1
|
Ren C, Aini N, Kuang Y, Lin Y, Liang Z. Sensing, Adapting and Thriving: How Fruit Crops Combat Abiotic Stresses. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40205704 DOI: 10.1111/pce.15504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 04/11/2025]
Abstract
Production of high-yield and high-quality fruits is always the long-term objective of fruit crop cultivation, which, however, is challenged by various abiotic stresses such as drought, extreme temperatures and high salinity, and the adverse impacts of abiotic stresses on fruit crops are exacerbated by climate change in recent years. To cope with these environmental stressors, fruit crops have evolved adaptative strategies involving physiological changes and molecular regulation. In this review, we summarise the relevent changes in photosynthesis, osmotic and reactive oxygen species (ROS) equilibrium, metabolism and protein homeostasis in response to abiotic stresses. Moreover, perception of environmental stimuli as well as recent progress of underlying regulatory mechanisms is also discussed. Based on our current knowledge, possible strategies for stress resilience improvement in fruit crops are accordingly proposed. In addition, we also discuss the challenges in identification of key nodes in plant responses to multiple stresses and development of stress-resilient fruit crops, and addressing these issues in the future would advance our understanding of how fruit crops combat abiotic stresses and facilitate the breeding of superior fruit crops that can adapt to and thrive in the changing environments.
Collapse
Affiliation(s)
- Chong Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nuremanguli Aini
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yangfu Kuang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Lin
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Qian Z, He L, Li F. Understanding cold stress response mechanisms in plants: an overview. FRONTIERS IN PLANT SCIENCE 2024; 15:1443317. [PMID: 39568458 PMCID: PMC11576170 DOI: 10.3389/fpls.2024.1443317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Low-temperature stress significantly impacts plant growth, development, yield, and geographical distribution. However, during the long-term process of evolution, plants have evolved complicated mechanisms to resist low-temperature stress. The cold tolerance trait is regulated by multiple pathways, such as the Ca2+ signaling cascade, mitogen-activated protein kinase (MAPK) cascade, inducer of CBF expression 1 (ICE1)-C-repeat binding factor (CBF)-cold-reulated gene (COR) transcriptional cascade, reactive oxygen species (ROS) homeostasis regulation, and plant hormone signaling. However, the specific responses of these pathways to cold stress and their interactions are not fully understood. This review summarizes the response mechanisms of plants to cold stress from four aspects, including cold signal perception and transduction, ICE1-CBF-COR transcription cascade regulation, ROS homeostasis regulation and plant hormone signal regulation. It also elucidates the mechanism of cold stress perception and Ca2+ signal transduction in plants, and proposes the important roles of transcription factors (TFs), post-translational modifications (PTMs), light signals, circadian clock factors, and interaction proteins in the ICE1-CBF-COR transcription cascade. Additionally, we analyze the importance of ROS homeostasis and plant hormone signaling pathways in plant cold stress response, and explore the cross interconnections among the ICE1-CBF-COR cascade, ROS homeostasis, and plant hormone signaling. This comprehensive review enhances our understanding of the mechanism of plant cold tolerance and provides a molecular basis for genetic strategies to improve plant cold tolerance.
Collapse
Affiliation(s)
- Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Li F, Liu B, Zhang H, Zhang J, Cai J, Cui J. Integrative multi-omics analysis of chilling stress in pumpkin (Cucurbita moschata). BMC Genomics 2024; 25:1042. [PMID: 39501146 PMCID: PMC11539673 DOI: 10.1186/s12864-024-10939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Pumpkin (Cucurbita moschata) is an important vegetable crop that often suffers from low-temperature stress during growth. However, the molecular mechanism involved in its response to chilling stress remains unknown. In this study, we comprehensively investigated the effect of chilling stress in pumpkin seedlings by conducting physiological, transcriptomic, and metabolomic analyses. RESULTS Under chilling stress, there was an overall increase in relative electrical conductivity, along with malondialdehyde, soluble sugar, and soluble protein contents, but decreased superoxide dismutase and peroxidase activities and chlorophyll contents in seedling leaves compared with controls. Overall, 5,780 differentially expressed genes (DEGs) and 178 differentially expressed metabolites (DEMs) were identified under chilling stress. Most DEGs were involved in plant hormone signal transduction and the phenylpropanoid biosynthesis pathway, and ERF, bHLH, WRKY, MYB, and HSF transcription factors were induced. Metabolomic analysis revealed that the contents of salicylic acid (SA), phenylalanine, and tyrosine increased in response to chilling stress. The findings indicated that the SA signaling and phenylpropanoid biosynthesis pathways are key to regulating the responses to chilling stress in pumpkins. CONCLUSION Overall, our study provides valuable insights into the comprehensive response of C. moschata to chilling stress, enriching the theoretical basis of this mechanism and facilitating the development of molecular breeding strategies for pumpkin tolerance to chilling stress.
