1
|
Drs M, Krupař P, Škrabálková E, Haluška S, Müller K, Potocká A, Brejšková L, Serrano N, Voxeur A, Vernhettes S, Ortmannová J, Caldarescu G, Fendrych M, Potocký M, Žárský V, Pečenková T. Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth. PLANT, CELL & ENVIRONMENT 2025; 48:451-469. [PMID: 39267452 PMCID: PMC11615431 DOI: 10.1111/pce.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Although angiosperm plants generally react to immunity elicitors like chitin or chitosan by the cell wall callose deposition, this response in particular cell types, especially upon chitosan treatment, is not fully understood. Here we show that the growing root hairs (RHs) of Arabidopsis can respond to a mild (0.001%) chitosan treatment by the callose deposition and by a deceleration of the RH growth. We demonstrate that the glucan synthase-like 5/PMR4 is vital for chitosan-induced callose deposition but not for RH growth inhibition. Upon the higher chitosan concentration (0.01%) treatment, RHs do not deposit callose, while growth inhibition is prominent. To understand the molecular and cellular mechanisms underpinning the responses to two chitosan treatments, we analysed early Ca2+ and defence-related signalling, gene expression, cell wall and RH cellular endomembrane modifications. Chitosan-induced callose deposition is also present in the several other plant species, including functionally analogous and evolutionarily only distantly related RH-like structures such as rhizoids of bryophytes. Our results point to the RH callose deposition as a conserved strategy of soil-anchoring plant cells to cope with mild biotic stress. However, high chitosan concentration prominently disturbs RH intracellular dynamics, tip-localised endomembrane compartments, growth and viability, precluding callose deposition.
Collapse
Affiliation(s)
- Matěj Drs
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Pavel Krupař
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Karel Müller
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Lucie Brejšková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Natalia Serrano
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Aline Voxeur
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Samantha Vernhettes
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Jitka Ortmannová
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - George Caldarescu
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| |
Collapse
|
2
|
Cui J, Sa E, Wei J, Fang Y, Zheng G, Wang Y, Wang X, Gong Y, Wu Z, Yao P, Liu Z. The Truncated Peptide AtPEP1 (9-23) Has the Same Function as AtPEP1 (1-23) in Inhibiting Primary Root Growth and Triggering of ROS Burst. Antioxidants (Basel) 2024; 13:549. [PMID: 38790654 PMCID: PMC11117541 DOI: 10.3390/antiox13050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, the widely used active form of plant elicitor peptide 1 (PEP1) from Arabidopsis thaliana is composed of 23 amino acids, hereafter AtPEP1(1-23), serving as an immune elicitor. The relatively less conserved N-terminal region in AtPEP family indicates that the amino acids in this region may be unrelated to the function and activity of AtPEP peptides. Consequently, we conducted an investigation to determine the necessity of the nonconserved amino acids in AtPEP1(1-23) peptide for its functional properties. By assessing the primary root growth and the burst of reactive oxygen species (ROS), we discovered that the first eight N-terminal amino acids of AtPEP1(1-23) are not crucial for its functionality, whereas the conserved C-terminal aspartic acid plays a significant role in its functionality. In this study, we identified a truncated peptide, AtPEP1(9-23), which exhibits comparable activity to AtPEP1(1-23) in inhibiting primary root growth and inducing ROS burst. Additionally, the truncated peptide AtPEP1(13-23) shows similar ability to induce ROS burst as AtPEP1(1-23), but its inhibitory effect on primary roots is significantly reduced. These findings are significant as they provide a novel approach to explore and understand the functionality of the AtPEP1(1-23) peptide. Moreover, exogenous application of AtPEP1(13-23) may enhance plant resistance to pathogens without affecting their growth and development. Therefore, AtPEP1(13-23) holds promise for development as a potentially applicable biopesticides.
Collapse
Affiliation(s)
- Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Ermei Sa
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Guoqiang Zheng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ying Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoxia Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongjie Gong
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zefeng Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.C.); (E.S.); (J.W.); (Y.F.); (G.Z.); (Y.W.); (X.W.); (Y.G.); (Z.W.); (P.Y.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
4
|
Zelman AK, Berkowitz GA. Plant Elicitor Peptide (Pep) Signaling and Pathogen Defense in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2856. [PMID: 37571010 PMCID: PMC10421127 DOI: 10.3390/plants12152856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/03/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023]
Abstract
Endogenous signaling compounds are intermediaries in signaling pathways that plants use to respond to the perception of harmful and beneficial organisms. The plant elicitor peptides (Peps) of plants are important endogenous signaling molecules that induce elements of defense responses such as hormone production, increased expression of defensive genes, the activation of phosphorelays, and the induction of cell secondary messenger synthesis. The processes by which Peps confer resistance to pathogenic microorganisms have been extensively studied in Arabidopsis but are less known in crop plants. Tomato and many other solanaceous plants have an endogenous signaling polypeptide, systemin, that is involved in the defense against herbivorous insects and necrotrophic pathogens. This paper explores the similarity of the effects and chemical properties of Pep and systemin in tomato. Additionally, the relationship of the Pep receptor and systemin receptors is explored, and the identification of a second tomato Pep receptor in the literature is called into question. We suggest future directions for research on Pep signaling in solanaceous crops during interactions with microbes.
