1
|
Wu Y, Wang L, Tao M, Cao H, Yuan H, Ye M, Chen X, Wang K, Zhu C. Changing trends in the global burden of mental disorders from 1990 to 2019 and predicted levels in 25 years. Epidemiol Psychiatr Sci 2023; 32:e63. [PMID: 37933540 PMCID: PMC10689059 DOI: 10.1017/s2045796023000756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/08/2023] Open
Abstract
AIMS The burden of mental disorders is increasing worldwide, thus, affecting society and healthcare systems. This study investigated the independent influences of age, period and cohort on the global prevalence of mental disorders from 1990 to 2019; compared them by sex; and predicted the future burden of mental disorders in the next 25 years. METHODS The age-specific and sex-specific incidence of mental disorders worldwide was analysed according to the general analysis strategy used in the Global Burden of Disease Study in 2019. The incidence and mortality trends of mental disorders from 1990 to 2019 were evaluated through joinpoint regression analysis. The influences of age, period and cohort on the incidence of mental disorders were evaluated with an age-period-cohort model. RESULTS From 1990 to 2019, the sex-specific age-standardized incidence and disability-adjusted life years (DALY) rate decreased slightly. Joinpoint regression analysis from 1990 to 2019 indicated four turning points in the male DALY rate and five turning points in the female DALY rate. In analysis of age effects, the relative risk (RR) of incidence and the DALY rate in mental disorders in men and women generally showed an inverted U-shaped pattern with increasing age. In analysis of period effects, the incidence of mental disorders increased gradually over time, and showed a sub-peak in 2004 (RR, 1.006 for males; 95% CI, 1.000-1.012; 1.002 for women, 0.997-1.008). Analysis of cohort effects showed that the incidence and DALY rate decreased in successive birth cohorts. The incidence of mental disorders is expected to decline slightly over the next 25 years, but the number of cases is expected to increase. CONCLUSIONS Although the age-standardized burden of mental disorders has declined in the past 30 years, the number of new cases and deaths of mental disorders worldwide has increased, and will continue to increase in the near future. Therefore, relevant policies should be used to promote the prevention and management of known risk factors and strengthen the understanding of risk profiles and incidence modes of mental disorders, to help guide future research on control and prevention strategies.
Collapse
Affiliation(s)
- Yang Wu
- Health Management Center, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Lu Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Mengjun Tao
- Health Management Center, Yijishan Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Huiru Cao
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, China
| | - Hui Yuan
- School of Public Health, Wannan Medical College, Wuhu, China
| | - Mingquan Ye
- School of Medical Information, Wannan Medical College, Wuhu, China
| | - Xingui Chen
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, China
- School of Public Health, Wannan Medical College, Wuhu, China
- School of Medical Information, Wannan Medical College, Wuhu, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Chunyan Zhu
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, China
- School of Public Health, Wannan Medical College, Wuhu, China
- School of Medical Information, Wannan Medical College, Wuhu, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Fišar Z. Biological hypotheses, risk factors, and biomarkers of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110626. [PMID: 36055561 DOI: 10.1016/j.pnpbp.2022.110626] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 12/19/2022]
Abstract
Both the discovery of biomarkers of schizophrenia and the verification of biological hypotheses of schizophrenia are an essential part of the process of understanding the etiology of this mental disorder. Schizophrenia has long been considered a neurodevelopmental disease whose symptoms are caused by impaired synaptic signal transduction and brain neuroplasticity. Both the onset and chronic course of schizophrenia are associated with risk factors-induced disruption of brain function and the establishment of a new homeostatic setpoint characterized by biomarkers. Different risk factors and biomarkers can converge to the same symptoms of schizophrenia, suggesting that the primary cause of the disease can be highly individual. Schizophrenia-related biomarkers include measurable biochemical changes induced by stress (elevated allostatic load), mitochondrial dysfunction, neuroinflammation, oxidative and nitrosative stress, and circadian rhythm disturbances. Here is a summary of selected valid biological hypotheses of schizophrenia formulated based on risk factors and biomarkers, neurodevelopment, neuroplasticity, brain chemistry, and antipsychotic medication. The integrative neurodevelopmental-vulnerability-neurochemical model is based on current knowledge of the neurobiology of the onset and progression of the disease and the effects of antipsychotics and psychotomimetics and reflects the complex and multifactorial nature of schizophrenia.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Charles University and General University Hospital in Prague, First Faculty of Medicine, Department of Psychiatry, Czech Republic.
