1
|
Drieberg H. WOX out, those teeth are sharp! JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:195-197. [PMID: 39786161 PMCID: PMC11714750 DOI: 10.1093/jxb/erae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025]
Abstract
This article comments on:
Xu L, Fang N, Lu T, Tameshige T, Nakata MT, Jiang Y, Tan L, He H, Zhang X, Huang Y, Li C, Yang Z, Tang W, Nagawa S. 2025. WOX1 controls leaf serration development via temporally restricting BRASSINAZOLE RESISTANT 1 and CUP SHAPED COTYLEDON 3 expression in Arabidopsis. Journal of Experimental Botany 76, 478–492. https://doi.org/10.1093/jxb/erae443
Collapse
Affiliation(s)
- Hannah Drieberg
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072Australia
| |
Collapse
|
2
|
Jing T, Xing Q, Shi Y, Liu X, Müller-Xing R. Depletion of Gibberellin Signaling Up-Regulates LBD16 Transcription and Promotes Adventitious Root Formation in Arabidopsis Leaf Explants. Int J Mol Sci 2024; 25:13340. [PMID: 39769105 PMCID: PMC11678481 DOI: 10.3390/ijms252413340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Adventitious root (AR) formation in plants originates from non-root organs such as leaves and hypocotyls. Auxin signaling is essential for AR formation, but the roles of other phytohormones are less clear. In Arabidopsis, at least two distinct mechanisms can produce ARs, either from hypocotyls as part of the general root architecture or from wounded organs during de novo root regeneration (DNRR). In previous reports, gibberellin acid (GA) appeared to play reverse roles in both types of ARs, since GA treatment blocks etiolation-induced AR formation from hypocotyls, whereas GA synthesis and signaling mutants apparently displayed reduced DNRR from detached leaves. In order to clarify this contradiction, we employed the GA biosynthesis inhibitor paclobutrazol (PBZ) and found that PBZ had positive effects on both types of AR formation in Arabidopsis. Consistently, GA treatment had negative effects on both AR formation mechanisms, while loss of GA synthesis and signaling promoted DNRR under our conditions. Our results show that PBZ treatment can rescue declined AR formation in difficult-to-root leaf explants such as erecta receptor mutants. Furthermore, transcriptional profiling revealed that PBZ treatment altered GA, brassinosteroids, and auxin responses, which included the up-regulation of LBD16 that is well known for its pivotal role in AR initiation.
Collapse
Affiliation(s)
- Tingting Jing
- College of Life Science, Northeast Forestry University, Harbin 150040, China (X.L.)
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China;
- Plant Epigenetics and Development, Lushan Botanical Garden, Chinese Academy of Sciences, Nanchang 330114, China
| | - Qian Xing
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China;
- Plant Epigenetics and Development, Lushan Botanical Garden, Chinese Academy of Sciences, Nanchang 330114, China
- College of Life Science, Nanchang University, Nanchang 330047, China
| | - Yunfeng Shi
- College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xuemei Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China (X.L.)
| | - Ralf Müller-Xing
- Jiangxi Provincial Key Laboratory of Plant Germplasm Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China;
- Plant Epigenetics and Development, Lushan Botanical Garden, Chinese Academy of Sciences, Nanchang 330114, China
- College of Life Science, Nanchang University, Nanchang 330047, China
| |
Collapse
|
3
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
4
|
Liu X, Xing Q, Liu X, Müller-Xing R. Expression of the Populus Orthologues of AtYY1, YIN and YANG Activates the Floral Identity Genes AGAMOUS and SEPALLATA3 Accelerating Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24087639. [PMID: 37108801 PMCID: PMC10146089 DOI: 10.3390/ijms24087639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
YIN YANG 1 (YY1) encodes a dual-function transcription factor, evolutionary conserved between the animal and plant kingdom. In Arabidopsis thaliana, AtYY1 is a negative regulator of ABA responses and floral transition. Here, we report the cloning and functional characterization of the two AtYY1 paralogs, YIN and YANG (also named PtYY1a and PtYY1b) from Populus (Populus trichocarpa). Although the duplication of YY1 occurred early during the evolution of the Salicaceae, YIN and YANG are highly conserved in the willow tree family. In the majority of Populus tissues, YIN was more strongly expressed than YANG. Subcellular analysis showed that YIN-GFP and YANG-GFP are mainly localized in the nuclei of Arabidopsis. Stable and constitutive expression of YIN and YANG resulted in curled leaves and accelerated floral transition of Arabidopsis plants, which was accompanied by high expression of the floral identity genes AGAMOUS (AG) and SEPELLATA3 (SEP3) known to promote leaf curling and early flowering. Furthermore, the expression of YIN and YANG had similar effects as AtYY1 overexpression to seed germination and root growth in Arabidopsis. Our results suggest that YIN and YANG are functional orthologues of the dual-function transcription factor AtYY1 with similar roles in plant development conserved between Arabidopsis and Populus.
