppression of a leucine-rich repeat receptor-like kinase enhances host plant resistance to a specialist herbivore. PLANT, CELL & ENVIRONMENT 2020; 43:2571-2585. [PMID: 32598036 DOI: 10.1111/pce.13834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 05/14/2023]
Abstract
The mechanisms by which herbivores induce plant defenses are well studied. However, how specialized herbivores suppress plant resistance is still poorly understood. Here, we discovered a rice (Oryza sativa) leucine-rich repeat receptor-like kinase, OsLRR-RLK2, which is induced upon attack by gravid females of a specialist piercing-sucking herbivore, the brown planthopper (BPH, Nilaparvata lugens). Silencing OsLRR-RLK2 decreases the constitutive activity of mitogen-activated protein kinase (OsMPK6) and alters BPH-induced transcript levels of several defense-related WRKY transcription factors. Moreover, silencing OsLRR-RLK2 reduces BPH-induction of jasmonic acid and ethylene but promotes the biosynthesis of both elicited salicylic acid and H2 O2 ; silencing also enhances the production of volatiles emitted from rice plants infested with gravid BPH females. These changes decrease BPH preference and performance in the glasshouse and the field. These findings suggest that OsLRR-RLK2, by regulating the plant's defense-related signaling profile, increases the susceptibility of rice to BPH, and that BPH infestation influences the expression of OsLRR-RLK2, suppressing the resistance of rice to BPH.
Collapse
Affiliation(s)
- Meng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lingfei Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hao Sun
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
39
|
The Desaturase Gene Nlug-desatA2 Regulates the Performance of the Brown Planthopper Nilaparvata lugens and Its Relationship with Rice. Int J Mol Sci 2020; 21:ijms21114143. [PMID: 32532001 PMCID: PMC7312190 DOI: 10.3390/ijms21114143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022] Open
Abstract
Insect desaturases are known to play an important role in chemical communication between individuals. However, their roles in insect growth, development and fecundity, and in regulating interactions of insects with plants, remain largely unknown. In this study, we explored the functions of Nlug-desatA2, a desaturase gene of the brown planthopper (BPH), Nilaparvata lugens (Stål). The RNA interference-based knockdown of Nlug-desatA2 decreased the ratio of monounsaturated fatty acids to saturated fatty acids, and the level of fatty acids and triglycerides in BPH. Nlug-desatA2-knockdown also reduced the food intake, body mass and fecundity of female BPH adults, and led to abdomen atrophy and ovarian agenesis. Nlug-desatA2-knockdown suppressed the transcription of TOR (target of rapamycin), Lpp (Lipophorin) and AKHR (adipokinetic hormone receptor) in female adults. Moreover, the corrected survival rate of BPH with Nlug-desatA2-knockdown fed an artificial diet was higher than the survival rate of those fed on rice plants. Higher levels of salicylic acid in rice infested by Nlug-desatA2-knockdown female BPH adults than in rice infested by control BPH may be the reason. These findings demonstrate that Nlug-desatA2 has an essential role in lipid metabolism and is involved in the food intake, survival, development and fecundity of BPH. In addition, this gene is likely involved in regulating the responses of rice to BPH infestation.
Collapse
|
40
|
Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field. Proc Natl Acad Sci U S A 2020; 117:12017-12028. [PMID: 32434917 DOI: 10.1073/pnas.2003742117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synthetic chemical elicitors, so called plant strengtheners, can protect plants from pests and pathogens. Most plant strengtheners act by modifying defense signaling pathways, and little is known about other mechanisms by which they may increase plant resistance. Moreover, whether plant strengtheners that enhance insect resistance actually enhance crop yields is often unclear. Here, we uncover how a mechanism by which 4-fluorophenoxyacetic acid (4-FPA) protects cereals from piercing-sucking insects and thereby increases rice yield in the field. Four-FPA does not stimulate hormonal signaling, but modulates the production of peroxidases, H2O2, and flavonoids and directly triggers the formation of flavonoid polymers. The increased deposition of phenolic polymers in rice parenchyma cells of 4-FPA-treated plants is associated with a decreased capacity of the white-backed planthopper (WBPH) Sogatella furcifera to reach the plant phloem. We demonstrate that application of 4-PFA in the field enhances rice yield by reducing the abundance of, and damage caused by, insect pests. We demonstrate that 4-FPA also increases the resistance of other major cereals such as wheat and barley to piercing-sucking insect pests. This study unravels a mode of action by which plant strengtheners can suppress herbivores and increase crop yield. We postulate that this represents a conserved defense mechanism of plants against piercing-sucking insect pests, at least in cereals.
