1
|
Terfa GN, Pan W, Hu L, Hao J, Zhao Q, Jia Y, Nie X. Mechanisms of Salt and Drought Stress Responses in Foxtail Millet. PLANTS (BASEL, SWITZERLAND) 2025; 14:1215. [PMID: 40284101 PMCID: PMC12030529 DOI: 10.3390/plants14081215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Salt and drought are destructive abiotic stresses that severely impact crop production and productivity, posing an increasing threat to global food security, particularly as their occurrence rises annually due to climate change. These salt and drought stresses adversely affect plant growth and development, leading to significant reductions in crop yields. Foxtail millet (Setaria italica) exhibits various adaptive mechanisms, including enhanced antioxidative systems, osmotic adjustment through osmolyte accumulation, and root system modification, which facilitate its tolerance to stressors. These traits underscore its significant potential for breeding climate-resilient crops to address food security and climate change challenges. Understanding the molecular basis of salt and drought tolerance mechanisms is essential for breeding or genetically engineering foxtail millet varieties with enhanced salt and drought tolerance, as well as improved yield potential. This review systematically overviewed the research progress and current status of the mechanisms underlying foxtail millet's tolerance to salt and drought stress from the perspectives of physiological, biochemical, and molecular responses. Additionally, it provides some future perspectives that will contribute to further deciphering the genetic mechanisms governing salt and drought tolerance, as well as further genetic improvement in foxtail millet.
Collapse
Affiliation(s)
- Gemechu Nedi Terfa
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
- Department of Plant Science, School of Agricultural Science, Ambo University, P.O. Box 19 Ambo, Ethiopia
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Longjiao Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Junwei Hao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Yanzhe Jia
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy and Yangling Branch of the China Wheat Improvement Center, Northwest A & F University, Yangling 712100, China; (G.N.T.)
| |
Collapse
|
2
|
Jone MJH, Siddique MNA, Biswas MK, Hossain MR. Genome-wide analysis of TCP family genes and their constitutive expression pattern analysis in the melon (Cucumis melo). Genes Genomics 2025; 47:367-382. [PMID: 39849192 DOI: 10.1007/s13258-025-01617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/13/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND TCP proteins are plant-specific transcription factors that play essential roles in various developmental processes, including leaf morphogenesis and senescence, flowering, lateral branching, hormone crosstalk, and stress responses. However, a comprehensive analysis of genome-wide TCP genes and their expression patterns in melon is yet to be done. OBJECTIVE The present study aims to identify and analyze the TCP genes in the melon genome and understand their putative functions. METHODS The chromosomal location, gene structure, conserved motifs, protein domains, structural homology, cis-regulating elements, transcript expression patterns, and potential protein-protein interactions were analyzed using various databases and webtools. RESULTS A total of 29 putative TCP genes are identified in melon. These genes were classified into two classes: Class-I (13 genes) and Class-II (16 genes). The results revealed that the putative CmTCP genes are distributed across nine of the twelve melon chromosomes and exhibit diverse expression patterns in different tissues which mostly indicates their potential role in floral organ development, lateral branching, growth and development. Phylogenetic analysis suggests that some CmTCP genes may have similar functions to their homologs in other plant species, while others may have undergone functional diversification. CONCLUSION This study paves the way for future investigations into the specific roles of individual CmTCP genes in melon and for elucidating the mechanisms by which TCP proteins regulate leaf elongation, floral development, and lateral branching.
Collapse
Affiliation(s)
- Md Jahid Hasan Jone
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Nure Adil Siddique
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Manosh Kumar Biswas
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Mohammad Rashed Hossain
- Plant Molecular Breeding and Bioinformatics Laboratory, Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| |
Collapse
|
3
|
Liu T, Peng J, Dong Z, Liu Y, Wu J, Xiong Y, Zhang C, Yan L, Yu Q, You M, Ma X, Lei X. Genome-Wide Exploration and Characterization of the TCP Gene Family's Expression Patterns in Response to Abiotic Stresses in Siberian Wildrye ( Elymus sibiricus L.). Int J Mol Sci 2025; 26:1925. [PMID: 40076552 PMCID: PMC11900556 DOI: 10.3390/ijms26051925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Siberian wildrye (Elymus sibiricus L.), a model Elymus Gramineae plant, has high eco-economic value but limited seed and forage yield. TCP transcription factors are widely regarded as influencing yield and quality and being crucial for growth and development; still, this gene family in Siberian wildrye remains unexplored. Therefore, this study looked at the Siberian wildrye TCP gene family's reaction to several abiotic stresses, its expression pattern, and its potential evolutionary path. Fifty-four members of the EsTCP gene family were discovered. There are two major subfamilies based on the phylogenetic tree: 27 of Class I (PCF) and 27 of Class II (12 CIN-type and 15 TB1/CYC-type). Gene structure, conserved motif, and sequence alignment analyses further validated this classification. Cis-elements found in the promoter region of EsTCPs are associated with lots of plant hormones and stress-related reactions, covering drought induction and cold tolerance. EsCYC5, EsCYC6, and EsCYC7 may regulate tillering and lateral branch development. EsPCF10's relative expression was significant under five stresses. Additionally, eight EsTCP genes are potential miR319 targets. These findings highlight the critical significance of the TCP gene family in Siberian wildrye, laying the groundwork for understanding the function of the EsTCP protein in abiotic stress studies and high-yield breeding.
