1
|
Zhang Y, Chen X, Geng S, Zhang X. A review of soil waterlogging impacts, mechanisms, and adaptive strategies. FRONTIERS IN PLANT SCIENCE 2025; 16:1545912. [PMID: 40017819 PMCID: PMC11866847 DOI: 10.3389/fpls.2025.1545912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/16/2025] [Indexed: 03/01/2025]
Abstract
Waterlogging is a major abiotic stress affecting plant growth and productivity. Regardless of rainfall or irrigated environments, plants frequently face waterlogging, which may range from short-term to prolonged durations. Excessive precipitation and soil moisture disrupt crop growth, not because of the water itself but due to oxygen deficiency caused by water saturation. This lack of oxygen triggers a cascade of detrimental effects. Once the soil becomes saturated, oxygen depletion leads to anaerobic respiration in plant roots, weakening their respiratory processes. Waterlogging impacts plant morphology, growth, and metabolism, often increasing ethylene production and impairing vital physiological functions. Plants respond to waterlogging stress by altering their morphological structures, energy metabolism, hormone synthesis, and signal transduction pathways. This paper synthesizes findings from previous studies to systematically analyze the effects of waterlogging on plant yield, hormone regulation, signal transduction, and adaptive responses while exploring the mechanisms underlying plant tolerance to waterlogging. For instance, waterlogging reduces crop yield and disrupts key physiological and biochemical processes, such as hormone synthesis and nutrient absorption, leading to deficiencies of essential nutrients like potassium and calcium. Under waterlogged conditions, plants exhibit morphological changes, including the formation of adventitious roots and the development of aeration tissues to enhance oxygen transport. This review also highlighted effective strategies to improve plant tolerance to waterlogging. Examples include strengthening field management practices, applying exogenous hormones such as 6-benzylaminopurine (6-BA) and γ-aminobutyric acid (GABA), overexpressing specific genes (e.g., ZmEREB180, HvERF2.11, and RAP2.6L), and modifying root architecture. Lastly, we discuss future challenges and propose directions for advancing research in this field.
Collapse
Affiliation(s)
- Yusen Zhang
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Xiaojuan Chen
- Inner Mongolia University of Bryophyte Resources and Conservation Laboratory, Inner Mongolia University, Hohhot, China
| | - Shiying Geng
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| | - Xiujuan Zhang
- Inner Mongolia Key Laboratory of Molecular Biology on Featured Plants, Inner Mongolia Academy of Science and Technology, Hohhot, China
| |
Collapse
|
2
|
Chen Y, Zhang H, Chen W, Gao Y, Xu K, Sun X, Huo L. The role of ethylene in the regulation of plant response mechanisms to waterlogging stress. PLANT CELL REPORTS 2024; 43:278. [PMID: 39531178 DOI: 10.1007/s00299-024-03367-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Waterlogging stands as a common environmental challenge, significantly affecting plant growth, yield, and, in severe cases, survival. In response to waterlogging stress, plants exhibit a series of intricate physiologic, metabolic, and morphologic adaptations. Notably, the gaseous phytohormone ethylene is rapidly accumulated in the plant submerged tissues, assuming an important regulatory factor in plant-waterlogging tolerance. In this review, we summarize recent advances in research on the mechanisms of ethylene in the regulation of plant responses to waterlogging stress. Recent advances found that both ethylene biosynthesis and signal transduction make indispensable contributions to modulating plant adaptation mechanisms to waterlogged condition. Ethylene was also discovered to play an important role in plant physiologic metabolic responses to waterlogging stress, including the energy mechanism, morphologic adaptation, ROS regulation and interactions with other phytohormones. The comprehensive exploration of ethylene and its associated genes provides valuable insights into the precise strategies to leverage ethylene metabolism for enhancing plant resistance to waterlogging stress.
