1
|
Zhang C, Tian C, Zhu R, Chen C, Jin C, Wang X, Sun L, Peng W, Ji D, Zhang Y, Sun Y. CircSATB1 Promotes Colorectal Cancer Liver Metastasis through Facilitating FKBP8 Degradation via RNF25-Mediated Ubiquitination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406962. [PMID: 39921520 PMCID: PMC11967755 DOI: 10.1002/advs.202406962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/14/2024] [Indexed: 02/10/2025]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and liver metastasis is the leading reason for its mortality. Circular RNAs (circRNAs) are conclusively associated with the progression of various cancers, rendering the exploration of its specific mechanisms in colorectal cancer liver metastasis(CRLM) highly valuable. Combined with GEO (Gene Expression Omnibus) databases and clinical data in our center, we found that high expression of circSATB1 is closely related to the progression of CRLM. Functionally, circSATB1 could significantly promote the metastatic ability of CRC cells in vitro and in vivo. Mechanistically, circSATB1 facilitated the RNF25-mediated ubiquitylation and degradation of FKBP8, releasing its inhibitory effects on mTOR signaling. In this process, circSATB1 acted as a scaffold for RNF25-FKBP8 complexes. Additionally, circSATB1 could be packaged in exosomes and secreted from the CRC primary tumors into plasma. In conclusion, this study uncovered a new circSATB1 that acts as a potent promoter of CRLM and offers novel insights into the precision therapeutic strategies for CRLM.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Chuanxin Tian
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Renzhong Zhu
- Institute of Translational Medicine, Medical CollegeYangzhou UniversityYangzhou225000China
| | - Chen Chen
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Chi Jin
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Xiaowei Wang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Lejia Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Wen Peng
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Dongjian Ji
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Yue Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| | - Yueming Sun
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityColorectal Institute of Nanjing Medical UniversityNanjing210000China
| |
Collapse
|
2
|
Gil-Kulik P, Kluz N, Przywara D, Petniak A, Wasilewska M, Frączek-Chudzik N, Cieśla M. Potential Use of Exosomal Non-Coding MicroRNAs in Leukemia Therapy: A Systematic Review. Cancers (Basel) 2024; 16:3948. [PMID: 39682135 DOI: 10.3390/cancers16233948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies. Despite the enormous progress that has been made in the field of hemato-oncology in recent years, there are still many problems related to, among others, disease recurrence and drug resistance, which is why the search for ideal biomarkers with high clinical utility continues. Research shows that exosomes play a critical role in the biology of leukemia and are associated with the drug resistance, metastasis, and immune status of leukemias. Exosomes with their cargo of non-coding RNAs act as a kind of intermediary in intercellular communication and, at the same time, have the ability to manipulate the cell microenvironment and influence the reaction, proliferative, angiogenic, and migratory properties of cells. Exosomal ncRNAs (in particular, circRNAs and microRNAs) appear to be promising cell-free biomarkers for diagnostic, prognostic, and treatment monitoring of leukemias. This review examines the expression of exosomal ncRNAs in leukemias and their potential regulatory role in leukemia therapy but also in conditions such as disease relapse, drug resistance, metastasis, and immune status. Given the key role of ncRNAs in regulating gene networks and intracellular pathways through their ability to interact with DNA, transcripts, and proteins and identifying their specific target genes, defining potential functions and therapeutic strategies will provide valuable information.