Collapse
Affiliation(s)
- Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Yingjie Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Jiqiang Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Changbing Zhang
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Qingqing Yu
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| |
Collapse
|
4
|
Nie J, Zhao H, Guo X, Zhang T, Han B, Liu H. Genome-wide identification of oat TCP gene family and expression patterns under abiotic stress. Front Genet 2025; 16:1533562. [PMID: 39967685 PMCID: PMC11832536 DOI: 10.3389/fgene.2025.1533562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
TCP transcription factors are a unique class of transcription factors that play important roles in alleviating abiotic stresses such as drought and salt. In this study, the whole-genome data of three cultivated varieties, namely, "SFS", "Sang" and "OT3098v2", were utilized to identify and analyze the members of the TCP gene family in oats, and their responses to two abiotic stresses, drought and salt, were also investigated. Results showed that there are 83, 65, and 30 non-redundant TCP genes in the three oats, with the highest number of TCP genes specific to the "SFS", reaching 22 genes. The oat TCP genes can be classified into three subfamilies: PCF, CIN, and CYC/TB1. Most AsTCP genes have important motifs, Motif 1 and Motif 2, which are part of the bHLH domain. Additionally, various cis-acting elements related to hormone response, abiotic stress, light response, and growth and development were found in the promoters of AsTCP genes. The main amplification mechanism of the oat TCP gene family is fragment duplication. Two tandem duplications, AsTCP058/AsTCP059 and AsTCP023/AsTCP025, are stably present in the three oats. The highest number of AsTCP collinear relationships exist in the "SFS" with 89 pairs. After drought and salt stress treatments, significant differences in gene expression were observed among different oat cultivars and treatment periods. Genes that showed significant expression changes under both treatments (AsTCP021, AsTCP033, AsTCP044, AsTCP053, and AsTCP058) may play important roles in oat's response to abiotic stresses. Notably, AsTCP053 gene was significantly upregulated at 24 h of stress treatment and showed a more sensitive response to salt stress. This study provides insights into the functional characterization of the oat TCP gene family and its molecular mechanisms underlying stress tolerance.
Collapse
Affiliation(s)
- Jiaming Nie
- Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, Hohhot, China
| | - Hongbin Zhao
- Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education, Hohhot, China
| | - Xiaodong Guo
- Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, Hohhot, China
| | - Tao Zhang
- Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, Hohhot, China
| | - Bing Han
- Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, Hohhot, China
- Key Laboratory of Grassland Resources of the Ministry of Education, Hohhot, China
| | - Huiyan Liu
- Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Wheat Germplasm Innovation and Utilization Autonomous Region Higher School, Hohhot, China
| |
Collapse
|
5
|
Liu Z, Zhao J, Xiao Y, Li C, Miao R, Chen S, Zhang D, Zhou X, Li M. Comprehensive Analysis of the GiTCP Gene Family and Its Expression Under UV-B Radiation in Glycyrrhiza inflata Bat. Int J Mol Sci 2024; 26:159. [PMID: 39796017 PMCID: PMC11719519 DOI: 10.3390/ijms26010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
TCP is a plant-specific transcription factor that plays an important role in plant growth and development. In this study, we used bioinformatics to identify the entire genome of the TCP gene family in Glycyrrhiza inflata Bat, and we analyzed the expression characteristics of GiTCP genes under UV-B radiation using qRT-PCR. The results were as follows: (1) 24 members of the TCP gene family were identified in G. inflata, evenly distributed on its 24 chromosomes. (2) The GiTCP genes contained 0-4 introns and 0-5 exons. (3) The GiTCP genes were phylogenetically divided into three subfamilies-PCF, CIN, and CYC/TB1, with 14, 9, and 1 GiTCP proteins, respectively. (4) A covariance analysis showed that two pairs of GiTCP genes underwent a fragmentary duplication event. (5) A cis-element analysis showed that the cis-responsive elements of the GiTCP genes' promoter regions were mainly comprised of light-responsive, stress-responsive, hormone-regulated, growth and development, and metabolic-regulated elements. (6) A protein network interaction analysis revealed a total of 14 functional molecules of TCPs and 8 potential interacting proteins directly related to GiTCP proteins. (7) GO annotation showed that the GiTCP genes were mainly enriched in BP, CC, and MF groups and had corresponding functions. (8) RNA-seq and qRT-PCR further indicated that GiTCP3, 6, 7, 8, 12, 14, 17, 23, and 24 were up- or down-regulated in G. inflata after UV-B radiation, demonstrating that these genes responded to UV-B radiation in G. inflata. (9) Subcellular localization analysis showed that the GiTCP8 protein was localized in the nucleus. The results of this study provide a basis for further exploration of the function of the GiTCP gene family in the growth and development of G. inflata.