Collapse
Affiliation(s)
- Yunyun Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Hao Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Wenxin Chen
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Yongbin Gao
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
3
|
Ge Q, Zhang Y, Wu J, Wei B, Li S, Nan H, Fang Y, Min Z. Exogenous strigolactone alleviates post-waterlogging stress in grapevine. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109124. [PMID: 39276672 DOI: 10.1016/j.plaphy.2024.109124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/10/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
With global climate change, the frequent occurrence of intense rainfall and aggravation of waterlogging disasters have severely threatened the plant growth and fruit quality of grapevines, which are commercially important fruit crops worldwide. There is accordingly an imperative to clarify the responses of grapevine to waterlogging and to propose appropriate remedial measures. Strigolactone (SL) is a phytohormone associated with plant abiotic stress tolerance, while, its function in plant responses to waterlogging stress remain undetermined. In this study, systematic analyses of the morphology, physiology, and transcriptome changes in grapevine leaves and roots under post-waterlogging and GR24 (a synthetic analog of SL) treatments were performed. Morphological and physiological changes in grapevines in response to post-waterlogging stress, including leaf wilting and yellowing, leaf senescence, photosynthesis inhibition, and increased anti-oxidative systems, could be alleviated by the application of GR24. Moreover, transcriptome analysis revealed that the primary gene functions induced by post-waterlogging stress changed over time; however, they were consistently associated with carbohydrate metabolism. The GR24-induced leaf genes were closely associated with carbohydrate metabolism, photosynthesis, antioxidant systems, and hormone signal transduction, which were considered vital aspects that were influenced by GR24 in grapevine to induce post-waterlogging tolerance. Concerning the roots, an enhancement of microtubules and cytoskeleton for cell construction in GR24 application was proposed to facilitate root system recovery after waterlogging. With this study, we comprehend the knowledge regarding the responses of grapevines to post-waterlogging and the ameliorative effect of GR24 with the insight to the transcriptome changes during these processes.
Collapse
Affiliation(s)
- Qing Ge
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Yang Zhang
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China
| | - Jinren Wu
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Bingxin Wei
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China
| | - Sijia Li
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hao Nan
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yulin Fang
- College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Northwest A&F University, Yangling, 712100, China.
| | - Zhuo Min
- Department of Brewing Engineering, Moutai Institute, Renhuai, Guizhou, 564500, China.
| |
Collapse
|
4
|
Cao Y, Du P, Li Z, Xu J, Ma C, Liang B. Melatonin promotes the recovery of apple plants after waterlogging by shaping the structure and function of the rhizosphere microbiome. PLANT, CELL & ENVIRONMENT 2024; 47:2614-2630. [PMID: 38712467 DOI: 10.1111/pce.14903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 05/08/2024]
Abstract
The dynamics of the physiological adaptability of plants and the rhizosphere soil environment after waterlogging remain unclear. Here we investigated the mechanisms regulating plant condition and shaping of the rhizosphere microbiome in a pot experiment. In the experiment, we added melatonin to waterlogged plants, which promoted waterlogging relief. The treatment significantly enhanced photosynthesis and the antioxidant capacity of apple plants, and significantly promoted nitrogen (N) utilization efficiency by upregulating genes related to N transport and metabolism. Multiperiod soil microbiome analysis showed the dynamic effects of melatonin on the diversity of the microbial community during waterlogging recovery. Random forest and linear regression analyses were used to screen for potential beneficial bacteria (e.g., Azoarcus, Pseudomonas and Nocardioides) specifically regulated by melatonin and revealed a positive correlation with soil nutrient levels and plant growth. Furthermore, metagenomic analyses revealed the regulatory effects of melatonin on genes involved in N cycling in soil. Melatonin positively contributed to the accumulation of plant dry weight by upregulating the expression of nifD and nifK (N fixation). In summary, melatonin positively regulates physiological functions in plants and the structure and function of the microbial community; it promoted the recovery of apple plants after waterlogging stress.