| |
Collapse
|
3
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
4
|
Schizophrenia: A Narrative Review of Etiopathogenetic, Diagnostic and Treatment Aspects. J Clin Med 2022; 11:jcm11175040. [PMID: 36078967 PMCID: PMC9457502 DOI: 10.3390/jcm11175040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Although schizophrenia is currently conceptualized as being characterized as a syndrome that includes a collection of signs and symptoms, there is strong evidence of heterogeneous and complex underpinned etiological, etiopathogenetic, and psychopathological mechanisms, which are still under investigation. Therefore, the present viewpoint review is aimed at providing some insights into the recently investigated schizophrenia research fields in order to discuss the potential future research directions in schizophrenia research. The traditional schizophrenia construct and diagnosis were progressively revised and revisited, based on the recently emerging neurobiological, genetic, and epidemiological research. Moreover, innovative diagnostic and therapeutic approaches are pointed to build a new construct, allowing the development of better clinical and treatment outcomes and characterization for schizophrenic individuals, considering a more patient-centered, personalized, and tailored-based dimensional approach. Further translational studies are needed in order to integrate neurobiological, genetic, and environmental studies into clinical practice and to help clinicians and researchers to understand how to redesign a new schizophrenia construct.
Collapse
|
5
|
Karpiel I, Kurasz Z, Kurasz R, Duch K. The Influence of Filters on EEG-ERP Testing: Analysis of Motor Cortex in Healthy Subjects. SENSORS 2021; 21:s21227711. [PMID: 34833790 PMCID: PMC8619013 DOI: 10.3390/s21227711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
The raw EEG signal is always contaminated with many different artifacts, such as muscle movements (electromyographic artifacts), eye blinking (electrooculographic artifacts) or power line disturbances. All artifacts must be removed for correct data interpretation. However, various noise reduction methods significantly influence the final shape of the EEG signal and thus its characteristic values, latency and amplitude. There are several types of filters to eliminate noise early in the processing of EEG data. However, there is no gold standard for their use. This article aims to verify and compare the influence of four various filters (FIR, IIR, FFT, NOTCH) on the latency and amplitude of the EEG signal. By presenting a comparison of selected filters, the authors intend to raise awareness among researchers as regards the effects of known filters on latency and amplitude in a selected area-the sensorimotor area.
Collapse
Affiliation(s)
- Ilona Karpiel
- Łukasiewicz Research Network—Institute of Medical Technology and Equipment, 41-800 Zabrze, Poland
- Correspondence: ; Tel.: +32-271-60-13 (ext. 127)
| | - Zofia Kurasz
- Institute of Psychology, University of Silesia, 40-007 Katowice, Poland;
| | - Rafał Kurasz
- Independent Researcher, 40-007 Katowice, Poland;
| | - Klaudia Duch
- Faculty of Science and Technology, Institute of Biomedical Engineering, Silesian Centre for Education and Interdisciplinary Research, University of Silesia in Katowice, 41-500 Chorzów, Poland;
| |
Collapse
|
6
|
Subtypes of schizophrenia identified by multi-omic measures associated with dysregulated immune function. Mol Psychiatry 2021; 26:6926-6936. [PMID: 34588622 DOI: 10.1038/s41380-021-01308-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
Epigenetic modifications are plausible molecular sources of phenotypic heterogeneity across schizophrenia patients. The current study investigated biological heterogeneity in schizophrenia using peripheral epigenetic profiles to delineate illness subtypes independent of their phenomenological manifestations. We applied epigenome-wide profiling with a DNA methylation array from blood samples of 63 schizophrenia patients and 59 healthy controls. Non-negative matrix factorization (NMF) and k-means clustering were performed to identify DNA methylation-related patient subtypes. The validity of the partition was tested by assessing the profile of the T cell receptor (TCR) repertoires. The uniqueness of the identified subtypes in relation to brain structural and clinical measures were evaluated. Two distinct patterns of DNA methylation profiles were identified in patients. One subtype (60.3% of patients) showed relatively limited changes in methylation levels and cell composition compared to controls, while a second subtype (39.7% of patients) exhibited widespread methylation level alterations among genes enriched in immune cell activity, as well as a higher proportion of neutrophils and lower proportion of lymphocytes. Differentiation of the two patient subtypes was validated by TCR repertoires, which paralleled the partition based on DNA methylation profiles. The subtype with widespread methylation modifications had higher symptom severity, performed worse on cognitive measures, and displayed greater reductions in fractional anisotropy of white matter tracts and evidence of gray matter thickening compared to the other subtype. Identification of a distinct subtype of schizophrenia with unique molecular, cerebral, and clinical features provide a novel parcellation of the schizophrenia syndrome with potential to guide development of individualized therapeutics.