Collapse
Affiliation(s)
- Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Natalia Kluz
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Dominika Przywara
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 11 Radziwillowska Str., 20-080 Lublin, Poland
| | - Małgorzata Wasilewska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Natalia Frączek-Chudzik
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Marek Cieśla
- Institute of Medical Science, College of Medical Science, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
3
|
Gao L, Fan J, He J, Fan W, Che X, Wang X, Han C. Circular RNA as Diagnostic and Prognostic Biomarkers in Hematological Malignancies:Systematic Review. Technol Cancer Res Treat 2024; 23:15330338241285149. [PMID: 39512224 PMCID: PMC11544746 DOI: 10.1177/15330338241285149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024] Open
Abstract
Objectives: While various serum and tissue biomarkers have been explored for tumor diagnosis, the sensitivity and specificity have not yield optimal results. Circular RNAs (circRNAs) are more stable, conserved, and tissue-specific than linear RNA. Recent reports indicate that circRNAs could serve as potential biomarkers in the diagnosis or/and prognosis of tumors. In this study, we systematically examined the relationship between circRNA expression and diagnostic and prognostic outcomes in patients with hematological tumors. Methods: We searched several databases, including Google Scholar, MEDLINE, Scopus, PubMed, Embase, ScienceDirect, Ovid-Medline, Chinese National Knowledge Infrastructure, WanFang and SinoMed, with a cutoff date of June 12, 2024. The study protocol was PROSPERO (CRD42020188627). Result: A total of 73 studies were included in our review, comprising 39 diagnostic studies and 65 prognostic studies. Clinical parameters were assessed based on pooled adds ratios and 95% confidence intervals (CIs). Overall survival (OS) was evaluated using hazard ratios (HRs) and 95% CIs. The pooled area under the curve was 0.86, indicating the potential to identify hematological tumor patients, with sensitivity and specificity of 79% each. The diagnostic score for circRNAs related to hematological malignancies was 2.12. Notably, different hematological malignancies subgroups displayed varying prognoses. Specifically, lymphoid leukemia circRNA showed a negative impacct on prognosis (HR = 1.25, 95% CI: 1.10-1.43, P < 0.001). Conclusion: Our findings provide compelling evidence that circRNA may be serve as a promising alternative for the diagnosis and prognosis of hematological tumors.
Collapse
Affiliation(s)
- Liyun Gao
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang, China
| | - Junfei Fan
- School of Humanities, Shangluo University, Shangluo, China
| | - Jiayin He
- School of Literature and Journalism, South-central Minzu University, Wuhan, China
| | - Wenyan Fan
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xiangxin Che
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Xin Wang
- Laboratory of of Precision Preventive Medicine, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Chunhua Han
- Internal Medicine, Jiujiang First People's Hospital, Jiujiang, China
| |
Collapse
|
4
|
Deng W, Chao R, Zhu S. Emerging roles of circRNAs in leukemia and the clinical prospects: An update. Immun Inflamm Dis 2023; 11:e725. [PMID: 36705414 PMCID: PMC9801069 DOI: 10.1002/iid3.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are a new category of endogenous non-protein coding RNAs (ncRNAs), and show the characteristics of high conservation, stability, and tissue specificity. Due to rapid advances in next-generation sequencing and transcriptome profiling technologies, circRNAs have been widely discovered in many organisms and participated in the development and progress of a variety of diseases. As a type of molecular sponge, circRNAs mainly absorb micro RNAs competitively and interplay with RNA-binding proteins to modulate the splicing as well as transcription of target genes. METHODS This review is based on a literature search using the Medline database. Search terms used were "circular RNAs and leukemia," "circRNAs and leukemia," "circRNAs and acute lymphoblastic leukemia," "circRNAs and chronic lymphoblastic leukemia," "circRNAs and acute myeloid leukemia," "circRNAs and chronic myeloid leukemia," and "circRNAs, biomarker, and hematological system." RESULTS CircRNAs have been proven as potential biomarkers and therapeutic targets in a variety of tumors. Recent research has found that circRNAs aberrantly exist in hematological cancers, especially leukemia, and are significantly associated with the incidence, progress, and metastasis of diseases as well as the prognosis of patients. CONCLUSION The current work summarizes the latest findings on circRNAs in various types of leukemia, aiming to propose prospective therapies and new drug screening methods for the treatment of leukemia.
