1
|
Regmi KC, Yogendra K, Farias JG, Li L, Kandel R, Yadav UP, Sha S, Trittermann C, Short L, George J, Evers J, Plett D, Ayre BG, Roy SJ, Gaxiola RA. Improved Yield and Photosynthate Partitioning in AVP1 Expressing Wheat ( Triticum aestivum) Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:273. [PMID: 32256508 PMCID: PMC7090233 DOI: 10.3389/fpls.2020.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.
Collapse
Affiliation(s)
- Kamesh C. Regmi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kalenahalli Yogendra
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Júlia Gomes Farias
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lin Li
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Raju Kandel
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Umesh P. Yadav
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Shengbo Sha
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Laura Short
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Jessey George
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - John Evers
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Darren Plett
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Brian G. Ayre
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Stuart John Roy
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
2
|
Baykov AA. Energy Coupling in Cation-Pumping Pyrophosphatase-Back to Mitchell. FRONTIERS IN PLANT SCIENCE 2020; 11:107. [PMID: 32117404 PMCID: PMC7034417 DOI: 10.3389/fpls.2020.00107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
|
3
|
Abstract
In the 1930s, Lars Onsager published his famous 'reciprocal relations' describing free energy conversion processes. Importantly, these relations were derived on the assumption that the fluxes of the processes involved in the conversion were proportional to the forces (free energy gradients) driving them. For chemical reactions, however, this condition holds only for systems operating close to equilibrium-indeed very close; nominally requiring driving forces to be smaller than k B T. Fairly soon thereafter, however, it was quite inexplicably observed that in at least some biological conversions both the reciprocal relations and linear flux-force dependency appeared to be obeyed no matter how far from equilibrium the system was being driven. No successful explanation of how this 'paradoxical' behaviour could occur has emerged and it has remained a mystery. We here argue, however, that this anomalous behaviour is simply a gift of water, of its viscosity in particular; a gift, moreover, without which life almost certainly could not have emerged. And a gift whose appreciation we primarily owe to recent work by Prof. R. Dean Astumian who, as providence has kindly seen to it, was led to the relevant insights by the later work of Onsager himself.
Collapse
Affiliation(s)
- E. Branscomb
- Carl R. Woese Institute for Genomic Biology, and Department of Physics, University of Illinois, 3113 IGB MC 195, 128 W. Gregory Dr., Urbana, IL 61801, USA
| | - M. J. Russell
- NASA Astrobiology Institute, Ames Research Center, Mountain View, CA, USA
| |
Collapse
|
4
|
Primo C, Pizzio GA, Yang J, Gaxiola RA, Scholz-Starke J, Hirschi KD. Plant proton pumping pyrophosphatase: the potential for its pyrophosphate synthesis activity to modulate plant growth. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:989-996. [PMID: 31081197 DOI: 10.1111/plb.13007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 05/25/2023]
Abstract
Cellular pyrophosphate (PPi) homeostasis is vital for normal plant growth and development. Plant proton-pumping pyrophosphatases (H+ -PPases) are enzymes with different tissue-specific functions related to the regulation of PPi homeostasis. Enhanced expression of plant H+ -PPases increases biomass and yield in different crop species. Here, we emphasise emerging studies utilising heterologous expression in yeast and plant vacuole electrophysiology approaches, as well as phylogenetic relationships and structural analysis, to showcase that the H+ -PPases possess a PPi synthesis function. We postulate this synthase activity contributes to modulating and promoting plant growth both in H+ -PPase-engineered crops and in wild-type plants. We propose a model where the PPi synthase activity of H+ -PPases maintains the PPi pool when cells adopt PPi-dependent glycolysis during high energy demands and/or low oxygen environments. We conclude by proposing experiments to further investigate the H+ -PPase-mediated PPi synthase role in plant growth.