Collapse
|
7
|
Huang W, Gu X, Wang Y, Bi Y, Yang Y, Wan G, Chen N, Li K. Effects of the co-administration of MK-801 and clozapine on MiRNA expression profiles in rats. Basic Clin Pharmacol Toxicol 2021; 128:758-772. [PMID: 33656787 DOI: 10.1111/bcpt.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
MiRNAs are small, non-coding RNAs that can silence the expression of various target genes by binding their mRNAs and thus regulate a wide range of crucial bodily functions. However, the miRNA expression profile of schizophrenia after antipsychotic mediation is largely unknown. Non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonists such as MK-801 have provided useful animal models to investigate the effects of schizophrenia-like symptoms in rodent animals. Herein, the hippocampal miRNA expression profiles of Sprague-Dawley rats pretreated with MK-801 were examined after antipsychotic clozapine (CLO) treatment. Total hippocampal RNAs from three groups were subjected to next-generation sequencing (NGS), and bioinformatics analyses, including differential expression and enrichment analyses, were performed. Eight miRNAs were differentially expressed between the MK-801 and vehicle (VEH) control groups. Interestingly, 14 miRNAs were significantly differentially expressed between the CLO + MK-801 and MK-801 groups, among which rno-miR-184 was the most upregulated. Further analyses suggested that these miRNAs modulate target genes that are involved in endocytosis regulation, ubiquitin-mediated proteolysis, and actin cytoskeleton regulation and thus might play important roles in the pathogenesis of schizophrenia. Our results suggest that differentially expressed miRNAs play important roles in the complex pathophysiology of schizophrenia and subsequently impact brain functions.
Collapse
Affiliation(s)
- Wenhui Huang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China.,Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xuefeng Gu
- Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yingying Wang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Yuhan Bi
- Department of Pathology, Stanford University, Palo alto, CA, USA
| | - Yu Yang
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Guoqing Wan
- Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Nianhong Chen
- Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Keshen Li
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China.,Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Föcking M, Sabherwal S, Cates HM, Scaife C, Dicker P, Hryniewiecka M, Wynne K, Rutten BPF, Lewis G, Cannon M, Nestler EJ, Heurich M, Cagney G, Zammit S, Cotter DR. Complement pathway changes at age 12 are associated with psychotic experiences at age 18 in a longitudinal population-based study: evidence for a role of stress. Mol Psychiatry 2021; 26:524-533. [PMID: 30635638 PMCID: PMC6906256 DOI: 10.1038/s41380-018-0306-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/06/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023]
Abstract
The complement cascade is a major component of the immune defence against infection, and there is increasing evidence for a role of dysregulated complement in major psychiatric disorders. We undertook a directed proteomic analysis of the complement signalling pathway (n = 29 proteins) using data-independent acquisition. Participants were recruited from the UK avon longitudinal study of parents and children (ALSPAC) cohort who participated in psychiatric assessment interviews at ages 12 and 18. Protein expression levels at age 12 among individuals who reported psychotic experiences (PEs) at age 18 (n = 64) were compared with age-matched controls (n = 67). Six out of the 29 targeted complement proteins or protein subcomponents were significantly upregulated following correction for multiple comparisons (VTN↑, C1RL↑, C8B↑, C8A↑, CFH↑, and C5↑). We then undertook an unbiased plasma proteomic analysis of mice exposed to chronic social stress and observed dysregulation of 11 complement proteins, including three that were altered in the same direction in individuals with PE (C1R↑, CFH↑, and C5↑). Our findings indicate that dysregulation of the complement protein pathway in blood is associated with incidence of psychotic experiences and that these changes may reflect exposure to stress.
Collapse
Affiliation(s)
- Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| | - Sophie Sabherwal
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hannah M Cates
- Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Caitriona Scaife
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Patrick Dicker
- Department of Epidemiology and Public Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Kieran Wynne
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Mary Cannon
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eric J Nestler
- Friedman Brain Institute and Icahn School of Medicine at Mount Sinai, NY, New York, USA
| | - Meike Heurich
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Gerard Cagney
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Stanley Zammit
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Centre for Academic Mental Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
9
|
Nieto RR, Carrasco A, Corral S, Castillo R, Gaspar PA, Bustamante ML, Silva H. BDNF as a Biomarker of Cognition in Schizophrenia/Psychosis: An Updated Review. Front Psychiatry 2021; 12:662407. [PMID: 34220575 PMCID: PMC8242210 DOI: 10.3389/fpsyt.2021.662407] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain Derived Neurotrophic Factor (BDNF) has been linked to cognitive symptoms of schizophrenia, which has been documented in previous reviews by several authors. However, a trend has recently emerged in this field moving from studying schizophrenia as a disease to studying psychosis as a group. This review article focuses on recent BDNF studies in relation to cognition in human subjects during different stages of the psychotic process, including subjects at high risk of developing psychosis, patients at their first episode of psychosis, and patients with chronic schizophrenia. We aim to provide an update of BDNF as a biomarker of cognitive function on human subjects with schizophrenia or earlier stages of psychosis, covering new trends, controversies, current research gaps, and suggest potential future developments in the field. We found that most of current research regarding BDNF and cognitive symptoms in psychosis is done around schizophrenia as a disease. Therefore, it is necessary to expand the study of the relationship between BDNF and cognitive symptoms to psychotic illnesses of different stages and origins.