Collapse
Affiliation(s)
- Wei Deng
- Department of Pediatric General Internal MedicineGansu Provincial Maternity and Child‐Care HospitalLanzhou CityGansu ProvincePeople's Republic of China
| | - Rong Chao
- Department of Pediatric General Internal MedicineGansu Provincial Maternity and Child‐Care HospitalLanzhou CityGansu ProvincePeople's Republic of China
| | - Shengdong Zhu
- Department of Pediatric General Internal MedicineGansu Provincial Maternity and Child‐Care HospitalLanzhou CityGansu ProvincePeople's Republic of China
| |
Collapse
|
5
|
Circ_0005615 contributes to the progression and Bortezomib resistance of multiple myeloma by sponging miR-185-5p and upregulating IRF4. Anticancer Drugs 2022; 33:893-902. [PMID: 36136989 DOI: 10.1097/cad.0000000000001378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Circular RNAs (circRNAs) have been shown to play critical regulatory roles in multiple myeloma progression. Here, we aimed to explore the biologic role of circ_0005615 in multiple myeloma progression and its associated mechanism. Cell counting kit-8 assay was conducted to analyze the bortezomib resistance and proliferation of multiple myeloma cells. Cell proliferation was also analyzed by 5-Ethynyl-2'-deoxyuridine incorporation and flow cytometry assays. Cell apoptosis was assessed by flow cytometry. The interaction between microRNA-185-5p (miR-185-5p) and circ_0005615 or interferon regulatory factor 4 (IRF4) was verified by the dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. A xenograft tumor model was established in non-obese diabetic/server combined immune-deficiency mice to analyze the roles of circ_0005615 in tumor growth and bortezomib resistance. Circ_0005615 was upregulated in multiple myeloma tissues and cell lines. Circ_0005615 knockdown restrained the bortezomib resistance and proliferation and induced the apoptosis of multiple myeloma cells. Circ_0005615 acted as a molecular sponge for miR-185-5p, and the antitumor effects mediated by circ_0005615 knockdown were reversed by silencing miR-185-5p. IRF4 was confirmed as a direct target of miR-185-5p, and miR-185-5p overexpression-induced antitumor influences could be counteracted by IRF4 overexpression. Circ_0005615 could positively regulate IRF4 expression by sponging miR-185-5p in multiple myeloma cells. Circ_0005615 knockdown suppressed the growth and bortezomib resistance of xenograft tumors in vivo. Circ_0005615 contributed to the malignant progression and bortezomib resistance of multiple myeloma through mediating miR-185-5p/IRF4 signaling.
Collapse
|
6
|
Wu L, Zhong Y, Yu X, Wu D, Xu P, Lv L, Ruan X, Liu Q, Feng Y, Liu J, Li X. Selective poly adenylation predicts the efficacy of immunotherapy in patients with lung adenocarcinoma by multiple omics research. Anticancer Drugs 2022; 33:943-959. [PMID: 35946526 PMCID: PMC9481295 DOI: 10.1097/cad.0000000000001319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/14/2022] [Indexed: 02/05/2023]
Abstract
The aim of this study was to find the application value of selective polyadenylation in immune cell infiltration, biological transcription function and risk assessment of survival and prognosis in lung adenocarcinoma (LUAD). The processed original mRNA expression data of LUAD were downloaded, and the expression profiles of 594 patient samples were collected. The (APA) events in TCGA-NA-SEQ data were evaluated by polyadenylation site use Index (PDUI) values, and the invasion of stromal cells and immune cells and tumor purity were calculated to group and select the differential genes. Lasso regression and stratified analysis were used to examine the role of risk scores in predicting patient outcomes. The study also used the GDSC database to predict the chemotherapeutic sensitivity of each tumor sample and used a regression method to obtain an IC50 estimate for each specific chemotherapeutic drug treatment. Then CIBERSORT algorithm was used to conduct Spearman correlation analysis, immune regulatory factor analysis and TIDE immune system function analysis for gene expression level and immune cell content. Finally, the Kaplan-Meier curve was used to analyze the correlation between stromal score and the immune score of LUAD. In this study, APA's LUAD risk score prognostic model was constructed. KM survival analysis showed that immune score affected the prognosis of LUAD patients ( P = 0.027) but the matrix score was not statistically significant ( P = 0.1). We extracted 108 genes with APA events from 827 different genes and based on PUDI clustering and heat map, the survival rate of patients in the four groups was significantly different ( P = 0.05). Multiple omics studies showed that risk score was significantly positively correlated with Macrophages M0, T cells Follicular helper, B cells naive and NK cells resting. It is significantly negatively correlated with dendritic cells resting, mast cells resting, monocyte, T cells CD4 memory resting and B cells memory. We further explored the relationship between the expression of immunosuppressor genes and risk score and found that ADORA2A, BTLA, CD160, CD244, CD274, CD96, CSF1R and CTLA4 genes were highly correlated with the risk score. Selective poly adenylation plays an important role in the development and progression of LUAD, immune invasion, tumor cell invasion and metastasis and biological transcription, and affects the survival and prognosis of LUAD patients.