Collapse
Affiliation(s)
- Ziliang Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Jiaang Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Ying Xiao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Caijuan Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Rong Miao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Sijin Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
| | - Dan Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiangyan Zhou
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (Z.L.); (J.Z.); (Y.X.); (C.L.); (R.M.); (S.C.)
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China;
- Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Panzade KP, Vishwakarma H, Kharate PS, Azameti MK. Genome-wide analysis and expression profile of TCP gene family under drought and salinity stress condition in cowpea ( Vigna unguiculata (L.) Walp.). 3 Biotech 2024; 14:138. [PMID: 38682097 PMCID: PMC11052985 DOI: 10.1007/s13205-024-03976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
TCP transcription factors are known to regulate abiotic stress condition, but their role in V. unguiculata remains unexplored. So, in silico analysis and expression profile of the TCP gene family were performed in V. unguiculata to understand its role in response to heat and drought stress. A genome-wide search detected 28 TCPs (designated as VuTCPs) that were grouped into three subclasses by phylogenetic analysis. Gene structure, synteny, and phylogeny analyses of VuTCPs have shown a typical evolutionary path. One tandem and eight segmental duplication events were identified. Furthermore, identified duplicated, and orthologous VuTCP genes were under strong purifying selection pressure. A total of 15 SSRs were identified in the 12 VuTCPs, while 10 VuTCP genes were regulated by different miRNAs having a major role in abiotic stress tolerance. Analysed physicochemical properties, cis-acting elements, and gene ontology suggested that VuTCPs play various roles, including salinity and drought stress tolerance. qRT-PCR analysis showed that 11 and 15 VuTCPs were upregulated under drought and salinity stress conditions, respectively. Our findings provide comprehensive insights into the genomic characterization of the VuTCPs gene family in V. unguiculata, offering a foundation for understanding their structure, evolution, and role in abiotic stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03976-x.
Collapse
Affiliation(s)
- Kishor Prabhakar Panzade
- Department of Plant Biotechnology, SDMVM College of Agricultural Biotechnology, Georai Tanda, Chh. Sambhaji Nagar (Aurangabad), Maharashtra, 431002 India
| | - Harinder Vishwakarma
- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, 110012 India
| | - Pawankumar S. Kharate
- Department of Plant Biotechnology, SDMVM College of Agricultural Biotechnology, Georai Tanda, Chh. Sambhaji Nagar (Aurangabad), Maharashtra, 431002 India
| | - Mawuli K. Azameti
- Department of Applied Biology, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Upper East Region Ghana
| |
Collapse
|
7
|
Zhang X, Jiang X, Zhang Y, Ren J, Feng J, Quan W. Identification of QTL for reducing loss of grain yield under salt stress conditions in bi-parental populations derived from wheat landrace Hongmangmai. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:49. [PMID: 36913045 DOI: 10.1007/s00122-023-04290-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/26/2022] [Indexed: 06/18/2023]
Abstract
A novel QTL (QSt.nftec-2BL) was mapped to a 0.7 cM interval on chromosome 2B. Plants carrying QSt.nftec-2BL produced higher grain yields by up to 21.4% than otherwise in salinized fields. Wheat yield has been limited by soil salinity in many wheat-growing areas globally. The wheat landrace Hongmangmai (HMM) possesses salt tolerance as it produced higher grain yields than other tested wheat varieties including Early Premium (EP) under salt stresses. To detect QTL underlying this tolerance, wheat cross EP × HMM was chosen to serve as mapping population that was homozygous at Ppd (photoperiod response gene), Rht (reduced plant height gene) and Vrn (vernalization gene); thus, interference with QTL detection by these loci could be minimized. QTL mapping was conducted firstly using 102 recombinant inbred lines (RILs) that were selected from the EP × HMM population (827 RILs) for similarity in grain yield under non-saline condition. Under salt stresses, however, the 102 RILs varied significantly in grain yield. These RILs were genotyped using a 90 K SNP (single nucleotide polymorphism) array; consequently, a QTL (QSt.nftec-2BL) was detected on chromosome 2B. Then, using 827 RILs and new simple sequence repeat (SSR) markers developed according to the reference sequence IWGSC RefSeq v1.0, location of QSt.nftec-2BL was refined to a 0.7 cM (6.9 Mb) interval flanked by SSR markers 2B-557.23 and 2B-564.09. Selection for QSt.nftec-2BL was performed based on the flanking markers using two bi-parental wheat populations. Trials for validating effectiveness of the selection were conducted in salinized fields in two geographical areas and two crop seasons, demonstrating that wheat plants with the salt-tolerant allele in homozygous status at QSt.nftec-2BL produced higher grain yields by up to 21.4% than otherwise.