Collapse
Affiliation(s)
- Yang Cao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Peihua Du
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Zhongyong Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Bowen Liang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
5
|
Wu H, Yu H, Zhang X, Wang Y, Zhu H, Zhao Y, Ma Q. Identification and characterization of waterlogging-responsive genes in the parental line of maize hybrid An'nong 876. Genet Mol Biol 2024; 46:e20230026. [PMID: 38224488 PMCID: PMC10789244 DOI: 10.1590/1678-4685-gmb-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
Waterlogging stress is an important abiotic stress that adversely affects maize growth and yield. The mechanism regulating the early stage of the maize response to waterlogging stress is largely unknown. In this study, CM37 and cmh15 seedlings were treated with waterlogging stress and then examined in terms of their physiological changes. The results indicated that inbred line cmh15 is more tolerant to waterlogging stress and less susceptible to peroxide-based damages than CM37. The RNA sequencing analysis identified 1,359 down-regulated genes and 830 up-regulated genes in the waterlogging-treated cmh15 plants (relative to the corresponding control levels). According to the Gene Ontology analysis for the differentially expressed genes (DEGs), some important terms were identified which may play important roles in the response to waterlogging stress. Moreover, enriched Kyoto Encyclopedia of Genes and Genomes pathways were also identified for the DEGs. Furthermore, the substantial changes in the expression of 36 key transcription factors may be closely related to the maize in response to waterlogging stress. This study offers important insights into the mechanism in regulating maize tolerance to waterlogging stress, with important foundations for future research.
Collapse
Affiliation(s)
- Hongying Wu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Haitao Yu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Xingen Zhang
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
- West Anhui University, College of Biological and Pharmaceutical Engineering, Lu’an, China
| | - Yixiao Wang
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Hongjia Zhu
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Yang Zhao
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| | - Qing Ma
- Anhui Agricultural University, School of Life Sciences, National Engineering Laboratory of Crop Stress Resistance Breeding, Hefei, China
| |
Collapse
|
6
|
Feng F, Wang Q, Jiang K, Lei D, Huang S, Wu H, Yue G, Wang B. Transcriptome analysis reveals ZmERF055 contributes to waterlogging tolerance in sweetcorn. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108087. [PMID: 37847974 DOI: 10.1016/j.plaphy.2023.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/24/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Waterlogging is a major disaster damaging crop production. However, most sweetcorn cultivars are not tolerant to waterlogging, which severely threatens their production. In order to understand the genetic mechanisms underlying waterlogging tolerance in sweetcorn, this study conducted a comprehensive investigation of sweetcorn waterlogging tolerance at the levels of physiology, biochemistry, and transcriptome in two sweetcorn CSSLs (chromosome segment substitution lines), D120 and D81. We found that D120 showed increased plant height, root length, root area, adventitious root numbers, antioxidant enzyme activities, and aerenchyma area ratio compared to D81. The transcriptome results showed that 2492 and 2351 differentially expressed genes (DEGs) were obtained at 4 h and 8 h of waterlogging treatment, respectively. Genes involved in reactive oxygen species (ROS) homeostasis, photosynthesis, and alcohol fermentation are sensitive in the waterlogging tolerant genotype D120, resulting in enhanced ROS scavenging ability, adventitious roots, and aerenchyma formation. Additionally, ethylene-, auxin-, and ABA-related genes exhibited different responses to waterlogging stress in sweetcorn. We integrated transcriptome and differential chromosomal fragments data and identified that ZmERF055 on chromosome 9 was directly involved in waterlogging stress. ZmERF055-overexpressing plants consistently exhibited significantly increased waterlogging tolerance and ROS homeostasis in Arabidopsis. These results offer a network of plant hormone signaling, ROS homeostasis, and energy metabolism co-modulating waterlogging tolerance in sweetcorn. Additionally, the findings support ZmERF055 as a potential ideal target gene in crop breeding to improve plant waterlogging tolerance.