Collapse
Affiliation(s)
- Liusheng Wu
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Yanfeng Zhong
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Xiaoya Yu
- First Clinical Medical College, Southern Medical University, Guangzhou
| | - Dingwang Wu
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Pengcheng Xu
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Le Lv
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Xin Ruan
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
- Shantou University Medical College, Shantou, Guangdong, China
| | - Qi Liu
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Yu Feng
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Jixian Liu
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| | - Xiaoqiang Li
- Peking University Shenzhen Hospital, Clinical College of Anhui Medical University
- Peking University Shenzhen Hospital, Thoracic surgery, Shenzhen
| |
Collapse
|
7
|
Zhang J, Wu X, Ma J, Long K, Sun J, Li M, Ge L. Hypoxia and hypoxia-inducible factor signals regulate the development, metabolism, and function of B cells. Front Immunol 2022; 13:967576. [PMID: 36045669 PMCID: PMC9421003 DOI: 10.3389/fimmu.2022.967576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022] Open
Abstract
Hypoxia is a common hallmark of healthy tissues in physiological states or chronically inflamed tissues in pathological states. Mammalian cells sense and adapt to hypoxia mainly through hypoxia-inducible factor (HIF) signaling. Many studies have shown that hypoxia and HIF signaling play an important regulatory role in development and function of innate immune cells and T cells, but their role in B cell biology is still controversial. B cells experience a complex life cycle (including hematopoietic stem cells, pro-B cells, pre-B cells, immature B cells, mature naïve B cells, activated B cells, plasma cells, and memory B cells), and the partial pressure of oxygen (PO2) in the corresponding developmental niche of stage-specific B cells is highly dynamic, which suggests that hypoxia and HIF signaling may play an indispensable role in B cell biology. Based on the fact that hypoxia niches exist in the B cell life cycle, this review focuses on recent discoveries about how hypoxia and HIF signaling regulate the development, metabolism, and function of B cells, to facilitate a deep understanding of the role of hypoxia in B cell-mediated adaptive immunity and to provide novel strategies for vaccine adjuvant research and the treatment of immunity-related or infectious diseases.
Collapse
Affiliation(s)
- Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- Chongqing Camab Biotech Ltd., Chongqing, China
| | - Xiaoqian Wu
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jideng Ma
- Chongqing Academy of Animal Sciences, Chongqing, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- Chongqing Academy of Animal Sciences, Chongqing, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
- Chongqing Camab Biotech Ltd., Chongqing, China
| |
Collapse
|
8
|
Hu X, Yin J, He R, Chao R, Zhu S. Circ_KCNQ5 participates in the progression of childhood acute myeloid leukemia by enhancing the expression of RAB10 via binding to miR-622. Hematology 2022; 27:431-440. [PMID: 35413218 DOI: 10.1080/16078454.2022.2056983] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND : Acute myeloid leukemia (AML) is regarded as a haematological malignancy and seriously threatens the public's health. Circular RNA (circRNA) is gradually confirmed to be involved in the development of AML. The purpose of this study was to disclose the role of circRNA Potassium Voltage-Gated Channel Subfamily Q Member 5 (circ_KCNQ5) in AML. METHODS : Quantitative real-time PCR (qPCR) and western blot were used for expression analysis. Colony formation assay, EdU assay and MTT assay were performed to determine cell proliferation. Flow cytometry assay was conducted to determine cell apoptosis. The predicted binding relationship between miR-622 and circ_KCNQ5 or RAS oncogene family member 10 (RAB10) was verified by dual-luciferase reporter assay. RESULTS : The expression of circ_KCNQ5 was increased in bone marrow samples of childhood AML patients and AML cell lines. The knockdown of circ_KCNQ5 largely suppressed AML cell proliferation and promoted cell apoptosis. Circ_KCNQ5 directly bound to miR-622 and inhibited miR-622 expression. The cotransfection of miR-622 inhibitor reversed the effects of circ_KCNQ5 knockdown and thus recovered cell proliferation and depleted cell apoptosis. RAB10 was a target of miR-622, and circ_KCNQ5 bound to miR-622 to increase the expression of RAB10. MiR-622 restoration inhibited AML cell proliferation and induced cell apoptosis, while RAB10 overexpression abolished these effects. CONCLUSION : Circ_KCNQ5 high expression was associated with childhood AML malignant development, and circ_KCNQ5 participated in AML progression by regulating the miR-622/RAB10 pathway.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Department of Pediatric Hematology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, People's Republic of China