Collapse
Affiliation(s)
- Rodrigo R Nieto
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Andrea Carrasco
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Sebastian Corral
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Facultad de Psicología, Universidad San Sebastián, Santiago, Chile
| | - Rolando Castillo
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Psiquiatría, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Universidad de Chile, Santiago, Chile
| | - Pablo A Gaspar
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Psiquiatría, Clínica Alemana Universidad del Desarrollo, Santiago, Chile.,Millennium Nucleus to Improve the Mental Health of Adolescents and Youths, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| | - M Leonor Bustamante
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Hernan Silva
- Departamento de Psiquiatría y Salud Mental, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Clínica Psiquiátrica Universitaria, Hospital Clínico de la Universidad de Chile, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Blood-based kynurenine pathway alterations in schizophrenia spectrum disorders: A meta-analysis. Schizophr Res 2020; 223:43-52. [PMID: 32981827 DOI: 10.1016/j.schres.2020.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/06/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The kynurenine pathway (KP) has been proposed as indirect link between systemic immune responses and clinical symptom development in schizophrenia spectrum disorders (SSD). Empirical evidence for such immune-related KP shifts in SSD has however resulted in divergent findings. METHODS We conducted a systematic literature search in PubMed. Thirty papers (total number of patients n = 1506; controls: n = 1432) reported on peripheral concentrations of KP metabolites in SSD patients versus controls. Six KP metabolites were included in a meta-analysis, with secondary analysis of covariate and subgroup effects of patients' symptomatic state, age and duration of illness. RESULTS Tryptophan (SMD: -0.30; p = .003) and Xanthurenic Acid (SMD: -0.80; p < .001) were significantly decreased in SSD compared to controls, while Quinolinic Acid (SMD: -0.40; p = .08) and Kynurenic Acid (SMD: -0.39; p = .04) were only significantly decreased in patients with acute or highly symptomatic illness. Finally, in relatively older patient cohorts Kynurenine (SMD: -0.31; p = .02) and Kynurenic Acid (SMD: -0.40; p = .002) were found to be decreased. CONCLUSION A partial downregulation of the KP is observed in SSD patients, in particular during acute symptomatic states and in older age, effects that were independent from each other. In contrast, younger and stable or remitted patients display limited to no KP metabolite abnormalities. The current meta-analysis illustrates the dynamic nature of KP abnormalities. It should be noted that all included studies investigated peripheral KP metabolites, which do not necessarily reflect central KP metabolite abnormalities in schizophrenic patients.
Collapse
|
11
|
Smigielski L, Jagannath V, Rössler W, Walitza S, Grünblatt E. Epigenetic mechanisms in schizophrenia and other psychotic disorders: a systematic review of empirical human findings. Mol Psychiatry 2020; 25:1718-1748. [PMID: 31907379 DOI: 10.1038/s41380-019-0601-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/26/2022]
Abstract
Schizophrenia and other psychotic disorders are highly debilitating psychiatric conditions that lack a clear etiology and exhibit polygenic inheritance underlain by pleiotropic genes. The prevailing explanation points to the interplay between predisposing genes and environmental exposure. Accumulated evidence suggests that epigenetic regulation of the genome may mediate dynamic gene-environment interactions at the molecular level by modulating the expression of psychiatric phenotypes through transcription factors. This systematic review summarizes the current knowledge linking schizophrenia and other psychotic disorders to epigenetics, based on PubMed and Web of Science database searches conducted according to the PRISMA guidelines. Three groups of mechanisms in case-control studies of human tissue (i.e., postmortem brain and bio-fluids) were considered: DNA methylation, histone modifications, and non-coding miRNAs. From the initial pool of 3,204 records, 152 studies met our inclusion criteria (11,815/11,528, 233/219, and 2,091/1,827 cases/controls for each group, respectively). Many of the findings revealed associations with epigenetic modulations of genes regulating neurotransmission, neurodevelopment, and immune function, as well as differential miRNA expression (e.g., upregulated miR-34a, miR-7, and miR-181b). Overall, actual evidence moderately supports an association between epigenetics and schizophrenia and other psychotic disorders. However, heterogeneous results and cross-tissue extrapolations call for future work. Integrating epigenetics into systems biology may critically enhance research on psychosis and thus our understanding of the disorder. This may have implications for psychiatry in risk stratification, early recognition, diagnostics, precision medicine, and other interventional approaches targeting epigenetic fingerprints.
