1
|
Springer A, Krzewska M, Dubas E, Kopeć P, Plačková L, Doležal K, Weigt D, Żur I. Induction of microspore embryogenesis in bread wheat by mannitol pre-treatment is associated with the disruption of endogenous hormone balance and substantial accumulation of auxins. BMC PLANT BIOLOGY 2025; 25:370. [PMID: 40119252 PMCID: PMC11929367 DOI: 10.1186/s12870-025-06389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/12/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Hormonal homeostasis plays a critical role in the regulation of microspore embryogenesis (ME). The balance between endogenous phytohormones must be altered to induce microspore reprogramming from the classical pollen-formation pathway to embryogenic development, but too extensive changes may be detrimental. In the present study, the levels of auxins, cytokinins and abscisic acid were monitored in the anthers of two Polish winter wheat F1 lines and the spring cultivar Pavon highly differentiated in terms of ME effectiveness. Analyses were carried out at subsequent steps of the ME induction procedure that combined low temperature, sodium selenate and mannitol tiller pre-treatment. RESULTS Of all the factors tested, mannitol induced the most profound effect on phytohormones and their homeostasis in wheat anthers. It significantly increased the accumulation of all auxins and decreased the levels of most cytokinins, while the change in ABA content was limited to cv. Pavon. In an attempt to alleviate this hormonal shock, we tested several modifications of the induction medium hormonal composition and found thidiazuron to be the most promising in stimulating the embryogenic development of wheat microspores. CONCLUSIONS The lack of ABA-driven stress defence responses may be one of the reasons for the low effectiveness of ME induction in winter wheat microspore cultures. Low cytokinin level and a disturbed auxin/cytokinin balance may then be responsible for the morphological abnormalities observed during the next phases of embryogenic microspore development. One possible solution is to modify the hormonal composition of the induction medium with thidiazuron identified as the most promising component.
Collapse
Affiliation(s)
- Agnieszka Springer
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland
| | - Lenka Plačková
- Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, Olomouc, 783 71, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Karel Doležal
- Institute of Experimental Botany of the Czech Academy of Sciences v. v. i. (IEB), Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, Olomouc, 783 71, Czech Republic
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, 783 71, Czech Republic
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, 11 Dojazd St, Poznań, 60-632, Poland
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków, 30-239, Poland.
| |
Collapse
|
2
|
Luo P, Zhao Z, Yang F, Zhang L, Li S, Qiao Y, Zhang L, Yang M, Zhou X, Zhao L, Yang Y, Tang X, Shi C. Stress-Induced Autophagy Is Essential for Microspore Cell Fate Transition to the Initial Cell of Androgenesis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39267528 DOI: 10.1111/pce.15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/23/2024] [Accepted: 09/02/2024] [Indexed: 09/17/2024]
Abstract
The isolated microspores can be reprogrammed towards embryogenesis via stress treatment during in vitro culture, and produce (doubled) haploid plants as a breeding source of new genetic variability. However, the mechanism underlying the cell fate transition from gametogenesis to embryogenesis remains largely unknown. Here, we report that autophagy plays a key role in cell fate transition for microspore embryogenesis (referred to as androgenesis) in Nicotiana tabacum. Immunofluorescence and transmission electronic microscopy detection unveiled that autophagy was triggered in microspores following exposure to inductive stress, and a transient wave of the numerous autophagy-related genes (ATGs) expression occurred before the initiation of microspore embryogenesis. Suppression or promotion of the original autophagy levels could inhibit microspore embryogenesis, indicating that stress-induced autophagic homeostasis is essential for cell fate transition. Furthermore, quantitative proteomics analysis revealed that autophagy might be involved in lignin biosynthesis and chromatin decondensation for promoting reprogramming for androgenesis initiation. Altogether, we reveal an essential role of autophagy in the microspore cell fate transition and androgenesis initiation, providing novel insight for understanding this critical developmental process.