Collapse
|
41
|
Huang HJ, Cui JR, Xia X, Chen J, Ye YX, Zhang CX, Hong XY. Salivary DNase II from Laodelphax striatellus acts as an effector that suppresses plant defence. THE NEW PHYTOLOGIST 2019; 224:860-874. [PMID: 30883796 DOI: 10.1111/nph.15792] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/08/2019] [Indexed: 05/24/2023]
Abstract
Extracellular DNA, released by damaged plant cells, acts as a damage-associated molecular pattern (DAMP). We demonstrated previously that the small brown planthopper (Laodelphax striatellus, SBPH) secreted DNase II when feeding on artificial diets. However, the function of DNase II in insect feeding remained elusive. The influences of DNase II on SBPHs and rice plants were investigated by suppressing expression of DNase II or by application of heterogeneously expressed DNase II. We demonstrated that DNase II is mainly expressed in the salivary gland and is responsible for DNA-degrading activity of saliva. Knocking down the expression of DNase II resulted in decreased performance of SBPH reared on rice plants. The dsDNase II-treated SBPH did not influenced jasmonic acid (JA), salicylic acid (SA), ethylene (ET) pathways, but elicited a higher level of H2 O2 and callose accumulation. Application of heterogeneously expressed DNase II in DNase II-deficient saliva slightly reduced the wound-induced defence response. We propose a DNase II-based invading model for SBPH feeding on host plants, and provide a potential target for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xue Xia
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jie Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yu-Xuan Ye
- Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
42
|
Ling Y, Ang L, Weilin Z. Current understanding of the molecular players involved in resistance to rice planthoppers. PEST MANAGEMENT SCIENCE 2019; 75:2566-2574. [PMID: 31095858 DOI: 10.1002/ps.5487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
- Department of Environmental Engineering, Quzhou University, Quzhou, P.R. China
| | - Li Ang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
43
|
Xi G, Wang Y, Yin L, Wang Y, Zhou S. De novo transcriptome analysis of gene responses to pest feeding in leaves of Panax ginseng C. A. Meyer. Mol Med Rep 2019; 20:433-444. [PMID: 31180519 PMCID: PMC6580019 DOI: 10.3892/mmr.2019.10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/07/2019] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study was to investigate the transcriptomic differences between Panax ginseng [Renshen (RS)] plants bitten by pests (n=3, test group; samples defined as RS11-13) or not (n=3, control group; samples defined as RS1-3) using de novo RNA sequencing on an Illumina HiSeq™ 2000 platform. A total of 51,097,386 (99.6%), 49,310,564 (99.5%), 59,192,372 (99.6%), 60,338,540 (99.5%), 56,976,410 (99.6%) and 54,226,588 (99.6%) clean reads were obtained for RS11, RS12, RS13, RS1, RS2 and RS3, respectively. De novo assembly generated 370,267 unigenes, 927 of which were differentially expressed genes (DEGs), including 782 significantly upregulated and 145 significantly downregulated genes. Function enrichment analysis revealed that these DEGs were located in 28 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways, including phenylpropanoid biosynthesis (for example, TRINITY_DN30766_c0_g2_i1, encoding peroxidase 20) and mitogen-activated protein kinase (MAPK) signaling (TRINITY_DN85589_c0_g1_i1, encoding WRKY transcription factor 75). Weighted gene co-expression network analysis identified modules including TRINITY_DN85589_c0_g1_i1, TRINITY_DN58279_c0_g1_i1 [encoding aspartyl protease (AP)] and TRINITY_DN74866_c0_g2_i1 [encoding 12-oxophytodienoate reductase (OPR)] that may be the most significantly associated with pest responses. In this module, TRINITY_DN85589_c0_g1_i1 may co-express with TRINITY_DN58279_c0_g1_i1 or TRINITY_DN74866_c0_g2_i1. WRYK and AP have been suggested to promote the activity of antioxidant peroxidase. Collectively, the findings from the present study suggested that a MAPK-WRKY-OPR/AP-peroxidase signaling pathway may be a potentially important mechanism underlying defense responses against pests in ginseng plants.