Collapse
Affiliation(s)
| | - Gerald Alan Berkowitz
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
5
|
Li JH, Muhammad Aslam M, Gao YY, Dai L, Hao GF, Wei Z, Chen MX, Dini-Andreote F. Microbiome-mediated signal transduction within the plant holobiont. Trends Microbiol 2023; 31:616-628. [PMID: 36702670 DOI: 10.1016/j.tim.2022.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Microorganisms colonizing the plant rhizosphere and phyllosphere play crucial roles in plant growth and health. Recent studies provide new insights into long-distance communication from plant roots to shoots in association with their commensal microbiome. In brief, these recent advances suggest that specific plant-associated microbial taxa can contribute to systemic plant responses associated with the enhancement of plant health and performance in face of a variety of biotic and abiotic stresses. However, most of the mechanisms associated with microbiome-mediated signal transduction in plants remain poorly understood. In this review, we provide an overview of long-distance signaling mechanisms within plants mediated by the commensal plant-associated microbiomes. We advocate the view of plants and microbes as a holobiont and explore key molecules and mechanisms associated with plant-microbe interactions and changes in plant physiology activated by signal transduction.
Collapse
Affiliation(s)
- Jian-Hong Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Mehtab Muhammad Aslam
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yang-Yang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ge-Fei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Mo-Xian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, 550025, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Mostafa S, Wang Y, Zeng W, Jin B. Plant Responses to Herbivory, Wounding, and Infection. Int J Mol Sci 2022; 23:ijms23137031. [PMID: 35806046 PMCID: PMC9266417 DOI: 10.3390/ijms23137031] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Plants have various self-defense mechanisms against biotic attacks, involving both physical and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs). Complex interactions between plants and herbivores occur. Plant responses to insect herbivory begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction, the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on early and late plant responses, including physical barriers, signal transduction, SM production as well as epigenetic regulation, and phytohormone responses.
Collapse
|
7
|
Wang A, Guo J, Wang S, Zhang Y, Lu F, Duan J, Liu Z, Ji W. BoPEP4, a C-Terminally Encoded Plant Elicitor Peptide from Broccoli, Plays a Role in Salinity Stress Tolerance. Int J Mol Sci 2022; 23:ijms23063090. [PMID: 35328511 PMCID: PMC8952307 DOI: 10.3390/ijms23063090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Plant peptide hormones play various roles in plant development, pathogen defense and abiotic stress tolerance. Plant elicitor peptides (Peps) are a type of damage-associated molecular pattern (DAMP) derived from precursor protein PROPEPs. In this study, we identified nine PROPEP genes in the broccoli genome. qRT-PCR analysis indicated that the expression levels of BoPROPEPs were induced by NaCl, ABA, heat, SA and P. syringae DC3000 treatments. In order to study the functions of Peps in salinity stress response, we synthesized BoPep4 peptide, the precursor gene of which, BoPROPEP4, was significantly responsive to NaCl treatment, and carried out a salinity stress assay by exogenous application of BoPep4 in broccoli sprouts. The results showed that the application of 100 nM BoPep4 enhanced tolerance to 200 mM NaCl in broccoli by reducing the Na+/K+ ratio and promoting accumulation of wax and cutin in leaves. Further RNA-seq analysis identified 663 differentially expressed genes (DGEs) under combined treatment with BoPep4 and NaCl compared with NaCl treatment, as well as 1776 genes differentially expressed specifically upon BoPep4 and NaCl treatment. GO and KEGG analyses of these DEGs indicated that most genes were enriched in auxin and ABA signal transduction, as well as wax and cutin biosynthesis. Collectively, this study shows that there was crosstalk between peptide hormone BoPep4 signaling and some well-established signaling pathways under salinity stress in broccoli sprouts, which implies an essential function of BoPep4 in salinity stress defense.
Collapse
|