Collapse
Affiliation(s)
- Faqiang Feng
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Kerui Jiang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Dan Lei
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Shilin Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Huichao Wu
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Gaohong Yue
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, 325006, China.
| | - Bo Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Zhang XM, Duan SG, Xia Y, Li JT, Liu LX, Tang M, Tang J, Sun W, Yi Y. Transcriptomic, Physiological, and Metabolomic Response of an Alpine Plant, Rhododendron delavayi, to Waterlogging Stress and Post-Waterlogging Recovery. Int J Mol Sci 2023; 24:10509. [PMID: 37445685 DOI: 10.3390/ijms241310509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Climate change has resulted in frequent heavy and prolonged rainfall events that exacerbate waterlogging stress, leading to the death of certain alpine Rhododendron trees. To shed light on the physiological and molecular mechanisms behind waterlogging stress in woody Rhododendron trees, we conducted a study of Rhododendron delavayi, a well-known alpine flower species. Specifically, we investigated the physiological and molecular changes that occurred in leaves of R. delavayi subjected to 30 days of waterlogging stress (WS30d), as well as subsequent post-waterlogging recovery period of 10 days (WS30d-R10d). Our findings reveal that waterlogging stress causes a significant reduction in CO2 assimilation rate, stomatal conductance, transpiration rate, and maximum photochemical efficiency of PSII (Fv/Fm) in the WS30d leaves, by 91.2%, 95.3%, 93.3%, and 8.4%, respectively, when compared to the control leaves. Furthermore, the chlorophyll a and total chlorophyll content in the WS30d leaves decreased by 13.5% and 16.6%, respectively. Both WS30d and WS30d-R10d leaves exhibited excessive H2O2 accumulation, with a corresponding decrease in lignin content in the WS30d-R10d leaves. At the molecular level, purine metabolism, glutathione metabolism, photosynthesis, and photosynthesis-antenna protein pathways were found to be primarily involved in WS30d leaves, whereas phenylpropanoid biosynthesis, fatty acid metabolism, fatty acid biosynthesis, fatty acid elongation, and cutin, suberin, and wax biosynthesis pathways were significantly enriched in WS30d-R10d leaves. Additionally, both WS30d and WS30d-R10d leaves displayed a build-up of sugars. Overall, our integrated transcriptomic, physiological, and metabolomic analysis demonstrated that R. delavayi is susceptible to waterlogging stress, which causes irreversible detrimental effects on both its physiological and molecular aspects, hence compromising the tree's ability to fully recover, even under normal growth conditions.
Collapse
Affiliation(s)
- Xi-Min Zhang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Sheng-Guang Duan
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ying Xia
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Jie-Ting Li
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Lun-Xian Liu
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Ming Tang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| | - Jing Tang
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wei Sun
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Yin Yi
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang 550025, China
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Area of Southwest, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
8
|
Zhang K, Chen X, Yuan P, Song C, Song S, Jiao J, Wang M, Hao P, Zheng X, Bai T. Comparative Physiological and Transcriptome Analysis Reveals Potential Pathways and Specific Genes Involved in Waterlogging Tolerance in Apple Rootstocks. Int J Mol Sci 2023; 24:ijms24119298. [PMID: 37298249 DOI: 10.3390/ijms24119298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Apple (Malus × domestica Borkh.) is one of the most cultivated fruit crops in China. Apple trees frequently encounter waterlogging stress, mainly due to excess rainfall, soil compaction, or poor soil drainage, results in yellowing leaves and declined fruit quality and yield in some regions. However, the mechanism underlying the response to waterlogging has not been well elucidated. Therefore, we performed a physiological and transcriptomic analysis to examine the differential responses of two apple rootstocks (waterlogging-tolerant M. hupehensis and waterlogging-sensitive M. toringoides) to waterlogging stress. The results showed that M. toringoides displayed more severe leaf chlorosis during the waterlogging treatment than M. hupehensis. Compared with M. hupehensis, the more severe leaf chlorosis induced by waterlogging stress in M. toringoides was highly correlated with increased electrolyte leakage and superoxide radicals, hydrogen peroxide accumulation, and increased stomata closure. Interestingly, M. toringoides also conveyed a higher ethylene production under waterlogging stress. Furthermore, RNA-seq revealed that a total of 13,913 common differentially expressed genes (DEGs) were differentially regulated between M. hupehensis and M. toringoides under waterlogging stress, especially those DEGs involved in the biosynthesis of flavonoids and hormone signaling. This suggests a possible link of flavonoids and hormone signaling to waterlogging tolerance. Taken together, our data provide the targeted genes for further investigation of the functions, as well as for future molecular breeding of waterlogging-tolerant apple rootstocks.