Collapse
Affiliation(s)
- Guangsheng Xi
- Pharmaceutical Engineering Department, College of Chemical Engineering and Resource Reuse, Wuzhou University, Wuzhou, Guangxi 543000, P.R. China
| | - Yanling Wang
- Pharmaceutical Engineering Department, College of Chemical Engineering and Resource Reuse, Wuzhou University, Wuzhou, Guangxi 543000, P.R. China
| | - Le Yin
- Department of Chinese Medicine, College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, Jilin 132101, P.R. China
| | - Yunjia Wang
- Department of Mapping and Geographic Information, College of Environment and Mapping, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P.R. China
| | - Shengxue Zhou
- Department of Chinese Medicine, College of Chinese Medicine, Jilin Agricultural Science and Technology College, Jilin, Jilin 132101, P.R. China
| |
Collapse
|
44
|
Li J, Liu X, Wang Q, Huangfu J, Schuman MC, Lou Y. A Group D MAPK Protects Plants from Autotoxicity by Suppressing Herbivore-Induced Defense Signaling. PLANT PHYSIOLOGY 2019; 179:1386-1401. [PMID: 30602493 PMCID: PMC6446743 DOI: 10.1104/pp.18.01411] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/16/2018] [Indexed: 05/17/2023]
Abstract
The mechanisms by which plants activate and enhance defense responses have been well studied; however, the regulatory mechanisms that allow plants to avoid excessive defense responses are poorly understood. Here, we identified a group D mitogen-activated protein kinase (MAPK) gene from rice (Oryza sativa), OsMAPK20-5, whose expression was rapidly induced by infestation of gravid female adults of a destructive rice pest, brown planthopper (BPH, Nilaparvata lugens), but not by BPH nymphs. Expression silencing of OsMAPK20-5 (irMAPK) increased the accumulation of ethylene and nitric oxide (NO) after gravid female BPH infestation, and thereby increased rice plant resistance to BPH adults and oviposited eggs. However, when exposed to high densities of gravid BPH females, irMAPK plants wilted earlier than wild-type plants, which could be attributed to the hyperaccumulation of ethylene and NO in irMAPK plants. Interestingly, when released into the field, irMAPK plants displayed broad resistance to BPH and white-backed planthopper (Sogatella furcifera), the two most destructive pests of rice, and produced higher yield. Taken together, our study shows that although OsMAPK20-5 can reduce the resistance of rice plants to planthoppers, it also enables rice plants to control excessive defense responses and thereby prevents defense-response-related autotoxicity.
Collapse
Affiliation(s)
- Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Xiaoli Liu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Qi Wang
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Jiayi Huangfu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| | - Meredith C Schuman
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
- Department of Geography, University of Zurich, 8057 Zurich, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, 310058 Hangzhou, China
| |
Collapse
|
45
|
Ye M, Glauser G, Lou Y, Erb M, Hu L. Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice. THE PLANT CELL 2019; 31:687-698. [PMID: 30760558 DOI: 10.1101/378752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/19/2018] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Herbivore-induced plant volatiles prime plant defenses and resistance, but how they are integrated into early defense signaling and whether a causal relationship exists between volatile defense priming and herbivore resistance is unclear. Here, we investigated the impact of indole, a common herbivore-induced plant volatile and modulator of many physiological processes in plants, bacteria, and animals, on early defense signaling and herbivore resistance in rice (Oryza sativa). Rice plants infested by fall armyworm (Spodoptera frugiperda) caterpillars release indole at a rate of up to 25 ng*h-1 Exposure to equal doses of exogenous indole enhances rice resistance to S. frugiperda Screening of early signaling components revealed that indole pre-exposure directly enhances the expression of the leucine-rich repeat-receptor-like kinase OsLRR-RLK1 Pre-exposure to indole followed by simulated herbivory increases (i.e. primes) the transcription, accumulation, and activation of the mitogen-activated protein kinase OsMPK3 and the expression of the downstream WRKY transcription factor gene OsWRKY70 as well as several jasmonate biosynthesis genes, resulting in higher jasmonic acid (JA) accumulation. Analysis of transgenic plants defective in early signaling showed that OsMPK3 is required and that OsMPK6 and OsWRKY70 contribute to indole-mediated defense priming of JA-dependent herbivore resistance. Therefore, herbivore-induced plant volatiles increase plant resistance to herbivores by positively regulating early defense signaling components.