| | - Jiaojiao Yin
- Department of Clinical Laboratory, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, People's Republic of China
| | - Rui He
- Department of Clinical Laboratory, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, People's Republic of China
| | - Rong Chao
- Department of Pediatric Hematology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, People's Republic of China
| | - Shengdong Zhu
- Department of Pediatric Hematology, Gansu Provincial Maternity and Child-care Hospital, Lanzhou City, People's Republic of China
| |
Collapse
|
9
|
Ye Q, Li N, Zhou K, Liao C. Homo sapiens circular RNA 0003602 (Hsa_circ_0003602) accelerates the tumorigenicity of acute myeloid leukemia by modulating miR-502-5p/IGF1R axis. Mol Cell Biochem 2022; 477:635-644. [PMID: 34988853 DOI: 10.1007/s11010-021-04277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Acute myeloid leukemia (AML) has become a worldwide malignant cancer. We intended to investigate the critical roles and mechanism underlying homo sapiens circular RNA 0003602 (hsa_circ_0003602) in AML progression, especially in tumor cell proliferation, migration, invasion, and apoptosis. Real-time PCR was applied to identify the differential expression of hsa_circ_0003602 and miR-502-5p in AML bone marrow tissues and cell lines. In addition, western blot analysis was employed to determine the levels insulin-like growth factor 1 receptor (IGF1R) protein. The biological behaviors were assessed by CCK-8 cell viability assay, flow cytometry assay for apoptosis detection, and Transwell migration and invasion assay. The relationships between target miRNA and downstream mRNA were investigated by bioinformatics, luciferase reporter assay, and biotin-labeled RNA pull-down assay. Hsa_circ_0003602 was upregulated and predicted poor survival in AML. Knockdown of hsa_circ_0003602 in AML cell lines induced the inhibition of proliferation, migration, and invasion and caused apoptosis. Hsa_circ_0003602 sequestered miR-502-5p by functioning as a competitive endogenous RNA (ceRNA), thereby regulating IGF1R expression. Hsa_circ_0003602 acted as a tumor promoter in AML via miR-502-5p/IGF1R axis. Our study provides evidence that hsa_circ_0003602, miR-502-5p, and IGF1R might form a regulatory axis to affect the carcinogenicity of AML cells and provide potential targets for the treatment of AML.
Collapse
MESH Headings
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- HL-60 Cells
- Humans
- K562 Cells
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- THP-1 Cells
Collapse
Affiliation(s)
- Qidong Ye
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China.
| | - Nan Li
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Kai Zhou
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| | - Cong Liao
- Department of Pediatrics, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, No. 59 Liuting Street, Ningbo, 315000, Zhejiang Province, People's Republic of China
| |
Collapse
|
10
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
11
|
Kersy O, Salmon-Divon M, Shpilberg O, Hershkovitz-Rokah O. Non-Coding RNAs in Normal B-Cell Development and in Mantle Cell Lymphoma: From Molecular Mechanism to Biomarker and Therapeutic Agent Potential. Int J Mol Sci 2021; 22:ijms22179490. [PMID: 34502399 PMCID: PMC8430640 DOI: 10.3390/ijms22179490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/27/2022] Open
Abstract
B-lymphocytes are essential for an efficient immune response against a variety of pathogens. A large fraction of hematologic malignancies are of B-cell origin, suggesting that the development and activation of B cells must be tightly regulated. In recent years, differentially expressed non-coding RNAs have been identified in mantle cell lymphoma (MCL) tumor samples as opposed to their naive, normal B-cell compartment. These aberrantly expressed molecules, specifically microRNAs (miRNAs), circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), have a role in cellular growth and survival pathways in various biological models. Here, we provide an overview of current knowledge on the role of non-coding RNAs and their relevant targets in B-cell development, activation and malignant transformation, summarizing the current understanding of the role of aberrant expression of non-coding RNAs in MCL pathobiology with perspectives for clinical use.