Collapse
Affiliation(s)
- Lukasz Smigielski
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland. .,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.
| | - Vinita Jagannath
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Merck Sharp & Dohme (MSD) R&D Innovation Centre, London, UK
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Berlin, Germany.,Laboratory of Neuroscience, Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), University Hospital of Psychiatry Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Levchenko A, Nurgaliev T, Kanapin A, Samsonova A, Gainetdinov RR. Current challenges and possible future developments in personalized psychiatry with an emphasis on psychotic disorders. Heliyon 2020; 6:e03990. [PMID: 32462093 PMCID: PMC7240336 DOI: 10.1016/j.heliyon.2020.e03990] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/31/2019] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
A personalized medicine approach seems to be particularly applicable to psychiatry. Indeed, considering mental illness as deregulation, unique to each patient, of molecular pathways, governing the development and functioning of the brain, seems to be the most justified way to understand and treat disorders of this medical category. In order to extract correct information about the implicated molecular pathways, data can be drawn from sampling phenotypic and genetic biomarkers and then analyzed by a machine learning algorithm. This review describes current difficulties in the field of personalized psychiatry and gives several examples of possibly actionable biomarkers of psychotic and other psychiatric disorders, including several examples of genetic studies relevant to personalized psychiatry. Most of these biomarkers are not yet ready to be introduced in clinical practice. In a next step, a perspective on the path personalized psychiatry may take in the future is given, paying particular attention to machine learning algorithms that can be used with the goal of handling multidimensional datasets.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Alexander Kanapin
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Anastasia Samsonova
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7/9 Universitetskaya nab., Saint Petersburg, 199034, Russia
| |
Collapse
|
13
|
Association between dynamic resting-state functional connectivity and ketamine plasma levels in visual processing networks. Sci Rep 2019; 9:11484. [PMID: 31391479 PMCID: PMC6685940 DOI: 10.1038/s41598-019-46702-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 06/26/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous studies demonstrate ketamine’s influence on resting-state functional connectivity (rsFC). Seed-based and static rsFC estimation methods may oversimplify FC. These limitations can be addressed with whole-brain, dynamic rsFC estimation methods. We assessed data from 27 healthy subjects who underwent two 3 T resting-state fMRI scans, once under subanesthetic, intravenous esketamine and once under placebo, in a randomized, cross-over manner. We aimed to isolate only highly robust effects of esketamine on dynamic rsFC by using eight complementary methodologies derived from two dynamic rsFC estimation methods, two functionally defined atlases and two statistical measures. All combinations revealed a negative influence of esketamine on dynamic rsFC within the left visual network and inter-hemispherically between visual networks (p < 0.05, corrected), hereby suggesting that esketamine’s influence on dynamic rsFC is highly stable in visual processing networks. Our findings may be reflective of ketamine’s role as a model for psychosis, a disorder associated with alterations to visual processing and impaired inter-hemispheric connectivity. Ketamine is a highly effective antidepressant and studies have shown changes to sensory processing in depression. Dynamic rsFC in sensory processing networks might be a promising target for future investigations of ketamine’s antidepressant properties. Mechanistically, sensitivity of visual networks for esketamine’s effects may result from their high expression of NMDA-receptors.
Collapse
|
14
|
Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 2019; 269:499-515. [PMID: 31115660 DOI: 10.1007/s00406-019-01025-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/15/2019] [Indexed: 02/08/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus-pituitary-adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.
Collapse
Affiliation(s)
- Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Astrid Röh
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Shun Takahashi
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany.,Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| |
Collapse
|
15
|
Jaskiw GE, Obrenovich ME, Donskey CJ. The phenolic interactome and gut microbiota: opportunities and challenges in developing applications for schizophrenia and autism. Psychopharmacology (Berl) 2019; 236:1471-1489. [PMID: 31197432 DOI: 10.1007/s00213-019-05267-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/01/2019] [Indexed: 12/14/2022]
Abstract
Schizophrenia and autism spectrum disorder have long been associated with elevated levels of various small phenolic molecules (SPMs). In turn, the gut microbiota (GMB) has been implicated in the kinetics of many of these analytes. Unfortunately, research into the possible relevance of GMB-mediated SPMs to neuropsychiatry continues to be limited by heterogeneous study design, numerous sources of variance and technical challenges. Some SPMs have multiple structural isomers and most have conjugates. Without specialized approaches, SPMs can be incorrectly assigned or inaccurately quantified. In addition, SPM levels can be affected by dietary polyphenol or protein consumption and by various medications and diseases. Nonetheless, heterotypical excretion of various SPMs in association with schizophrenia or autism continues to be reported in independent samples. Recent studies in human cerebrospinal fluid demonstrate the presence of many SPMs A large number of these are bioactive in experimental models. Whether such mechanisms are relevant to the human brain in health or disease is not known. Systematic metabolomic and microbiome studies of well-characterized populations, an appreciation of multiple confounds, and implementation of standardized approaches across platforms and sites are needed to delineate the potential utility of the phenolic interactome in neuropsychiatry.