Collapse
Affiliation(s)
- Xinying Liu
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences (CAS), Jiujiang 332900, China
| | - Xuemei Liu
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences (CAS), Jiujiang 332900, China
| |
Collapse
|
5
|
Fan L, Wei D, Yu X, Yu F, Wang J, Sun G, Alatengsuhe, Zhang L, Zhang G, Yang H. Effects of SpsNAC042 transgenic Populus hopeiensis on root development, leaf morphology and stress resistance. BREEDING SCIENCE 2023; 73:180-192. [PMID: 37404353 PMCID: PMC10316303 DOI: 10.1270/jsbbs.22079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023]
Abstract
To identify the function of the SpsNAC042 gene and its response to salt and drought stress, the SpsNAC042 gene was transformed into Populus hopeiensis by the Agrobacterium-mediated leaf disc method, and the phenotypic, physiological changes and related genes expression of transgenic lines were analyzed. The results showed that the number and length of roots of transgenic lines increased significantly. The leaves of transgenic lines curled inward. Under salt and simulated drought stress, the transgenic lines showed improved tolerance to salt and drought. The activities of SOD, POD, CAT and proline content in the transgenic lines were significantly increased, and the reduction rates of total chlorophyll and MDA content were significantly decreased, which indicated that the transgenic lines showed strong physiological responses under stress. Meanwhile, the gene expression of MPK6, SOS1, HKT1 and P5CS1 were significantly upregulated, and the gene expression of PRODH1 was significantly downregulated, which preliminarily verified the stress regulation mechanism that SpsNAC042 might activate. The above results showed that the SpsNAC042 gene could promote root development, make leaf morphology curl, and enhance P. hopeiensis tolerance to stress.
Collapse
Affiliation(s)
- Lijiao Fan
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongshan Wei
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xingwang Yu
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fengqiang Yu
- Development Center of Forestry and Grassland, Ordos 017000, China
| | - Jiameng Wang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Guirong Sun
- General Headquarters of Ordos Afforestation, Ordos 017000, China
| | - Alatengsuhe
- General Headquarters of Ordos Afforestation, Ordos 017000, China
| | - Li Zhang
- General Headquarters of Ordos Afforestation, Ordos 017000, China
| | - Guosheng Zhang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haifeng Yang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Tian J, Xing Q, Jing T, Fan X, Zhang Q, Müller-Xing R. The epigenetic regulator ULTRAPETALA1 suppresses de novo root regeneration from Arabidopsis leaf explants. PLANT SIGNALING & BEHAVIOR 2022; 17:2031784. [PMID: 35164655 PMCID: PMC9746478 DOI: 10.1080/15592324.2022.2031784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plants have the potency to regenerate adventitious roots from aerial organs after detachment. In Arabidopsis thaliana, de novo root regeneration (DNRR) from leaf explants is triggered by wounding signaling that rapidly induces the expression of the ETHYLENE RESPONSE FACTOR (ERF) transcription factors ERF109 and ABR1 (ERF111). In turn, the ERFs promote the expression of ASA1, an essential enzyme of auxin biosynthesis, which contributes to rooting by providing high levels of auxin near the wounding side of the leaf. Here, we show that the loss of the epigenetic regulator ULTRAPETALA1 (ULT1), which interacts with Polycomb and Trithorax Group proteins, accelerates and reinforces adventitious root formation. Expression of ERF109 and ASA1 was increased in ult1 mutants, whereas ABR1 was not significantly changed. Cultivation of explants on media with exogenous auxin equates adventitious root formation in wild-type with ult1 mutants, suggesting that ULT1 negatively regulates DNRR by suppressing auxin biosynthesis. Based on these findings, we propose that ULT1 is involved in a novel mechanism that prevents overproliferation of adventitious roots during DNRR.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Tingting Jing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Xing Fan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Qingzhu Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration Ministry of Education, Northeast Forestry University, Harbin, China
- College of Life Science, Institute of Genetics, Northeast Forestry University, Harbin, China
| | - Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- CONTACT Ralf Müller-Xing Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| |
Collapse
|
7
|
Müller-Xing R, Xing Q. The plant stem-cell niche and pluripotency: 15 years of an epigenetic perspective. FRONTIERS IN PLANT SCIENCE 2022; 13:1018559. [PMID: 36388540 PMCID: PMC9659954 DOI: 10.3389/fpls.2022.1018559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pluripotent stem-cells are slowly dividing cells giving rise to daughter cells that can either differentiate to new tissues and organs, or remain stem-cells. In plants, stem-cells are located in specific niches of the shoot and root apical meristems (SAMs and RAMs). After ablation of stem-cell niches, pluripotent meristematic cells can establish new stem-cells, whereas the removal of the whole meristem destructs the regeneration process. In tissue cultures, after detached plant organs are transferred to rooting or callus induction medium (G5 or CIM), vasculature-associated pluripotent cells (VPCs) immediately start proliferation to form adventitious roots or callus, respectively, while other cell types of the organ explants basically play no part in the process. Hence, in contrast to the widely-held assumption that all plant cells have the ability to reproduce a complete organism, only few cell types are pluripotent in practice, raising the question how pluripotent stem-cells differ from differentiated cells. It is now clear that, in addition to gene regulatory networks of pluripotency factors and phytohormone signaling, epigenetics play a crucial role in initiation, maintenance and determination of plant stem-cells. Although, more and more epigenetic regulators have been shown to control plant stem-cell fate, only a few studies demonstrate how they are recruited and how they change the chromatin structure and transcriptional regulation of pluripotency factors. Here, we highlight recent breakthroughs but also revisited classical studies of epigenetic regulation and chromatin dynamics of plant stem-cells and their pluripotent precursor-cells, and point out open questions and future directions.