Collapse
Affiliation(s)
- C Primo
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - G A Pizzio
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | - J Yang
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| | - R A Gaxiola
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - J Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - K D Hirschi
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Scholz-Starke J, Primo C, Yang J, Kandel R, Gaxiola RA, Hirschi KD. The flip side of the Arabidopsis type I proton-pumping pyrophosphatase (AVP1): Using a transmembrane H + gradient to synthesize pyrophosphate. J Biol Chem 2018; 294:1290-1299. [PMID: 30510138 DOI: 10.1074/jbc.ra118.006315] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/29/2018] [Indexed: 01/19/2023] Open
Abstract
Energy partitioning and plant growth are mediated in part by a type I H+-pumping pyrophosphatase (H+-PPase). A canonical role for this transporter has been demonstrated at the tonoplast where it serves a job-sharing role with V-ATPase in vacuolar acidification. Here, we investigated whether the plant H+-PPase from Arabidopsis also functions in "reverse mode" to synthesize PPi using the transmembrane H+ gradient. Using patch-clamp recordings on Arabidopsis vacuoles, we observed inward currents upon Pi application on the cytosolic side. These currents were strongly reduced in vacuoles from two independent H+-PPase mutant lines (vhp1-1 and fugu5-1) lacking the classical PPi-induced outward currents related to H+ pumping, whereas they were significantly larger in vacuoles with engineered heightened expression of the H+-PPase. Current amplitudes related to reverse-mode H+ transport depended on the membrane potential, cytosolic Pi concentration, and magnitude of the pH gradient across the tonoplast. Of note, experiments on vacuolar membrane-enriched vesicles isolated from yeast expressing the Arabidopsis H+-PPase (AVP1) demonstrated Pi-dependent PPi synthase activity in the presence of a pH gradient. Our work establishes that a plant H+-PPase can operate as a PPi synthase beyond its canonical role in vacuolar acidification and cytosolic PPi scavenging. We propose that the PPi synthase activity of H+-PPase contributes to a cascade of events that energize plant growth.
Collapse
Affiliation(s)
- Joachim Scholz-Starke
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Via De Marini 6, 16149 Genova, Italy.
| | - Cecilia Primo
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Jian Yang
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030
| | - Raju Kandel
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Roberto A Gaxiola
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287
| | - Kendal D Hirschi
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
6
|
Schilling RK, Tester M, Marschner P, Plett DC, Roy SJ. AVP1: One Protein, Many Roles. TRENDS IN PLANT SCIENCE 2017; 22:154-162. [PMID: 27989652 DOI: 10.1016/j.tplants.2016.11.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 05/23/2023]
Abstract
Constitutive expression of the Arabidopsis vacuolar proton-pumping pyrophosphatase (H+-PPase) gene (AVP1) increases plant growth under various abiotic stress conditions and, importantly, under nonstressed conditions. Many interpretations have been proposed to explain these phenotypes, including greater vacuolar ion sequestration, increased auxin transport, enhanced heterotrophic growth, and increased transport of sucrose from source to sink tissues. In this review, we evaluate all the roles proposed for AVP1, using findings published to date from mutant plants lacking functional AVP1 and transgenic plants expressing AVP1. It is clear that AVP1 is one protein with many roles, and that one or more of these roles act to enhance plant growth. The complexity suggests that a systems biology approach to evaluate biological networks is required to investigate these intertwined roles.
Collapse
Affiliation(s)
- Rhiannon K Schilling
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mark Tester
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Petra Marschner
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Darren C Plett
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Centre for Plant Functional Genomics, Adelaide, SA 5005, Australia
| | - Stuart J Roy
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA 5005, Australia; Australian Centre for Plant Functional Genomics, Adelaide, SA 5005, Australia
| |
Collapse
|
7
|
Pizzio GA, Hirschi KD, Gaxiola RA. Conjecture Regarding Posttranslational Modifications to the Arabidopsis Type I Proton-Pumping Pyrophosphatase (AVP1). FRONTIERS IN PLANT SCIENCE 2017; 8:1572. [PMID: 28955362 PMCID: PMC5601048 DOI: 10.3389/fpls.2017.01572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/28/2017] [Indexed: 05/06/2023]
Abstract
Agbiotechnology uses genetic engineering to improve the output and value of crops. Altering the expression of the plant Type I Proton-pumping Pyrophosphatase (H+-PPase) has already proven to be a useful tool to enhance crop productivity. Despite the effective use of this gene in translational research, information regarding the intracellular localization and functional plasticity of the pump remain largely enigmatic. Using computer modeling several putative phosphorylation, ubiquitination and sumoylation target sites were identified that may regulate Arabidopsis H+-PPase (AVP1- Arabidopsis Vacuolar Proton-pump 1) subcellular trafficking and activity. These putative regulatory sites will direct future research that specifically addresses the partitioning and transport characteristics of this pump. We posit that fine-tuning H+-PPases activity and cellular distribution will facilitate rationale strategies for further genetic improvements in crop productivity.
Collapse
Affiliation(s)
- Gaston A. Pizzio
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones CientíficasBarcelona, Spain
- *Correspondence: Gaston A. Pizzio, ; Roberto A. Gaxiola,
| | - Kendal D. Hirschi
- USDA ARS Children’s Nutrition Research Center, Baylor College of Medicine, HoustonTX, United States
| | - Roberto A. Gaxiola
- School of Life Sciences, Arizona State University, TempeAZ, United States
- *Correspondence: Gaston A. Pizzio, ; Roberto A. Gaxiola,
| |
Collapse
|