Collapse
Affiliation(s)
- George E Jaskiw
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA. .,School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Mark E Obrenovich
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA.,Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA.,Department of Chemistry, Cleveland State University, Cleveland, OH, USA
| | - Curtis J Donskey
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.,School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
16
|
Trovão N, Prata J, VonDoellinger O, Santos S, Barbosa M, Coelho R. Peripheral Biomarkers for First-Episode Psychosis-Opportunities from the Neuroinflammatory Hypothesis of Schizophrenia. Psychiatry Investig 2019; 16:177-184. [PMID: 30836740 PMCID: PMC6444098 DOI: 10.30773/pi.2018.12.19.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE Schizophrenia is a disabling disorder of unknown aetiology, lacking definite diagnostic method and cure. A reliable biological marker of schizophrenia is highly demanded, for which traceable immune mediators in blood could be promising candidates. We aimed to gather the best findings of neuroinflammatory markers for first-episode psychosis (FEP). METHODS We performed an extensive narrative review of online literature on inflammation-related markers found in human FEP patients only. RESULTS Changes to cytokine levels have been increasingly reported in schizophrenia. The peripheral levels of IL-1 (or its receptor antagonist), soluble IL-2 receptor, IL-4, IL-6, IL-8, and TNF-α have been frequently reported as increased in FEP, in a suggestive continuum from high-risk stages for psychosis. Microglia and astrocytes establish the link between this immune signalling and the synthesis of noxious tryptophan catabolism products, that cause structural damage and directly hamper normal neurotransmission. Amongst these, only 3-hydroxykynurenine has been consistently described in the blood of FEP patients. CONCLUSION Peripheral molecules stemming from brain inflammation might provide insightful biomarkers of schizophrenia, as early as FEP or even prodromal phases, although more time- and clinically-adjusted studies are essential for their validation.
Collapse
Affiliation(s)
- Nuno Trovão
- Department of Psychiatry, Vila Nova de Gaia/ Espinho Hospital Center, Vila Nova de Gaia, Portugal.,Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Department of Psychiatry, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Joana Prata
- Department of Psychiatry, Vila Nova de Gaia/ Espinho Hospital Center, Vila Nova de Gaia, Portugal.,Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Department of Psychiatry, Faculty of Medicine of University of Porto, Porto, Portugal
| | - Orlando VonDoellinger
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Department of Psychiatry, Tâmega e Sousa Hospital Center, Penafiel, Portugal
| | - Susana Santos
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal
| | - Mário Barbosa
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Instituto de Engenharia Biomédica, University of Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Rui Coelho
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Department of Psychiatry, Faculty of Medicine of University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Enhanced Molecular Appreciation of Psychiatric Disorders Through High-Dimensionality Data Acquisition and Analytics. Methods Mol Biol 2019; 2011:671-723. [PMID: 31273728 DOI: 10.1007/978-1-4939-9554-7_39] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The initial diagnosis, molecular investigation, treatment, and posttreatment care of major psychiatric disorders (schizophrenia and bipolar depression) are all still significantly hindered by the current inability to define these disorders in an explicit molecular signaling manner. High-dimensionality data analytics, using large datastreams from transcriptomic, proteomic, or metabolomic investigations, will likely advance both the appreciation of the molecular nature of major psychiatric disorders and simultaneously enhance our ability to more efficiently diagnose and treat these debilitating conditions. High-dimensionality data analysis in psychiatric research has been heterogeneous in aims and methods and limited by insufficient sample sizes, poorly defined case definitions, methodological inhomogeneity, and confounding results. All of these issues combine to constrain the conclusions that can be extracted from them. Here, we discuss possibilities for overcoming methodological challenges through the implementation of transcriptomic, proteomic, or metabolomics signatures in psychiatric diagnosis and offer an outlook for future investigations. To fulfill the promise of intelligent high-dimensionality data-based differential diagnosis in mental disease diagnosis and treatment, future research will need large, well-defined cohorts in combination with state-of-the-art technologies.
Collapse
|
18
|
Abstract
Neuroimaging and recent genetics discoveries have raised many questions regarding the current diagnostic criteria of psychiatric diseases and the current classifications used, which are still based on subjective clinical assessment. Despite high-quality research in brain neuroscience and evidence-based guidelines in many psychiatric diseases, some therapeutic issues are still a matter of debate. These controversial issues will be discussed in this 20th anniversary issue.
Collapse
|
19
|
Drepper C, Geißler J, Pastura G, Yilmaz R, Berg D, Romanos M, Gerlach M. Transcranial sonography in psychiatry as a potential tool in diagnosis and research. World J Biol Psychiatry 2018; 19:484-496. [PMID: 28971725 DOI: 10.1080/15622975.2017.1386325] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVES During the last two decades transcranial sonography (TCS) of the brain parenchyma evolved from a pure research tool to a clinical relevant neuroimaging method especially in Parkinson's disease and related movement disorders. The aim of this systematic review is to update and summarise the published TCS findings in psychiatric disorders and critically address the question whether TCS may be a valuable tool for the diagnosis or differential diagnosis of psychiatric disorders similarly to the field of movement disorders. METHODS This paper provides detailed information about the perspectives and limitations of TCS, including guidelines for the scanning procedures, assessment of midbrain structures and discusses the potential causes of the ultrasound abnormalities in psychiatric disorders. RESULTS Changes in the echogenicity of subcortical brain structures were detected in different disorders, such as obsessive-compulsive disorder, autism spectrum disorder, schizophrenia, panic disorder, attention-deficit/hyperactivity (ADHD), bipolar disorder and depressive disorder. Although the physical properties of brain tissue underlying the echogenic features in TCS are largely unknown, no alternative technique provides the same insight into the specific central nervous structural characteristics. CONCLUSIONS Urgent research questions to further clarify the underlying pathophysiological and structural alterations are further outlined to bring this promising technique to the clinic.
