1
|
Chakraborty S, Venkataraman M, Infante V, Pfleger BF, Ané JM. Scripting a new dialogue between diazotrophs and crops. Trends Microbiol 2024; 32:577-589. [PMID: 37770375 PMCID: PMC10950843 DOI: 10.1016/j.tim.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Diazotrophs are bacteria and archaea that can reduce atmospheric dinitrogen (N2) into ammonium. Plant-diazotroph interactions have been explored for over a century as a nitrogen (N) source for crops to improve agricultural productivity and sustainability. This scientific quest has generated much information about the molecular mechanisms underlying the function, assembly, and regulation of nitrogenase, ammonium assimilation, and plant-diazotroph interactions. This review presents various approaches to manipulating N fixation activity, ammonium release by diazotrophs, and plant-diazotroph interactions. We discuss the research avenues explored in this area, propose potential future routes, emphasizing engineering at the metabolic level via biorthogonal signaling, and conclude by highlighting the importance of biocontrol measures and public acceptance.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA; Department of Agronomy, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Cope KR, Prates ET, Miller JI, Demerdash ON, Shah M, Kainer D, Cliff A, Sullivan KA, Cashman M, Lane M, Matthiadis A, Labbé J, Tschaplinski TJ, Jacobson DA, Kalluri UC. Exploring the role of plant lysin motif receptor-like kinases in regulating plant-microbe interactions in the bioenergy crop Populus. Comput Struct Biotechnol J 2022; 21:1122-1139. [PMID: 36789259 PMCID: PMC9900275 DOI: 10.1016/j.csbj.2022.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/18/2022] [Accepted: 12/30/2022] [Indexed: 01/02/2023] Open
Abstract
For plants, distinguishing between mutualistic and pathogenic microbes is a matter of survival. All microbes contain microbe-associated molecular patterns (MAMPs) that are perceived by plant pattern recognition receptors (PRRs). Lysin motif receptor-like kinases (LysM-RLKs) are PRRs attuned for binding and triggering a response to specific MAMPs, including chitin oligomers (COs) in fungi, lipo-chitooligosaccharides (LCOs), which are produced by mycorrhizal fungi and nitrogen-fixing rhizobial bacteria, and peptidoglycan in bacteria. The identification and characterization of LysM-RLKs in candidate bioenergy crops including Populus are limited compared to other model plant species, thus inhibiting our ability to both understand and engineer microbe-mediated gains in plant productivity. As such, we performed a sequence analysis of LysM-RLKs in the Populus genome and predicted their function based on phylogenetic analysis with known LysM-RLKs. Then, using predictive models, molecular dynamics simulations, and comparative structural analysis with previously characterized CO and LCO plant receptors, we identified probable ligand-binding sites in Populus LysM-RLKs. Using several machine learning models, we predicted remarkably consistent binding affinity rankings of Populus proteins to CO. In addition, we used a modified Random Walk with Restart network-topology based approach to identify a subset of Populus LysM-RLKs that are functionally related and propose a corresponding signal transduction cascade. Our findings provide the first look into the role of LysM-RLKs in Populus-microbe interactions and establish a crucial jumping-off point for future research efforts to understand specificity and redundancy in microbial perception mechanisms.
Collapse
Affiliation(s)
- Kevin R. Cope
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Erica T. Prates
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - John I. Miller
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Omar N.A. Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Manesh Shah
- Genome Science and Technology, The University of Tennessee–Knoxville, Knoxville, TN 37996, USA
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Ashley Cliff
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Kyle A. Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew Lane
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Anna Matthiadis
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville 37996, USA
| | - Udaya C. Kalluri
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
3
|
Irving TB, Chakraborty S, Maia LGS, Knaack S, Conde D, Schmidt HW, Triozzi PM, Simmons CH, Roy S, Kirst M, Ané JM. An LCO-responsive homolog of NODULE INCEPTION positively regulates lateral root formation in Populus sp. PLANT PHYSIOLOGY 2022; 190:1699-1714. [PMID: 35929094 PMCID: PMC9614479 DOI: 10.1093/plphys/kiac356] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The transcription factor NODULE INCEPTION (NIN) has been studied extensively for its multiple roles in root nodule symbiosis within plants of the nitrogen-fixing clade (NFC) that associate with soil bacteria, such as rhizobia and Frankia. However, NIN homologs are present in plants outside the NFC, suggesting a role in other developmental processes. Here, we show that the biofuel crop Populus sp., which is not part of the NFC, contains eight copies of NIN with diversified protein sequence and expression patterns. Lipo-chitooligosaccharides (LCOs) are produced by rhizobia and a wide range of fungi, including mycorrhizal ones, and act as symbiotic signals that promote lateral root formation. RNAseq analysis of Populus sp. treated with purified LCO showed induction of the PtNIN2 subfamily. Moreover, the expression of PtNIN2b correlated with the formation of lateral roots and was suppressed by cytokinin treatment. Constitutive expression of PtNIN2b overcame the inhibition of lateral root development by cytokinin under high nitrate conditions. Lateral root induction in response to LCOs likely represents an ancestral function of NIN retained and repurposed in nodulating plants, as we demonstrate that the role of NIN in LCO-induced root branching is conserved in both Populus sp. and legumes. We further established a visual marker of LCO perception in Populus sp. roots, the putative sulfotransferase PtSS1 that can be used to study symbiotic interactions with the bacterial and fungal symbionts of Populus sp.