Collapse
Affiliation(s)
- Fengmei Li
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China.
| | - Bobo Liu
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Hui Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Jiuming Zhang
- College of Biological Engineering, Qingdao University of Science & Technology, Qingdao, Shandong, China
| | - Jinling Cai
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin, China
| | - Jian Cui
- Qingdao Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Zhang M, Zhang M, Wang J, Dai S, Zhang M, Meng Q, Ma N, Zhuang K. Salicylic acid regulates two photosystem II protection pathways in tomato under chilling stress mediated by ETHYLENE INSENSITIVE 3-like proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1385-1404. [PMID: 36948885 DOI: 10.1111/tpj.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/10/2023] [Indexed: 06/17/2023]
Abstract
Chilling stress seriously impairs photosynthesis and activates a series of molecular responses in plants. Previous studies have shown that ETHYLENE INSENSITIVE 3 (EIN3) and EIN3-like (SlEIL) proteins mediate ethylene signaling and reduce plant tolerance to freezing in tomato (Solanum lycopersicum). However, the specific molecular mechanisms underlying an EIN3/EILs-mediated photoprotection pathway under chilling stress are unclear. Here, we discovered that salicylic acid (SA) participates in photosystem II (PSII) protection via SlEIL2 and SlEIL7. Under chilling stress, the phenylalanine ammonia-lyase gene SlPAL5 plays an important role in the production of SA, which also induces WHIRLY1 (SlWHY1) transcription. The resulting accumulation of SlWHY1 activates SlEIL7 expression under chilling stress. SlEIL7 then binds to and blocks the repression domain of the heat shock factor SlHSFB-2B, releasing its inhibition of HEAT SHOCK PROTEIN 21 (HSP21) expression to maintain PSII stability. In addition, SlWHY1 indirectly represses SlEIL2 expression, allowing the expression of l-GALACTOSE-1-PHOSPHATE PHOSPHATASE3 (SlGPP3). The ensuing higher SlGPP3 abundance promotes the accumulation of ascorbic acid (AsA), which scavenges reactive oxygen species produced upon chilling stress and thus protects PSII. Our study demonstrates that SlEIL2 and SlEIL7 protect PSII under chilling stress via two different SA response mechanisms: one involving the antioxidant AsA and the other involving the photoprotective chaperone protein HSP21.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jieyu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shanshan Dai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Minghui Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingwei Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nana Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Kunyang Zhuang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
5
|
Qi X, Wan C, Zhang X, Sun W, Liu R, Wang Z, Wang Z, Ling F. Effects of histone methylation modification on low temperature seed germination and growth of maize. Sci Rep 2023; 13:5196. [PMID: 36997660 PMCID: PMC10063631 DOI: 10.1038/s41598-023-32451-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Low temperature is a limiting factor of seed germination and plant growth. Although there is a lot information on the response of maize to low temperatures, there is still poorly description of how histone methylation affects maize germination and growth development at low temperatures. In this study, the germination rate and physiological indexes of wild-type maize inbred lines B73 (WT), SDG102 silencing lines (AS), SDG102 overexpressed lines (OE) at germination stage and seedling stage were measured under low temperature stress (4 ℃), and transcriptome sequencing was applied to analyze the differences of gene expression in panicle leaves among different materials. The results showed that the germination rate of WT and OE maize seeds at 4 ℃ was significantly lower than 25 ℃. The content of MDA, SOD and POD of 4 ℃ seeding leaves higher than contrast. Transcriptome sequencing results showed that there were 409 different expression genes (DEGs) between WT and AS, and the DEGs were mainly up-regulated expression in starch and sucrose metabolism and phenylpropanoid biosynthesis. There were 887 DEGs between WT and OE, which were mainly up-regulated in the pathways of plant hormone signal transduction, porphyrin and chlorophyll metabolism. This result could provide a theoretical basis for analyzing the growth and development of maize from the perspective of histone methylation modification.