Collapse
Affiliation(s)
- Kunxi Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaofei Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Penghao Yuan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Shangwei Song
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Jian Jiao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Miaomiao Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengbo Hao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Tuanhui Bai
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Yuan L, Chen M, Wang L, Sasidharan R, Voesenek LACJ, Xiao S. Multi-stress resilience in plants recovering from submergence. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:466-481. [PMID: 36217562 PMCID: PMC9946147 DOI: 10.1111/pbi.13944] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 05/03/2023]
Abstract
Submergence limits plants' access to oxygen and light, causing massive changes in metabolism; after submergence, plants experience additional stresses, including reoxygenation, dehydration, photoinhibition and accelerated senescence. Plant responses to waterlogging and partial or complete submergence have been well studied, but our understanding of plant responses during post-submergence recovery remains limited. During post-submergence recovery, whether a plant can repair the damage caused by submergence and reoxygenation and re-activate key processes to continue to grow, determines whether the plant survives. Here, we summarize the challenges plants face when recovering from submergence, primarily focusing on studies of Arabidopsis thaliana and rice (Oryza sativa). We also highlight recent progress in elucidating the interplay among various regulatory pathways, compare post-hypoxia reoxygenation between plants and animals and provide new perspectives for future studies.
Collapse
Affiliation(s)
- Li‐Bing Yuan
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Mo‐Xian Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Lin‐Na Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Rashmi Sasidharan
- Plant Stress Resilience, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
| | | | - Shi Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Qu M, Zheng Y, Bi L, Yang X, Shang P, Zhou X, Zeng B, Shen B, Li W, Fan Y, Zeng B. Comparative transcriptomic analysis of the gene expression and underlying molecular mechanism of submergence stress response in orchardgrass roots. FRONTIERS IN PLANT SCIENCE 2023; 13:1104755. [PMID: 36704155 PMCID: PMC9871833 DOI: 10.3389/fpls.2022.1104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Submergence stress creates a hypoxic environment. Roots are the first plant organ to face these low-oxygen conditions, which causes damage and affects the plant growth and yield. Orchardgrass (Dactylis glomerata L.) is one of the most important cold-season forage grasses globally. However, their submergence stress-induced gene expression and the underlying molecular mechanisms of orchardgrass roots are still unknown. METHODS Using the submergence-tolerant 'Dianbei' and submergence-sensitive 'Anba', the transcriptomic analysis of orchardgrass roots at different time points of submergence stress (0 h, 8 h, and 24 h) was performed. RESULTS We obtained 118.82Gb clean data by RNA-Seq. As compared with the control, a total of 6663 and 9857 differentially expressed genes (DEGs) were detected in Dianbei, while 7894 and 11215 DEGs were detected in Anba at 8 h and 24 h post-submergence-stress, respectively. Gene Ontology (GO) enrichment analysis obtained 986 terms, while Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis obtained 123 pathways. Among them, the DEGs in plant hormones, mitogen-activated protein kinase (MAPK) and Ca2+ signal transduction were significantly differentially expressed in Dianbei, but not in Anba. DISCUSSION This study was the first to molecularly elucidate the submergence stress tolerance in the roots of two orchardgrass cultivars. These findings not only enhanced our understanding of the orchardgrass submergence tolerance, but also provided a theoretical basis 36 for the cultivation of submergence-tolerant forage varieties.