Collapse
Affiliation(s)
- Pan Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Zifu Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Lai Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Siyuan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Ying Qiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Liangxinyi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Mingchun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Xiaotong Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Linlin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Xingchun Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Li Y, Zong Y, Li W, Guo G, Zhou L, Xu H, Gao R, Liu C. Transcriptomics integrated with metabolomics reveals the effect of cold stress on rice microspores. BMC PLANT BIOLOGY 2023; 23:521. [PMID: 37891481 PMCID: PMC10605337 DOI: 10.1186/s12870-023-04530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Microspore culture is one of the important biotechnological tools in plant breeding. The induction of microspore embryogenesis is a critical factor that affects the yield of microspore-derived embryo productions. Cold treatment has been reported to reprogram the gametophytic pathway in various plant species. However, the exact mechanism(s) underlying the effect of cold pre-treatment of floral buds on the efficiency of ME is still not clear. RESULTS In this study, the effects of cold stress on the microspore totipotency of rice cultivar Zhonghua 11 were investigated. Our results revealed that a 10-day cold treatment is necessary for microspore embryogenesis initiation. During this period, the survival rate of microspores increased and reached a peak at 7 days post treatment (dpt), before decreasing at 10 dpt. RNA-seq analysis showed that the number of DEGs increased from 3 dpt to 10 dpt, with more downregulated DEGs than upregulated ones at the same time point. GO enrichment analysis showed a shift from 'Response to abiotic stimulus' at 3 dpt to 'Metabolic process' at 7 and 10 dpt, with the most significant category in the cellular component being 'cell wall'. KEGG analysis of the pathways revealed changes during cold treatment. Mass spectrometry was used to evaluate the variations in metabolites at 10 dpt compared to 0 dpt, with more downregulated DEMs being determined in both GC-MS and LC-MS modes. These DEMs were classified into 11 categories, Most of the DEMs belonged to 'lipids and lipid-like molecules'. KEGG analysis of DEMs indicates pathways related to amino acid and nucleotide metabolism being upregulated and those related to carbohydrate metabolism being downregulated. An integration analysis of transcriptomics and metabolomics showed that most pathways belonged to 'Amino acid metabolism' and 'Carbohydrate metabolism'. Four DEMs were identified in the interaction network, with stearidonic acid involving in the most correlations, suggesting the potential role in microspore totipotency. CONCLUSIONS Our findings exhibited the molecular events occurring during stress-induced rice microspore. Pathways related to 'Amino acid metabolism' and 'Carbohydrate metabolism' may play important roles in rice microspore totipotency. Stearidonic acid was identified, which may participate in the initiation of microspore embryogenesis.
Collapse
Affiliation(s)
- Yingbo Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Yingjie Zong
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Wenrui Li
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Guimei Guo
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Longhua Zhou
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Hongwei Xu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China
| | - Runhong Gao
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China.
| | - Chenghong Liu
- Biotech Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China.
- Key Laboratory of Agricultural Genetics and Breeding, Shanghai, China.
| |
Collapse
|
4
|
Wang C, Zhang P, He Y, Huang F, Wang X, Li H, Yuan L, Hou J, Chen G, Wang W, Wu J, Tang X. Exogenous spraying of IAA improved the efficiency of microspore embryogenesis in Wucai (Brassica campestris L.) by affecting the balance of endogenous hormones, energy metabolism, and cell wall degradation. BMC Genomics 2023; 24:380. [PMID: 37415142 DOI: 10.1186/s12864-023-09483-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Microspore embryogenesis is an extraordinarily complicated process, comprehensively regulated by a composite network of physiological and molecular factors, among which hormone is one of the most crucial factors. Auxin is required for stress-induced microspore reprogramming, however, the mechanism of its regulation of microspore embryogenesis is still unclear. RESULTS In this study, we found exogenously spraying 100 mg·L- 1 IAA on the buds of Wucai significantly increased the rate of microspore embryogenesis, and moreover accelerated the process of embryogenesis. Physiological and biochemical tests showed that the contents of amino acids, soluble total sugar, soluble protein, and starch were significantly increased after IAA treatment. Furthermore, exogenously spraying 100 mg·L- 1 IAA significantly enhanced IAA, GA4, and GA9 content, increased catalase (CAT) and malondialdehyde (MDA) activity, and reduced abscisic acid (ABA), MDA and soluble protopectin content, H2O2 and O2·- production rate in the bud with the largest population of late-uninucleate-stage microspores. Transcriptome sequencing was performed on buds respectively treated with 100 mg·L- 1 IAA and fresh water. A total of 2004 DEGs were identified, of which 79 were involved in micropores development, embryonic development and cell wall formation and modification, most of which were upregulated. KEGG and GO analysis revealed that 9.52% of DEGs were enriched in plant hormone synthesis and signal transduction pathways, pentose and glucuronic acid exchange pathways, and oxidative phosphorylation pathways. CONCLUSIONS These findings indicated that exogenous IAA altered the contents of endogenous hormone content, total soluble sugar, amino acid, starch, soluble protein, MDA and protopectin, the activities of CAT and peroxidase (POD), and the production rate of H2O2 and O2·-. Combined with transcriptome analysis, it was found that most genes related to gibberellin (GA) and Auxin (IAA) synthesis and signal transduction, pectin methylase (PME) and polygalacturonase (PGs) genes and genes related to ATP synthesis and electron transport chain were upregulated, and genes related to ABA synthesis and signal transduction were downregulated. These results indicated that exogenous IAA treatment could change the balance of endogenous hormones, accelerate cell wall degradation, promote ATP synthesis and nutrient accumulation, inhibit ROS accumulation, which ultimately promote microspore embryogenesis.