Collapse
Affiliation(s)
- Xin Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Chang Wan
- Institute of Grassland and Ecology, Jilin Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xing Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Weifeng Sun
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhennan Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhenhui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| | - Fenglou Ling
- Faculty of Agronomy, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
6
|
Jalili I, Ebadi A, Askari MA, KalatehJari S, Aazami MA. Foliar application of putrescine, salicylic acid, and ascorbic acid mitigates frost stress damage in Vitis vinifera cv. ̒Giziluzum̕. BMC PLANT BIOLOGY 2023; 23:135. [PMID: 36899321 PMCID: PMC10155332 DOI: 10.1186/s12870-023-04126-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/15/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cold stress is an effective factor in reducing production and injuring fruit trees. Various materials, such as salicylic acid, ascorbic acid, and putrescine, are used to alleviate the damage of abiotic stress. RESULTS The effect of different treatments of putrescine, salicylic acid, and ascorbic acid on alleviating the damage of frost stress (- 3 °C) to grapes 'Giziluzum' was investigated. Frost stress increased the amount of H2O2, MDA, proline, and MSI. On the other hand, it decreased the concentration of chlorophyll and carotenoids in the leaves. Putrescine, salicylic acid and ascorbic acid significantly increased the activities of catalase, guaiacol peroxidase, ascorbate peroxidase, and superoxide dismutase under frost stress. Following frost stress, the grapes treated with putrescine, salicylic acid, and ascorbic acid showed higher levels of DHA, AsA, and AsA/DHA than the untreated grapes. Our results showed that the treatment with ascorbic acid outperformed the other treatments in adjusting frost stress damages. CONCLUSION The use of compounds, such as ascorbic ac id, salicylic acid, and putrescine, modulates the effects of frost stress, thereby increasing the antioxidant defense system of cells, reducing its damage, and stabilizing stable cell conditions, so it can be used to reduce frost damage to different grape cultivars.
Collapse
Affiliation(s)
- Ilnaz Jalili
- Department of Horticulture and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Ebadi
- Department of Horticulture, College of Agriculture, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Askari
- Department of Horticulture and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh KalatehJari
- Department of Horticulture and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Ali Aazami
- Department of Horticulture, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| |
Collapse
|
7
|
Ren C, Fan P, Li S, Liang Z. Advances in understanding cold tolerance in grapevine. PLANT PHYSIOLOGY 2023:kiad092. [PMID: 36789447 DOI: 10.1093/plphys/kiad092] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/06/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Grapevine (Vitis ssp.) is a deciduous perennial fruit crop, and the canes and buds of grapevine should withstand low temperatures annually during winter. However, the widely cultivated Vitis vinifera is cold-sensitive and cannot survive the severe winter in regions with extremely low temperatures, such as viticulture regions in northern China. By contrast, a few wild Vitis species like V. amurensis and V. riparia exhibit excellent freezing tolerance. However, the mechanisms underlying grapevine cold tolerance remain largely unknown. In recent years, much progress has been made in elucidating the mechanisms, owing to the advances in sequencing and molecular biotechnology. Assembly of grapevine genomes together with resequencing and transcriptome data enable researchers to conduct genomic and transcriptomic analyses in various grapevine genotypes and populations to explore genetic variations involved in cold tolerance. In addition, a number of pivotal genes have been identified and functionally characterized. In this review, we summarize recent major advances in physiological and molecular analyses of cold tolerance in grapevine and put forward questions in this field. We also discuss the strategies for improving the tolerance of grapevine to cold stress. Understanding grapevine cold tolerance will facilitate the development of grapevines for adaption to global climate change.