Collapse
|
8
|
Wei L, Wen S, Ma J, Tu Z, Zhu S, Zhai X, Li H. Overexpression of LtuHB6 from Liriodendron tulipifera causes lobed-leaf formation in Arabidopsis thaliana. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1875-1887. [PMID: 36484027 PMCID: PMC9723050 DOI: 10.1007/s12298-022-01254-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Liriodendron tulipifera L. is an ornamental tree species with extraordinarily lobed leaves. However, the mechanisms underlying lobed leaf formation in plants remain unclear. The transcription factor, ARABIDOPSIS THALIANA HOMEBOX 6 (HB6), plays a role in regulating leaf margin development. HB6 is involved in cell division and differentiation of developmental organs and negatively regulates abscisic acid (ABA) signal transmission under external abiotic stress; it is unclear whether HB6 performs a pivotal role in leaf morphogenesis in L. tulipifera. In this study, full-length LtuHB6 from L. tulipifera was heterologously expressed in tobacco and Arabidopsis thaliana; its expression pattern was analyzed to determine its potential role in leaf development. In addition, LtuHB6 is localized in the nucleus and cell membrane of tobacco leaves. The expression of LtuHB6 was highest in mature leaves compared to the other stages of leaf development (bud growth, young leaves, and leaf senescence). Transgenic A. thaliana plants overexpressing LtuHB6 exhibited an abnormal phenotype with lobed leaves. Moreover, LtuHB6 overexpression significantly affected the expression of seven genes related to leaf serration in the initial stage of leaf primordia and altered the expression levels of hormonal genes. Our findings indicate that LtuHB6 is an essential regulatory factor in L. tulipifera lobed-leaf formation and is involved in regulating and responding to hormones. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01254-9.
Collapse
Affiliation(s)
- Lingmin Wei
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Shaoying Wen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Jikai Ma
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Shenghua Zhu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Xinyu Zhai
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| | - Huogen Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037 China
| |
Collapse
|
9
|
Müller-Xing R, Ardiansyah R, Xing Q, Faivre L, Tian J, Wang G, Zheng Y, Wang X, Jing T, de Leau E, Chen S, Chen S, Schubert D, Goodrich J. Polycomb proteins control floral determinacy by H3K27me3-mediated repression of pluripotency genes in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2385-2402. [PMID: 35045165 DOI: 10.1093/jxb/erac013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Polycomb group (PcG) protein-mediated histone methylation (H3K27me3) controls the correct spatiotemporal expression of numerous developmental regulators in Arabidopsis. Epigenetic silencing of the stem cell factor gene WUSCHEL (WUS) in floral meristems (FMs) depends on H3K27me3 deposition by PcG proteins. However, the role of H3K27me3 in silencing of other meristematic regulator and pluripotency genes during FM determinacy has not yet been studied. To this end, we report the genome-wide dynamics of H3K27me3 levels during FM arrest and the consequences of strongly depleted PcG activity on early flower morphogenesis including enlarged and indeterminate FMs. Strong depletion of H3K27me3 levels results in misexpression of the FM identity gene AGL24, which partially causes floral reversion leading to ap1-like flowers and indeterminate FMs ectopically expressing WUS and SHOOT MERISTEMLESS (STM). Loss of STM can rescue supernumerary floral organs and FM indeterminacy in H3K27me3-deficient flowers, indicating that the hyperactivity of the FMs is at least partially a result of ectopic STM expression. Nonetheless, WUS remained essential for the FM activity. Our results demonstrate that PcG proteins promote FM determinacy at multiple levels of the floral gene regulatory network, silencing initially floral regulators such as AGL24 that promotes FM indeterminacy and, subsequently, meristematic pluripotency genes such as WUS and STM during FM arrest.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| | - Rhomi Ardiansyah
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| | - Léa Faivre
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Jingjing Tian
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guohua Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Information and Computer Engineering College, Northeast Forestry University, Harbin, China
| | - Yucai Zheng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Xue Wang
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Tingting Jing
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Erica de Leau
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Daniel Schubert
- Epigenetics of Plants, Freie Universität Berlin, Berlin, Germany
| | - Justin Goodrich