Collapse
Affiliation(s)
- Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
| | - Peiyu Zhang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Yun He
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Furong Huang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Xu Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Hong Li
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jinfeng Hou
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Wenjie Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Jianqiang Wu
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China
| | - Xiaoyan Tang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, 130 West Changjiang Road, Hefei, 230036, Anhui, China.
- Provincial Engineering Laboratory for Horticultural Crop Breeding of Anhui, 130 West of Changjiang Road, Hefei, 230036, Anhui, China.
- Wanjiang Vegetable Industrial Technology Institute, Maanshan, 238200, Anhui, China.
| |
Collapse
|
5
|
Sharma I, Kirti PB, Pati PK. Autophagy: a game changer for plant development and crop improvement. PLANTA 2022; 256:103. [PMID: 36307739 DOI: 10.1007/s00425-022-04004-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Manipulation of autophagic pathway represents a tremendous opportunity for designing climate-smart crops with improved yield and better adaptability to changing environment. For exploiting autophagy to its full potential, identification and comprehensive characterization of adapters/receptor complex and elucidation of its regulatory network in crop plants is highly warranted. Autophagy is a major intracellular trafficking pathway in eukaryotes involved in vacuolar degradation of cytoplasmic constituents, mis-folded proteins, and defective organelles. Under optimum conditions, autophagy operates at a basal level to maintain cellular homeostasis, but under stressed conditions, it is induced further to provide temporal stress relief. Our understanding of this highly dynamic process has evolved exponentially in the past few years with special reference to several plant-specific roles of autophagy. Here, we review the most recent advances in the field of autophagy in plants and discuss its potential implications in designing crops with improved stress and disease-tolerance, enhanced yield potential, and improved capabilities for producing metabolites of high economic value. We also assess the current knowledge gaps and the possible strategies to develop a robust module for biotechnological application of autophagy to enhance bioeconomy and sustainability of agriculture.
Collapse
Affiliation(s)
- Isha Sharma
- AgriBiotech Foundation, PJTS Agriculture University, Rajendranagar, Hyderabad, Telangana, 500032, India.
- International Crops Research Institute for the Semi-Arid Tropics, 502324, Patancheru, Telangana, India.
| | | | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, 140301, India
| |
Collapse
|
6
|
Canonge J, Philippot M, Leblanc C, Potin P, Bodin M. Impedance flow cytometry allows the early prediction of embryo yields in wheat (Triticum aestivum L.) microspore cultures. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110586. [PMID: 33180700 DOI: 10.1016/j.plantsci.2020.110586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 05/12/2023]
Abstract
Haplomethods are key biotechnological tools that make it possible to rapidly produce perfectly homozygous lines, speeding up plant breeding programs. Under specific stress conditions, microspores are reprogrammed toward sporophytic pathways, leading to embryo formation. Various endogenous and exogenous factors affect embryo yield in androgenesis, so the improvement of androgenesis efficiency requires the development of early, reliable and robust reactivity markers. During the last decade, numerous cytological, cellular and biochemical approaches were carried out to finely characterize microspore development and fate during androgenesis. However, the different available markers are often species-dependent, and their development and application are time-consuming and cumbersome. In this study, we show the suitable use of impedance flow cytometry (IFC) to develop new robust, reliable and strong markers of androgenesis reactivity in wheat, leading to: (i) routine monitoring of the viability of heterogeneous cell cultures; (ii) quick and simple evaluation of stress treatment efficiency; and (iii) early prediction of embryo yields from microspore suspensions. IFC can therefore provide the fine characterization of all of the microspore developmental pathways that occur in a cell suspension, for embryogenic microspores as well as pollen-like microspores. IFC technology has become a very useful tool to track and characterize wheat microspores in androgenesis, but can also be adapted to other species and other in vitro cell culture systems.