Collapse
Affiliation(s)
- Chong Ren
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, Key Laboratory of Plant Resource, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
- China National Botanical Garden, Beijing 100093, PR China
| |
Collapse
|
8
|
Tian T, Wang J, Wang H, Cui J, Shi X, Song J, Li W, Zhong M, Qiu Y, Xu T. Nitrogen application alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings ( Brassica napus). PLANT SIGNALING & BEHAVIOR 2022; 17:2081419. [PMID: 35621189 PMCID: PMC9154800 DOI: 10.1080/15592324.2022.2081419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 06/02/2023]
Abstract
Nitrogen application could alleviate salt stress on crops, but the specific physiological mechanism is still unclear. Therefore, in this study, a pot experiment was conducted to explore the effects of different application rates of nitrogen (0, 0.15, 0.30, and 0.45 g·kg-1) on the growth parameters, osmotic adjustment, reactive oxygen species scavenging, and photosynthesis of rapeseed seedlings planted in the soils with different concentrations of sodium chloride (1.5, 3.5, 5.5, and 7.5 g·kg-1). The results showed that nitrogen could alleviate the inhibition of salt on rapeseed growth, and improve the antioxidant enzyme activities and the contents of non-enzymatic substances, K+, soluble protein (SP), soluble sugar (SS), and proline. Besides, there was a significant correlation between the indexes of active oxygen scavenging system, osmoregulation system, and photosynthesis. Therefore, applying appropriate amount of nitrogen can promote the growth and development of rapeseed seedlings under salt stress, accelerate the scavenging of reactive oxygen species, maintain osmotic balance, and promote photosynthesis. This study will improve our understanding on the mechanism by which nitrogen application alleviates salt stress to crops.
Collapse
Affiliation(s)
- Tian Tian
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Jingang Wang
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Haijiang Wang
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Jing Cui
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Xiaoyan Shi
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Jianghui Song
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Weidi Li
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Mingtao Zhong
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Yue Qiu
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| | - Ting Xu
- College of Agriculture, Shihezi University, Xinjiang, China
- The Key Laboratory of Oasis Ecological Agriculture of Xinjiang Production and Construction Group, Shihezi University, Xinjiang, China
| |
Collapse
|
9
|
Xing C, Li J, Yuan H, Yang J. Physiological and transcription level responses of microalgae Auxenochlorella protothecoides to cold and heat induced oxidative stress. ENVIRONMENTAL RESEARCH 2022; 211:113023. [PMID: 35276186 DOI: 10.1016/j.envres.2022.113023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Temperature is a crucial factor affecting microalgae CO2 capture and utilization. However, an in-depth understanding of how microalgae respond to temperature stress is still unclear. In particular, the regulation mechanism under opposite temperature (heat and cold) stress had not yet been reported. In this study, the physicochemical properties and transcription level of related genes of microalgae Auxenochlorella protothecoides UTEX 2341 under heat and cold stress were investigated. Heat stress (Hs) caused a drastic increase of reactive oxygen species (ROS) in UTEX 2341. As key elements responded to Hs, superoxide dismutase (SOD) enzyme increased by 150%, 70%, and 30% in activity, and nitric oxide (NO) grew by 409.6%, 212.5%, and 990.4% in content compared with the control at 48 h, 96 h, 168 h. Under cold stress (Cs), ROS increased in the early stage and decreased in the later stage. As key factors responded to Cs, proline (Pro) increased respectively by 285%, 383%, and 81% in content, and heat shock transcriptional factor HSFA1d increased respectively by 161%, 71%, and 204% in transcript level compared with the control at 48 h, 96 h, 168 h. Furthermore, the transcript level of antioxidant enzymes or antioxidant coding genes was consistent with the changing trend of enzymes activity or antioxidant content. Notably, both glutathione (GSH) and heat shock protein 97 (hsp 97) were up-regulated in response to Hs and Cs. In conclusion, GSH and hsp 97 were the core elements of UTEX 2341 in response to both Hs and Cs. SOD and NO were the key elements that responded to Hs, while proline and HSFA1d were the key elements that responded to Cs. This study provided a basis for the understanding of the response mechanism of microalgae under temperature stress and the improvement of the microalgae tolerance to temperature stress.
Collapse
Affiliation(s)
- Chao Xing
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jinyu Li
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|