Collapse
Affiliation(s)
- Carsten Drepper
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| | - Julia Geißler
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| | - Giuseppe Pastura
- b Department of Pediatrics , The Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | - Rezzak Yilmaz
- c Department of Neurology , Christian-Albrecht-University , Kiel , Germany
| | - Daniela Berg
- c Department of Neurology , Christian-Albrecht-University , Kiel , Germany.,d Department of Neurodegeneration , University of Tübingen , Tübingen , Germany
| | - Marcel Romanos
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| | - Manfred Gerlach
- a Center of Mental Health, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy , University Hospital of Würzburg , Würzburg , Germany
| |
Collapse
|
20
|
Hebebrand J, Peters T, Schijven D, Hebebrand M, Grasemann C, Winkler TW, Heid IM, Antel J, Föcker M, Tegeler L, Brauner L, Adan RAH, Luykx JJ, Correll CU, König IR, Hinney A, Libuda L. The role of genetic variation of human metabolism for BMI, mental traits and mental disorders. Mol Metab 2018; 12:1-11. [PMID: 29673576 PMCID: PMC6001916 DOI: 10.1016/j.molmet.2018.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The aim was to assess whether loci associated with metabolic traits also have a significant role in BMI and mental traits/disorders METHODS: We first assessed the number of single nucleotide polymorphisms (SNPs) with genome-wide significance for human metabolism (NHGRI-EBI Catalog). These 516 SNPs (216 independent loci) were looked-up in genome-wide association studies for association with body mass index (BMI) and the mental traits/disorders educational attainment, neuroticism, schizophrenia, well-being, anxiety, depressive symptoms, major depressive disorder, autism-spectrum disorder, attention-deficit/hyperactivity disorder, Alzheimer's disease, bipolar disorder, aggressive behavior, and internalizing problems. A strict significance threshold of p < 6.92 × 10-6 was based on the correction for 516 SNPs and all 14 phenotypes, a second less conservative threshold (p < 9.69 × 10-5) on the correction for the 516 SNPs only. RESULTS 19 SNPs located in nine independent loci revealed p-values < 6.92 × 10-6; the less strict criterion was met by 41 SNPs in 24 independent loci. BMI and schizophrenia showed the most pronounced genetic overlap with human metabolism with three loci each meeting the strict significance threshold. Overall, genetic variation associated with estimated glomerular filtration rate showed up frequently; single metabolite SNPs were associated with more than one phenotype. Replications in independent samples were obtained for BMI and educational attainment. CONCLUSIONS Approximately 5-10% of the regions involved in the regulation of blood/urine metabolite levels seem to also play a role in BMI and mental traits/disorders and related phenotypes. If validated in metabolomic studies of the respective phenotypes, the associated blood/urine metabolites may enable novel preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dick Schijven
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Moritz Hebebrand
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Corinna Grasemann
- Pediatric Endocrinology and Diabetology, Klinik für Kinderheilkunde II, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas W Winkler
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Iris M Heid
- Department of Genetic Epidemiology, Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuel Föcker
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lisa Tegeler
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lena Brauner
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jurjen J Luykx
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium
| | - Christoph U Correll
- Division of Psychiatry Research, Northwell Health, The Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Inke R König
- Institute of Medical Biometry and Statistics, University of Luebeck, Luebeck, Schleswig-Holstein, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Libuda
- Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
21
|
Agís-Balboa RC, Pinheiro PS, Rebola N, Kerimoglu C, Benito E, Gertig M, Bahari-Javan S, Jain G, Burkhardt S, Delalle I, Jatzko A, Dettenhofer M, Zunszain PA, Schmitt A, Falkai P, Pape JC, Binder EB, Mulle C, Fischer A, Sananbenesi F. Formin 2 links neuropsychiatric phenotypes at young age to an increased risk for dementia. EMBO J 2017; 36:2815-2828. [PMID: 28768717 PMCID: PMC5623844 DOI: 10.15252/embj.201796821] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022] Open
Abstract
Age-associated memory decline is due to variable combinations of genetic and environmental risk factors. How these risk factors interact to drive disease onset is currently unknown. Here we begin to elucidate the mechanisms by which post-traumatic stress disorder (PTSD) at a young age contributes to an increased risk to develop dementia at old age. We show that the actin nucleator Formin 2 (Fmn2) is deregulated in PTSD and in Alzheimer's disease (AD) patients. Young mice lacking the Fmn2 gene exhibit PTSD-like phenotypes and corresponding impairments of synaptic plasticity, while the consolidation of new memories is unaffected. However, Fmn2 mutant mice develop accelerated age-associated memory decline that is further increased in the presence of additional risk factors and is mechanistically linked to a loss of transcriptional homeostasis. In conclusion, our data present a new approach to explore the connection between AD risk factors across life span and provide mechanistic insight to the processes by which neuropsychiatric diseases at a young age affect the risk for developing dementia.