Collapse
Affiliation(s)
| | | | - Lucas Gontijo Silva Maia
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
- Department of Agronomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Sara Knaack
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Daniel Conde
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Henry W Schmidt
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Paolo M Triozzi
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Carl H Simmons
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53715, USA
| | - Matias Kirst
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida 32611, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
4
|
Byregowda R, Prasad SR, Oelmüller R, Nataraja KN, Prasanna Kumar MK. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. Int J Mol Sci 2022; 23:ijms23169194. [PMID: 36012460 PMCID: PMC9408852 DOI: 10.3390/ijms23169194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
In the wake of changing climatic conditions, plants are frequently exposed to a wide range of biotic and abiotic stresses at various stages of their development, all of which negatively affect their growth, development, and productivity. Drought is one of the most devastating abiotic stresses for most cultivated crops, particularly in arid and semiarid environments. Conventional breeding and biotechnological approaches are used to generate drought-tolerant crop plants. However, these techniques are costly and time-consuming. Plant-colonizing microbes, notably, endophytic fungi, have received increasing attention in recent years since they can boost plant growth and yield and can strengthen plant responses to abiotic stress. In this review, we describe these microorganisms and their relationship with host plants, summarize the current knowledge on how they “reprogram” the plants to promote their growth, productivity, and drought tolerance, and explain why they are promising agents in modern agriculture.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
| | | | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University, 07743 Jena, Germany
- Correspondence:
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore 560065, India
| | - M. K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore 560065, India
| |
Collapse
|
5
|
Villalobos Solis MI, Engle NL, Spangler MK, Cottaz S, Fort S, Maeda J, Ané JM, Tschaplinski TJ, Labbé JL, Hettich RL, Abraham PE, Rush TA. Expanding the Biological Role of Lipo-Chitooligosaccharides and Chitooligosaccharides in Laccaria bicolor Growth and Development. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:808578. [PMID: 37746234 PMCID: PMC10512320 DOI: 10.3389/ffunb.2022.808578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 09/26/2023]
Abstract
The role of lipo-chitooligosaccharides (LCOs) as signaling molecules that mediate the establishment of symbiotic relationships between fungi and plants is being redefined. New evidence suggests that the production of these molecular signals may be more of a common trait in fungi than what was previously thought. LCOs affect different aspects of growth and development in fungi. For the ectomycorrhizal forming fungi, Laccaria bicolor, the production and effects of LCOs have always been studied with a symbiotic plant partner; however, there is still no scientific evidence describing the effects that these molecules have on this organism. Here, we explored the physiological, molecular, and metabolomic changes in L. bicolor when grown in the presence of exogenous sulfated and non-sulfated LCOs, as well as the chitooligomers, chitotetraose (CO4), and chitooctaose (CO8). Physiological data from 21 days post-induction showed reduced fungal growth in response to CO and LCO treatments compared to solvent controls. The underlying molecular changes were interrogated by proteomics, which revealed substantial alterations to biological processes related to growth and development. Moreover, metabolite data showed that LCOs and COs caused a downregulation of organic acids, sugars, and fatty acids. At the same time, exposure to LCOs resulted in the overproduction of lactic acid in L. bicolor. Altogether, these results suggest that these signals might be fungistatic compounds and contribute to current research efforts investigating the emerging impacts of these molecules on fungal growth and development.
Collapse
Affiliation(s)
| | - Nancy L. Engle
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Margaret K. Spangler
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sylvain Cottaz
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Sébastien Fort
- Université Grenoble Alpes, CNRS, CERMAV, Grenoble, France
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Jesse L. Labbé
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert L. Hettich
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Paul E. Abraham
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Tomás A. Rush
- Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|