Collapse
Affiliation(s)
- Meng Ye
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel 2009, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Lingfei Hu
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| |
Collapse
|
46
|
Ye M, Glauser G, Lou Y, Erb M, Hu L. Molecular Dissection of Early Defense Signaling Underlying Volatile-Mediated Defense Regulation and Herbivore Resistance in Rice. THE PLANT CELL 2019; 31:687-698. [PMID: 30760558 PMCID: PMC6482627 DOI: 10.1105/tpc.18.00569] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/19/2018] [Accepted: 02/07/2019] [Indexed: 05/19/2023]
Abstract
Herbivore-induced plant volatiles prime plant defenses and resistance, but how they are integrated into early defense signaling and whether a causal relationship exists between volatile defense priming and herbivore resistance is unclear. Here, we investigated the impact of indole, a common herbivore-induced plant volatile and modulator of many physiological processes in plants, bacteria, and animals, on early defense signaling and herbivore resistance in rice (Oryza sativa). Rice plants infested by fall armyworm (Spodoptera frugiperda) caterpillars release indole at a rate of up to 25 ng*h-1 Exposure to equal doses of exogenous indole enhances rice resistance to S. frugiperda Screening of early signaling components revealed that indole pre-exposure directly enhances the expression of the leucine-rich repeat-receptor-like kinase OsLRR-RLK1 Pre-exposure to indole followed by simulated herbivory increases (i.e. primes) the transcription, accumulation, and activation of the mitogen-activated protein kinase OsMPK3 and the expression of the downstream WRKY transcription factor gene OsWRKY70 as well as several jasmonate biosynthesis genes, resulting in higher jasmonic acid (JA) accumulation. Analysis of transgenic plants defective in early signaling showed that OsMPK3 is required and that OsMPK6 and OsWRKY70 contribute to indole-mediated defense priming of JA-dependent herbivore resistance. Therefore, herbivore-induced plant volatiles increase plant resistance to herbivores by positively regulating early defense signaling components.
Collapse
Affiliation(s)
- Meng Ye
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel 2009, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| | - Lingfei Hu
- Institute of Plant Sciences, University of Bern, Bern 3013, Switzerland
| |
Collapse
|
47
|
Li B, Förster C, Robert CAM, Züst T, Hu L, Machado RAR, Berset JD, Handrick V, Knauer T, Hensel G, Chen W, Kumlehn J, Yang P, Keller B, Gershenzon J, Jander G, Köllner TG, Erb M. Convergent evolution of a metabolic switch between aphid and caterpillar resistance in cereals. SCIENCE ADVANCES 2018; 4:eaat6797. [PMID: 30525102 PMCID: PMC6281429 DOI: 10.1126/sciadv.aat6797] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/07/2018] [Indexed: 05/19/2023]
Abstract
Tailoring defense responses to different attackers is important for plant performance. Plants can use secondary metabolites with dual functions in resistance and defense signaling to mount herbivore-specific responses. To date, the specificity and evolution of this mechanism are unclear. Here, we studied the functional architecture, specificity, and genetic basis of defense regulation by benzoxazinoids in cereals. We document that DIMBOA-Glc induces callose as an aphid resistance factor in wheat. O-methylation of DIMBOA-Glc to HDMBOA-Glc increases plant resistance to caterpillars but reduces callose inducibility and resistance to aphids. DIMBOA-Glc induces callose in wheat and maize, but not in Arabidopsis, while the glucosinolate 4MO-I3M does the opposite. We identify a wheat O-methyltransferase (TaBX10) that is induced by caterpillar feeding and converts DIMBOA-Glc to HDMBOA-Glc in vitro. While the core pathway of benzoxazinoid biosynthesis is conserved between wheat and maize, the wheat genome does not contain close homologs of the maize DIMBOA-Glc O-methyltransferase genes, and TaBx10 is only distantly related. Thus, the functional architecture of herbivore-specific defense regulation is similar in maize and wheat, but the regulating biosynthetic genes likely evolved separately. This study shows how two different cereal species independently achieved herbivore-specific defense activation by regulating secondary metabolite production.