- Institute of Molecular Plant Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Xiong Y, Xing Q, Müller-Xing R. A novel UV-B priming system reveals an UVR8-depedent memory, which provides resistance against UV-B stress in Arabidopsis leaves. PLANT SIGNALING & BEHAVIOR 2021; 16:1879533. [PMID: 33632077 PMCID: PMC7971206 DOI: 10.1080/15592324.2021.1879533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Single treatment of plants with pathogens like Pseudomonas syringae can trigger systemic acquired resistance (SAR) that lasts several days to several weeks in Arabidopsis thaliana. Similar primed resistances were described for abiotic stresses like drought and heat stress. Most studies about plant resistance to ultraviolet (UV)-radiation used low UV-B radiations over a long period. These experimental designs make it difficult to distinguish acclimation effects from real cellular memory which facilitate transcriptional and other responses to a second UV-radiation after a latent phase. Here we present a novel UV-B priming system. We demonstrate that a single UV-B treatment, which causes neither visible damage nor accumulation of pigments, can stimulate resistance against UV-B stress. After a second damaging UV-B treatment, UV-primed plants showed significantly reduced damage in comparison to non-primed plants. Furthermore, the acquirement of the induced UV-B resistance was impaired in uvr8-6 mutants suggesting that the UV-B receptor is essential for UV-B stress memory in Arabidopsis. We discuss advantages and limits of our UV-B priming system which will be a powerful tool to investigate UV-B memory in future studies.
Collapse
Affiliation(s)
- Ying Xiong
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Qian Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| | - Ralf Müller-Xing
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- Plant Epigenetics and Development, Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Hanano S, Tomatsu H, Ohnishi A, Kobayashi K, Kondo Y, Betsuyaku S, Takita E, Ogata Y, Ozawa K, Suda K, Hosouchi T, Nagase T, Suzuki H, Sakurai N, Masumoto H, Fukuda H, Shibata D. An Artificial Conversion of Roots into Organs with Shoot Stem Characteristics by Inducing Two Transcription Factors. iScience 2020; 23:101332. [PMID: 32668199 PMCID: PMC7385925 DOI: 10.1016/j.isci.2020.101332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 02/29/2020] [Accepted: 06/28/2020] [Indexed: 11/19/2022] Open
Abstract
Somatic plant cells can regenerate shoots and/or roots or adventitious embryonic calluses, which may induce organ formation under certain conditions. Such regenerations occur via dedifferentiation of somatic cells, induction of organs, and their subsequent outgrowth. Despite recent advances in understanding of plant regeneration, many details of shoot induction remain unclear. Here, we artificially induced shoot stem-like green organs (SSOs) in Arabidopsis thaliana roots via simultaneous induction of two transcription factors (TFs), ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 25 (ATHB25, At5g65410) and the B3 family transcription factor REPRODUCTIVE MERISTEM 7 (REM7, At3g18960). The SSOs exhibited negative gravitropism and differentiated vascular bundle phenotypes. The ATHB25/REM7 induced the expression of genes controlling shoot stem characteristics by ectopic expression in roots. Intriguingly, the restoration of root growth was seen in the consecutive and adjacent parts of the SSOs under gene induction conditions. Our findings thus provide insights into the development and regeneration of plant shoot stems. Co-induction of ATHB25 and REM7 produces shoot stem-like organs (SSOs) in roots SSOs exhibit negative gravitropism and differentiated vascular bundles Shoot- and root-specific genes are up- and down-regulated, respectively, in SSOs The restoration of normal root growth follows the SSO formation
Collapse
Affiliation(s)
- Shigeru Hanano
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
| | - Hajime Tomatsu
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Ai Ohnishi
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Koichi Kobayashi
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shigeyuki Betsuyaku
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Eiji Takita
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Yoshiyuki Ogata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Keishi Ozawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kunihiro Suda
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Tsutomu Hosouchi
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Takahiro Nagase
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan; The Kisarazu Laboratory, Graduate School of Life Sciences, Tohoku University, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hideyuki Suzuki
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Nozomu Sakurai
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Masumoto
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan; The Kisarazu Laboratory, Graduate School of Life Sciences, Tohoku University, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
| |
Collapse
|