Collapse
Affiliation(s)
- Xiang Zhang
- National Fisheries Technology Extension Center, Beijing, 100125, People's Republic of China
| | - Xu Jiang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193, People's Republic of China
- Liaoning Provincial Key Laboratory of Forest Protection, Liaoning Academy of Forestry Science, Shenyang, 110032, People's Republic of China
| | - Yibin Zhang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, People's Republic of China
| | - Junda Ren
- Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jing Feng
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| | - Wei Quan
- Institute of Hybrid Wheat, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, People's Republic of China.
| |
Collapse
|
8
|
Viola IL, Alem AL, Jure RM, Gonzalez DH. Physiological Roles and Mechanisms of Action of Class I TCP Transcription Factors. Int J Mol Sci 2023; 24:ijms24065437. [PMID: 36982512 PMCID: PMC10049435 DOI: 10.3390/ijms24065437] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 and 2 (TCP) proteins constitute a plant-specific transcription factors family exerting effects on multiple aspects of plant development, such as germination, embryogenesis, leaf and flower morphogenesis, and pollen development, through the recruitment of other factors and the modulation of different hormonal pathways. They are divided into two main classes, I and II. This review focuses on the function and regulation of class I TCP proteins (TCPs). We describe the role of class I TCPs in cell growth and proliferation and summarize recent progresses in understanding the function of class I TCPs in diverse developmental processes, defense, and abiotic stress responses. In addition, their function in redox signaling and the interplay between class I TCPs and proteins involved in immunity and transcriptional and posttranslational regulation is discussed.
Collapse
Affiliation(s)
- Ivana L. Viola
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| | | | | | - Daniel H. Gonzalez
- Correspondence: (I.L.V.); (D.H.G.); Tel.: +54-342-4511370 (ext. 5021) (I.L.V.)
| |
Collapse
|
9
|
Potato Stu-miR398b-3p Negatively Regulates Cu/Zn-SOD Response to Drought Tolerance. Int J Mol Sci 2023; 24:ijms24032525. [PMID: 36768844 PMCID: PMC9916884 DOI: 10.3390/ijms24032525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/24/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
One of the main impacts of drought stress on plants is an excessive buildup of reactive oxygen species (ROS). A large number of ·OH, highly toxic to cells, will be produced if too much ROS is not quickly cleared. At the heart of antioxidant enzymes is superoxide dismutase (SOD), which is the first antioxidant enzyme to function in the active oxygen scavenging system. To shield cells from oxidative injury, SOD dismutation superoxide anion free radicals generate hydrogen peroxide and molecule oxygen. Cu/Zn SOD is a kind of SOD antioxidant enzyme that is mostly found in higher plants' cytoplasm and chloroplasts. Other studies have demonstrated the significance of the miR398s family of miRNAs in the response of plants to environmental stress. The cleavage location of potato stu-miR398b-3p on Cu/Zn SOD mRNA was verified using RLM-5'RACE. Using the potato variety 'Desiree', the stu-miR398b-3p overexpression mutant was created, and transgenic lines were raised. SOD activity in transgenic lines was discovered to be decreased during drought stress, although other antioxidant enzyme activities were mostly unaltered. Transgenic plants will wilt more quickly than wild-type plants without irrigation. Additionally, this demonstrates that the response of Cu/Zn SOD to drought stress is adversely regulated by potato stu-miR398b-3p.
Collapse
|