Collapse
Affiliation(s)
- Julie Canonge
- Vegenov, Pen ar Prat, 29250 Saint-Pol-de-Léon, France
| | | | - Catherine Leblanc
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | - Philippe Potin
- CNRS, Sorbonne Université Sciences, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff, France
| | | |
Collapse
|
7
|
Ibáñez S, Carneros E, Testillano PS, Pérez-Pérez JM. Advances in Plant Regeneration: Shake, Rattle and Roll. PLANTS (BASEL, SWITZERLAND) 2020; 9:E897. [PMID: 32708602 PMCID: PMC7412315 DOI: 10.3390/plants9070897] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/23/2023]
Abstract
Some plant cells are able to rebuild new organs after tissue damage or in response to definite stress treatments and/or exogenous hormone applications. Whole plants can develop through de novo organogenesis or somatic embryogenesis. Recent findings have enlarged our understanding of the molecular and cellular mechanisms required for tissue reprogramming during plant regeneration. Genetic analyses also suggest the key role of epigenetic regulation during de novo plant organogenesis. A deeper understanding of plant regeneration might help us to enhance tissue culture optimization, with multiple applications in plant micropropagation and green biotechnology. In this review, we will provide additional insights into the physiological and molecular framework of plant regeneration, including both direct and indirect de novo organ formation and somatic embryogenesis, and we will discuss the key role of intrinsic and extrinsic constraints for cell reprogramming during plant regeneration.
Collapse
Grants
- BIO2015-64255-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- RTI2018-096505-B-I00 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- AGL2017-82447-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- IDIFEDER 2018/016 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- PROMETEO/2019/117 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
- ACIF/2018/220 Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana
Collapse
Affiliation(s)
- Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain;
| | - Elena Carneros
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Margarita Salas Center of Biological Research, CIB Margarita Salas-CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain; (E.C.); (P.S.T.)
| | | |
Collapse
|
8
|
Li S, Yan H, Mei WM, Tse YC, Wang H. Boosting autophagy in sexual reproduction: a plant perspective. THE NEW PHYTOLOGIST 2020; 226:679-689. [PMID: 31917864 DOI: 10.1111/nph.16414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The key process of sexual reproduction is the successful fusion of the sperm and egg cell. Distinct from dynamic and flagellated animal sperm cells, higher flowering plant sperm cells are immotile. Therefore, plants have evolved a novel reproductive system to achieve fertilization and generate progenies. Plant sexual reproduction consists of multiple steps, mainly including gametophyte development, pollen-pistil recognition, pollen germination, double fertilization and postfertilization. During reproduction, active production, consumption and recycling of cellular components and energy are critically required to achieve fertilization. However, the underlying machinery of cellular degradation and turnover remains largely unexplored. Autophagy, the major catabolic pathway in eukaryotic cells, participates in regulating multiple aspects of plant activities, including abiotic and biotic stress resistance, pathogen response, senescence, nutrient remobilization and plant development. Nevertheless, a key unanswered question is how autophagy regulates plant fertilization and reproduction. Here, we focus on comparing and contrasting autophagy in several key reproductive processes of plant and animal systems to feature important distinctions and highlight future research directions of autophagy in angiosperm reproduction. We further discuss the potential crosstalk between autophagy and programmed cell death, which are often considered as two disconnected events in plant sexual reproduction.
Collapse
Affiliation(s)
- Shanshan Li
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - He Yan
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wei-Ming Mei
- Outpatient Department of Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yu Chung Tse
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment and Department of Biology, Southern University of Science and Technology, Shenzhen, 518005, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Testillano PS. Microspore embryogenesis: targeting the determinant factors of stress-induced cell reprogramming for crop improvement. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2965-2978. [PMID: 30753698 DOI: 10.1093/jxb/ery464] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Under stress, isolated microspores are reprogrammed in vitro towards embryogenesis, producing doubled haploid plants that are useful biotechnological tools in plant breeding as a source of new genetic variability, fixed in homozygous plants in only one generation. Stress-induced cell death and low rates of cell reprogramming are major factors that reduce yield. Knowledge gained in recent years has revealed that initiation and progression of microspore embryogenesis involve a complex network of factors, whose roles are not yet well understood. Here, I review recent findings on the determinant factors underlying stress-induced microspore embryogenesis, focusing on the role of autophagy, cell death, auxin, chromatin modifications, and the cell wall. Autophagy and cell death proteases are crucial players in the response to stress, while cell reprogramming and acquisition of totipotency are regulated by hormonal and epigenetic mechanisms. Auxin biosynthesis, transport, and action are required for microspore embryogenesis. Initial stages involve DNA hypomethylation, H3K9 demethylation, and H3/H4 acetylation. Cell wall remodelling, with pectin de-methylesterification and arabinogalactan protein expression, is necessary for embryo development. Recent reports show that treatments with small modulators of autophagy, proteases, and epigenetic marks reduce cell death and enhance embryogenesis initiation in several crops, opening up new possibilities for improving in vitro embryo production in breeding programmes.
Collapse
Affiliation(s)
- Pilar S Testillano
- Pollen Biotechnology of Crop Plants group, Biological Research Center, CIB-CSIC, Ramiro de Maeztu, Madrid, Spain
| |
Collapse
|