Collapse
Affiliation(s)
- Minghao Qu
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuqian Zheng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Lei Bi
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xingyun Yang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Panpan Shang
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xiaoli Zhou
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Bingna Shen
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Wenwen Li
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yan Fan
- Institute of Prataculture, Chongqing Academy of Animal Science, Chongqing, China
| | - Bing Zeng
- College of Animal Science and Technology, Southwest University, Chongqing, China
- Chongqing University Herbivore Engineering Research Center, Chongqing, China
| |
Collapse
|
11
|
Ding LN, Liu R, Li T, Li M, Liu XY, Wang WJ, Yu YK, Cao J, Tan XL. Physiological and comparative transcriptome analyses reveal the mechanisms underlying waterlogging tolerance in a rapeseed anthocyanin-more mutant. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:55. [PMID: 35596185 PMCID: PMC9123723 DOI: 10.1186/s13068-022-02155-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Rapeseed (Brassica napus) is the second largest oil crop worldwide. It is widely used in food, energy production and the chemical industry, as well as being an ornamental. Consequently, it has a large economic value and developmental potential. Waterlogging is an important abiotic stress that restricts plant growth and development. However, little is known about the molecular mechanisms underlying waterlogging tolerance in B. napus. RESULTS In the present study, the physiological changes and transcriptomes of germination-stage rapeseed in response to waterlogging stress were investigated in the B. napus cultivar 'Zhongshuang 11' (ZS11) and its anthocyanin-more (am) mutant, which was identified in our previous study. The mutant showed stronger waterlogging tolerance compared with ZS11, and waterlogging stress significantly increased anthocyanin, soluble sugar and malondialdehyde contents and decreased chlorophyll contents in the mutant after 12 days of waterlogging. An RNA-seq analysis identified 1370 and 2336 differently expressed genes (DEGs) responding to waterlogging stress in ZS11 and am, respectively. An enrichment analysis revealed that the DEGs in ZS11 were predominately involved in carbohydrate metabolism, whereas those in the am mutant were particularly enriched in plant hormone signal transduction and response to endogenous stimulation. In total, 299 DEGs were identified as anthocyanin biosynthesis-related structural genes (24) and regulatory genes encoding transcription factors (275), which may explain the increased anthocyanin content in the am mutant. A total of 110 genes clustered in the plant hormone signal transduction pathway were also identified as DEGs, including 70 involved in auxin and ethylene signal transduction that were significantly changed in the mutant. Furthermore, the expression levels of 16 DEGs with putative roles in anthocyanin accumulation and biotic/abiotic stress responses were validated by quantitative real-time PCR as being consistent with the transcriptome profiles. CONCLUSION This study provides new insights into the molecular mechanisms of increased anthocyanin contents in rapeseed in response to waterlogging stress, which should be useful for reducing the damage caused by waterlogging stress and for further breeding new rapeseed varieties with high waterlogging tolerance.
Collapse
Affiliation(s)
- Li-Na Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Rui Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Teng Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Li
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Yan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Wei-Jie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yan-Kun Yu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
12
|
Wang Z, Han Y, Luo S, Rong X, Song H, Jiang N, Li C, Yang L. Calcium peroxide alleviates the waterlogging stress of rapeseed by improving root growth status in a rice-rape rotation field. FRONTIERS IN PLANT SCIENCE 2022; 13:1048227. [PMID: 36466266 PMCID: PMC9718366 DOI: 10.3389/fpls.2022.1048227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/04/2022] [Indexed: 05/16/2023]
Abstract
Waterlogging stress has a negative influence on agricultural production, particularly for rapeseed yield in a rice-rape rotation field. To alleviate the profound impacts of waterlogging stress on rapeseed production, a new fertilization with calcium peroxide (CaO2) was proposed. In this field experiment, with the conventional rape (Brassica napus L.) variety fengyou958 (FY958) and early maturing rape variety xiangyou420 (XY420) as materials, waterlogging was imposed from the bud to flowering stage, and three supplies of CaO2 (0, C1 for the 594 kg hm-2 and C2 for the 864 kg hm-2) were added as basal fertilizer. The results showed that CaO2 significantly reduced the accumulation of fermentation products in roots and alleviated the peroxidation of leaves. The reduced waterlogging stress promoted the root vigor and agronomic characters, such as branches, plant height and stem diameter, accelerated dry matter and nutrients accumulation, and resulting in 22.7% (C1) to 232.8% (C2) higher grain yields in XY420, and 112.4% (C1) to 291.8% (C2) higher grain yields in FY958, respectively. In conclusion, 594 kg hm-2 to 864 kg hm-2 CaO2 application restored the growth of waterlogged rapeseed leaves, and reduced the anaerobic intensity of root, which enhanced the resistance of plants to waterlogging, and improved crop productivity. In a certain range, the higher CaO2 application, the more the yield. This study provides a valid method to prevent damage from flooding in crop fields.