Collapse
Affiliation(s)
- Olga Kersy
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
| | - Mali Salmon-Divon
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ofer Shpilberg
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel
- Institute of Hematology, Assuta Medical Centers, Tel-Aviv 6971028, Israel
| | - Oshrat Hershkovitz-Rokah
- Department of Molecular Biology, Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel; (O.K.); (M.S.-D.)
- Translational Research Lab, Assuta Medical Centers, Tel-Aviv 6971028, Israel;
- Correspondence: ; Tel.: +972-3-764-4094
| |
Collapse
|
12
|
Wang D, Ming X, Xu J, Xiao Y. Circ_0009910 shuttled by exosomes regulates proliferation, cell cycle and apoptosis of acute myeloid leukemia cells by regulating miR-5195-3p/GRB10 axis. Hematol Oncol 2021; 39:390-400. [PMID: 33969901 DOI: 10.1002/hon.2874] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/18/2021] [Indexed: 12/25/2022]
Abstract
The exosomes are involved in intercellular communication via RNA trafficking in human diseases. Hsa_circ_0009910 (circ_0009910) is a novel leukemia-related circular RNA. However, the mechanism of circ_0009910 in acute myeloid leukemia (AML) cell-to-cell communication remained obscure. Expression of circ_0009910, miRNA (miR)-5195-3p and growth factor receptor-bound protein 10 (GRB10) was detected by quantitative real-time polymerase chain reaction and Western blotting. A stable cell coculture model was established and functional experiment was performed using Cell Counting Kit-8 assay, flow cytometry, and Western blotting. The interaction among circ_0009910, miR-5195-3p and GRB10 was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. As a result, circ_0009910 was upregulated in AML bone marrows and cells (HL-60 and MOLM-13), even higher in AML cells-derived exosomes. Functionally, blocking circ_0009910 via small interfering RNA (siRNA) suppressed cell proliferation and cell cycle progression, but facilitated apoptosis rate of HL-60 and MOLM-13 cells, accompanied with lower B-cell lymphoma 2 (Bcl-2) level and higher Bcl-2-associated X protein (Bax) level. circ_0009910 shuttled via exosomes negatively regulated miR-5195-3p expression by target binding. Furthermore, circ_0009910 knockdown via exosomes and miR-5195-3p overexpression via mimic resulted in similar results of circ_0009910 siRNA in proliferation, apoptosis and cell cycle progression of AML cells. Meanwhile, the role of circ_0009910 knockdown in AML cells was partially reversed by miR-5195-3p deletion, and restoring GRB10 could abrogate miR-5195-3p effect as well. Notably, GRB10 was a downstream target of miR-5195-3p. circ_0009910-containing exosomes mediated proliferation, apoptosis and cell cycle progression of AML cells partially through miR-5195-3p/GRB10 axis.
Collapse
Affiliation(s)
- Di Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xi Ming
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinhuan Xu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Abstract
Circular RNAs (circRNAs) have recently been identified as a new class of long noncoding RNAs with gene regulatory roles. These covalently closed transcripts are generated when the pre-mRNA splicing machinery back splices to join a downstream 5' splice site to an upstream 3' splice site. CircRNAs are naturally resistant to degradation by exonucleases and have long half-lives compared with their linear counterpart that potentially could serve as biomarkers for disease. Recent evidence highlights that circRNAs may play an essential role in cardiovascular injury and repair. However, our knowledge of circRNA is still in its infancy with limited direct evidence to suggest that circRNA may play critical roles in the mechanism and treatment of cardiac dysfunction. In this review, we focus on our current understanding of circRNA in the cardiovascular system.