Collapse
Affiliation(s)
- Roberto Carlos Agís-Balboa
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Paulo S Pinheiro
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Nelson Rebola
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Cemil Kerimoglu
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Benito
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Michael Gertig
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Sanaz Bahari-Javan
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Ivana Delalle
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alexander Jatzko
- Department of Psychosomatics, Westpfalzklinikum-Kaiserslautern, Teaching Hospital, University of Mainz, Mainz, Germany
| | - Markus Dettenhofer
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Patricia A Zunszain
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU Munich, Munich, Germany
| | - Julius C Pape
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christophe Mulle
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, Bordeaux, France
- CNRS UMR 5297, Bordeaux, France
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Farahnaz Sananbenesi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
- Research Group for Genome Dynamics in Brain Diseases, Göttingen, Germany
| |
Collapse
|
22
|
Abstract
Schizophrenia is a devastating disease that arises on the background of genetic predisposition and environmental risk factors, such as early life stress (ELS). In this study, we show that ELS-induced schizophrenia-like phenotypes in mice correlate with a widespread increase of histone-deacetylase 1 (Hdac1) expression that is linked to altered DNA methylation. Hdac1 overexpression in neurons of the medial prefrontal cortex, but not in the dorsal or ventral hippocampus, mimics schizophrenia-like phenotypes induced by ELS. Systemic administration of an HDAC inhibitor rescues the detrimental effects of ELS when applied after the manifestation of disease phenotypes. In addition to the hippocampus and prefrontal cortex, mice subjected to ELS exhibit increased Hdac1 expression in blood. Moreover, Hdac1 levels are increased in blood samples from patients with schizophrenia who had encountered ELS, compared with patients without ELS experience. Our data suggest that HDAC1 inhibition should be considered as a therapeutic approach to treat schizophrenia.
Collapse
|
23
|
Variability of DNA Methylation within Schizophrenia Risk Loci across Subregions of Human Hippocampus. Genes (Basel) 2017; 8:genes8050143. [PMID: 28505127 PMCID: PMC5448017 DOI: 10.3390/genes8050143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
Identification of 108 genomic regions significantly associated with schizophrenia risk by the Psychiatric Genomics Consortium was a milestone for the field, and much work is now focused on determining the mechanism of risk associated with each locus. Within these regions, we investigated variability of DNA methylation, a low-level cellular phenotype closely linked to genotype, in two highly similar cellular populations sampled from the human hippocampus, to draw inferences about the elaboration of genotype to phenotype within these loci enriched for schizophrenia risk. DNA methylation was assessed with the Illumina HumanMethylation450 BeadArray in tissue laser-microdissected from the stratum oriens of subfield CA1 or CA2/3, regions having unique connectivity with intrinsic and extrinsic fiber systems within the hippocampus. Samples consisted of postmortem human hippocampus tissue from eight schizophrenia patients, eight bipolar disorder patients, and eight healthy control subjects. Within these genomic regions, we observed far greater difference in methylation patterns between circuit locations within subjects than in a single subregion between subjects across diagnostic groups, demonstrating the complexity of genotype to phenotype elaboration across the diverse circuitry of the human brain.
Collapse
|
24
|
Abstract
Delusion is central to the conceptualization, definition, and identification of schizophrenia. However, in current classifications, the presence of delusions is neither necessary nor sufficient for the diagnosis of schizophrenia, nor is it sufficient to exclude the diagnosis of some other psychiatric conditions. Partly as a consequence of these classification rules, it is possible for delusions to exist transdiagnostically. In this article, we evaluate the extent to which this happens, and in what ways the characteristics of delusions vary according to diagnostic context. We were able to examine their presence and form in delusional disorder, affective disorder, obsessive-compulsive disorder, borderline personality disorder, and dementia, in all of which they have an appreciable presence. There is some evidence that the mechanisms of delusion formation are, at least to an extent, shared across these disorders. This transdiagnostic extension of delusions is an argument for targeting them therapeutically in their own right. However there is a dearth of research to enable the rational transdiagnostic deployment of either pharmacological or psychological treatments.
Collapse
Affiliation(s)
- Paul Bebbington
- UCL Division of Psychiatry, Faculty of Brain Sciences, Tottenham Court Road, London, UK
| | - Daniel Freeman
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| |
Collapse
|