Collapse
Affiliation(s)
- B. Li
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - C. Förster
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - C. A. M. Robert
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - T. Züst
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - L. Hu
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - R. A. R. Machado
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - J.-D. Berset
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - V. Handrick
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - T. Knauer
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - G. Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - W. Chen
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - J. Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - P. Yang
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - B. Keller
- Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - J. Gershenzon
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - G. Jander
- Boyce Thompson Institute, Ithaca, NY, USA
| | - T. G. Köllner
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - M. Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Viana VE, Busanello C, da Maia LC, Pegoraro C, Costa de Oliveira A. Activation of rice WRKY transcription factors: an army of stress fighting soldiers? CURRENT OPINION IN PLANT BIOLOGY 2018; 45:268-275. [PMID: 30060992 DOI: 10.1016/j.pbi.2018.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 05/04/2023]
Abstract
Rice WRKYs comprise a large family of transcription factors and present remarkable structure features and a unique DNA binding site. Their importance in plants goes beyond the response to stressful stimuli, since they participate in hormonal pathways and developmental processes. Indeed, the majority of WRKYs present an independent activation since they are able to perform self-transcriptional regulation. However, some WRKY activation depends on epigenetic and transcript regulation by micro RNAs. Their protein function depends, almost always, on the posttranslational changes. Taking to account its properties of auto-activation, all these regulators process are extremely important for complete WRKY regulation. In this sense, here we provide an overview of transcriptional activation and posttranscriptional and posttranslational regulation of rice WRKY genes under stresses.
Collapse
Affiliation(s)
- Vívian Ebeling Viana
- Graduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas-RS, Brazil; Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Carlos Busanello
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Luciano Carlos da Maia
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Camila Pegoraro
- Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil
| | - Antonio Costa de Oliveira
- Graduate Program in Biotechnology, Center for Technological Development, Federal University of Pelotas, Pelotas-RS, Brazil; Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, Pelotas-RS, Brazil.
| |
Collapse
|
49
|
Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, van Ex F, Pasha A, Khedikar Y, Robinson SJ, Cory AT, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout CJ, Chalhoub B, Mayer KFX, Benhamed M, Latrasse D, Bendahmane A, Wulff BBH, Appels R, Tiwari V, Datla R, Choulet F, Pozniak CJ, Provart NJ, Sharpe AG, Paux E, Spannagl M, Bräutigam A, Uauy C. The transcriptional landscape of polyploid wheat. Science 2018; 361:eaar6089. [PMID: 30115782 DOI: 10.1126/science.aar6089] [Citation(s) in RCA: 580] [Impact Index Per Article: 82.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
The coordinated expression of highly related homoeologous genes in polyploid species underlies the phenotypes of many of the world's major crops. Here we combine extensive gene expression datasets to produce a comprehensive, genome-wide analysis of homoeolog expression patterns in hexaploid bread wheat. Bias in homoeolog expression varies between tissues, with ~30% of wheat homoeologs showing nonbalanced expression. We found expression asymmetries along wheat chromosomes, with homoeologs showing the largest inter-tissue, inter-cultivar, and coding sequence variation, most often located in high-recombination distal ends of chromosomes. These transcriptionally dynamic genes potentially represent the first steps toward neo- or subfunctionalization of wheat homoeologs. Coexpression networks reveal extensive coordination of homoeologs throughout development and, alongside a detailed expression atlas, provide a framework to target candidate genes underpinning agronomic traits in wheat.
Collapse
|
50
|
Hu L, Ye M, Kuai P, Ye M, Erb M, Lou Y. OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. THE NEW PHYTOLOGIST 2018; 219:1097-1111. [PMID: 29878383 DOI: 10.1111/nph.15247] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to a variety of environmental stresses, including herbivory. How plants perceive herbivores on a molecular level is poorly understood. Leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest subfamily of RLKs, are essential for plants to detect external stress signals, and may therefore also be involved in herbivore perception. Here, we employed RNA interference silencing, phytohormone profiling and complementation, as well as herbivore resistance assays, to investigate the requirement of an LRR-RLK for the initiation of rice (Oryza sativa) defenses against the chewing herbivore striped stem borer (SSB) Chilo suppressalis. We discovered a plasma membrane-localized LRR-RLK, OsLRR-RLK1, whose transcription is strongly up-regulated by SSB attack and treatment with oral secretions of Spodoptera frugiperda. OsLRR-RLK1 acts upstream of mitogen-activated protein kinase (MPK) cascades, and positively regulates defense-related MPKs and WRKY transcription factors. Moreover, OsLRR-RLK1 is a positive regulator of SSB-elicited, but not wound-elicited, levels of jasmonic acid and ethylene, trypsin protease inhibitor activity and plant resistance towards SSB. OsLRR-RLK1 therefore plays an important role in herbivory-induced defenses of rice. Given the well-documented role of LRR-RLKs in the perception of stress-related molecules, we speculate that OsLRR-RLK1 may be involved in the perception of herbivory-associated molecular patterns.
Collapse
Affiliation(s)
- Lingfei Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Meng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|