Collapse
Affiliation(s)
- Zhiyuan Wang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Yongliang Han
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Shang Luo
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Xiangmin Rong
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Haixing Song
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Na Jiang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Changwei Li
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
| | - Lan Yang
- College of Resources and Environmental, Hunan Agricultural University, Changsha, China
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Changsha, China
- *Correspondence: Lan Yang,
| |
Collapse
|
13
|
Li Y, Shi LC, Yang J, Qian ZH, He YX, Li MW. Physiological and transcriptional changes provide insights into the effect of root waterlogging on the aboveground part of Pterocarya stenoptera. Genomics 2021; 113:2583-2590. [PMID: 34111522 DOI: 10.1016/j.ygeno.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/31/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
Pterocarya stenoptera is a tree species that occurs along rivers and has high tolerance to waterlogging. Identification of waterlogging response genes in the aboveground part of P. stenoptera will increase understanding of tolerance mechanisms under root waterlogging conditions. In this study, we employed four physiological indicators and comparative transcriptome sequencing to investigate the waterlogging tolerance mechanism in P. stenoptera. The physiological results showed that the aboveground part of P. stenoptera was not obviously affected by waterlogging. P. stenoptera enhanced waterlogging tolerance by increasing the synthesis of alpha-Linolenic acids and flavonoids and activating the jasmonic acid, ethylene, and auxin signaling pathways. Our results confirmed our hypothesis that P. stenoptera, a species that is widely distributed along rivers, has evolved a range of mechanisms in response to waterlogging. Our research will provide new insights for understanding the tolerance mechanism of species to waterlogging.
Collapse
Affiliation(s)
- Yong Li
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Long-Chen Shi
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Jing Yang
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Zhi-Hao Qian
- Innovation Platform of Molecular Biology, College of Landscape and Art, Henan Agricultural University, Zhengzhou, China
| | - Yan-Xia He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Ming-Wan Li
- College of Forestry, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
14
|
Testone G, Sobolev AP, Mele G, Nicolodi C, Gonnella M, Arnesi G, Biancari T, Giannino D. Leaf nutrient content and transcriptomic analyses of endive (Cichorium endivia) stressed by downpour-induced waterlog reveal a gene network regulating kestose and inulin contents. HORTICULTURE RESEARCH 2021; 8:92. [PMID: 33931617 PMCID: PMC8087766 DOI: 10.1038/s41438-021-00513-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 05/03/2023]
Abstract
Endive (Cichorium endivia L.), a vegetable consumed as fresh or packaged salads, is mostly cultivated outdoors and known to be sensitive to waterlogging in terms of yield and quality. Phenotypic, metabolic and transcriptomic analyses were used to study variations in curly- ('Domari', 'Myrna') and smooth-leafed ('Flester', 'Confiance') cultivars grown in short-term waterlog due to rainfall excess before harvest. After recording loss of head weights in all cultivars (6-35%), which was minimal in 'Flester', NMR untargeted profiling revealed variations as influenced by genotype, environment and interactions, and included drop of total carbohydrates (6-50%) and polyols (3-37%), gain of organic acids (2-30%) and phenylpropanoids (98-560%), and cultivar-specific fluctuations of amino acids (-37 to +15%). The analysis of differentially expressed genes showed GO term enrichment consistent with waterlog stress and included the carbohydrate metabolic process. The loss of sucrose, kestose and inulin recurred in all cultivars and the sucrose-inulin route was investigated by covering over 50 genes of sucrose branch and key inulin synthesis (fructosyltransferases) and catabolism (fructan exohydrolases) genes. The lowered expression of a sucrose gene subset together with that of SUCROSE:SUCROSE-1-FRUCTOSYLTRANSFERASE (1-SST) may have accounted for sucrose and kestose contents drop in the leaves of waterlogged plants. Two anti-correlated modules harbouring candidate hub-genes, including 1-SST, were identified by weighted gene correlation network analysis, and proposed to control positively and negatively kestose levels. In silico analysis further pointed at transcription factors of GATA, DOF, WRKY types as putative regulators of 1-SST.
Collapse
Affiliation(s)
- Giulio Testone
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Anatoly Petrovich Sobolev
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Giovanni Mele
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Chiara Nicolodi
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy
| | - Maria Gonnella
- Institute of Sciences of Food Production, CNR. Via G. Amendola 122/O - 70126, Bari, Italy
| | - Giuseppe Arnesi
- Enza Zaden Italia, Strada Statale Aurelia km. 96.400 - 01016 Tarquinia, Viterbo, Italy
| | - Tiziano Biancari
- Enza Zaden Italia, Strada Statale Aurelia km. 96.400 - 01016 Tarquinia, Viterbo, Italy
| | - Donato Giannino
- Institute for Biological Systems, National Research Council (CNR), Via Salaria Km 29,300 - 00015 Monterotondo, Rome, Italy.
| |
Collapse
|
15
|
Iacopino S, Licausi F. The Contribution of Plant Dioxygenases to Hypoxia Signaling. FRONTIERS IN PLANT SCIENCE 2020; 11:1008. [PMID: 32733514 PMCID: PMC7360844 DOI: 10.3389/fpls.2020.01008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 05/08/2023]
Abstract
Dioxygenases catalyze the incorporation of one or two oxygen atoms into target organic substrates. Besides their metabolic role, these enzymes are involved in plant signaling pathways as this reaction is in several instances required for hormone metabolism, to control proteostasis and regulate chromatin accessibility. For these reasons, alteration of dioxygenase expression or activity can affect plant growth, development, and adaptation to abiotic and biotic stresses. Moreover, the requirement of co-substrates and co-factors, such as oxygen, 2-oxoglutarate, and iron (Fe2+), invests dioxygenases with a potential role as cellular sensors for these molecules. For example, inhibition of cysteine deoxygenation under hypoxia elicits adaptive responses to cope with oxygen shortage. However, biochemical and molecular evidence regarding the role of other dioxygenases under low oxygen stresses is still limited, and thus further investigation is needed to identify additional sensing roles for oxygen or other co-substrates and co-factors. Here, we summarize the main signaling roles of dioxygenases in plants and discuss how they control plant growth, development and metabolism, with a focus on the adaptive responses to low oxygen conditions.
Collapse
Affiliation(s)
- Sergio Iacopino
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
| | - Francesco Licausi
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, Pisa, Italy
- *Correspondence: Francesco Licausi,
| |
Collapse
|
16
|
Phytohormone-Mediated Stomatal Response, Escape and Quiescence Strategies in Plants under Flooding Stress. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9020043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Generally, flooding causes waterlogging or submergence stress which is considered as one of the most important abiotic factors that severely hinders plant growth and development. Plants might not complete their life cycle even in short duration of flooding. As biologically intelligent organisms, plants always try to resist or survive under such adverse circumstances by adapting a wide array of mechanisms including hormonal homeostasis. Under this mechanism, plants try to adapt through diverse morphological, physiological and molecular changes, including the closing of stomata, elongating of petioles, hollow stems or internodes, or maintaining minimum physiological activity to store energy to combat post-flooding stress and to continue normal growth and development. Mainly, ethylene, gibberellins (GA) and abscisic acid (ABA) are directly and/or indirectly involved in hormonal homeostasis mechanisms. Responses of specific genes or transcription factors or reactive oxygen species (ROS) maintain the equilibrium between stomatal opening and closing, which is one of the fastest responses in plants when encountering flooding stress conditions. In this review paper, the sequential steps of some of the hormone-dependent survival mechanisms of plants under flooding stress conditions have been critically discussed.
Collapse
|