Collapse
|
14
|
Wang Y, Lin Q, Song C, Ma R, Li X. Depletion of circ_0007841 inhibits multiple myeloma development and BTZ resistance via miR-129-5p/JAG1 axis. Cell Cycle 2020; 19:3289-3302. [PMID: 33131409 DOI: 10.1080/15384101.2020.1839701] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Circular RNAs (circRNAs) possess important regulatory effects on multiple myeloma (MM) progression. Here, we aimed at exploring the function of circ_0007841 in MM and the underlying molecular mechanism. Expression of circ_0007841, microRNA (miR)-129-5p and Jagged1 (JAG1) was determined via qRT-PCR or western blot assay. Methyl thiazolyl tetrazolium (MTT) assay was applied to examine cell viability and IC50 value of MM cells to bortezomib (BTZ). Colony formation assay was performed to analyze cell proliferation. Moreover, cell apoptosis was assessed by flow cytometry and western blot analysis. Cell metastasis was evaluated by wound healing assay and Transwell assay. Function of circ_0007841 in vivo was determined by xenograft tumor assay. Target relationship between miR-129-5p and circ_0007841 or JAG1 was confirmed via dual-luciferase reporter, RNA immunoprecipitation (RIP) and pull-down assays. The up-regulation of circ_0007841 and JAG1, and the down-regulation of miR-129-5p were detected in MM bone marrow aspirates and cells. Circ_0007841 knockdown significantly repressed cell proliferation, chemoresistance, and metastasis, while contributed to apoptosis of MM cells in vitro, and reduced tumor growth in vivo. Circ_0007841 targeted miR-129-5p, and miR-129-5p inhibition reversed impact of silencing of circ_0007841 on MM cells. JAG1 was a mRNA target of miR-129-5p, whose overexpression could undermine the miR-129-5p-mediated effects on MM cells. Circ_0007841 positively regulated JAG1 expression via absorbing miR-129-5p. Circ_0007841 knockdown inhibited MM cell proliferation, metastasis and chemoresistance through modulating miR-129-5p/JAG1 axis, suggesting that circ_0007841 might serve as a potential therapeutic target of MM.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Quande Lin
- Department of Hematology, Henan Cancer Hospital , Zhengzhou, Henan, China
| | - Chunge Song
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Ruojin Ma
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| | - Xiaojie Li
- Department of Hematology, The Fifth Affiliated Hospital of Zhengzhou University , Zhengzhou, Henan, China
| |
Collapse
|
15
|
Luo Y, Gui R. Circulating Exosomal CircMYC Is Associated with Recurrence and Bortezomib Resistance in Patients with Multiple Myeloma. Turk J Haematol 2020; 37:248-262. [PMID: 32812415 PMCID: PMC7702652 DOI: 10.4274/tjh.galenos.2020.2020.0243] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Objective Studies have shown that serum circRNA can be used as a biomarker for many tumors. However, the role of exosomal circRNA in prognostic evaluation in patients with multiple myeloma (MM) remains unclear. In this study, we aimed to analyze the role of circulating exosomal circMYC in the relapse and prognosis of patients with MM. Materials and Methods Circulating exosomes from 122 patients with MM and 54 healthy people were isolated. Quantitative polymerase chain reaction was performed to measure circMYC exosomal expression. Kaplan-Meier survival curves with log-rank testing were used for estimating significance in survival rates. A Cox regression model was used for univariate and multivariate analysis. Results Compared with healthy people, the expression level of serum exosomal circMYC was significantly increased in patients with MM. In addition, the expression of circMYC in circulating exosomes in bortezomib-resistant patients was significantly higher than that in non-resistant patients. The expression level of exosomal circMYC was correlated with deletion 17p, t(4;14), Durie-Salmon staging, and the International Staging System. Univariate and multivariate Cox regression analysis found that a high exosomal circMYC level was an independent predictor of poor prognosis in patients with MM. The patients with high exosome circMYC expression had higher relapse rates and higher mortality rates. The overall survival rate and progression-free survival rate of MM patients with high exosomal circMYC expression were lower than those of patients with low exosomal circMYC expression. Conclusion These findings suggest that circulating exosomal circMYC has great potential as a biomarker for the diagnosis and prognosis of MM.
Collapse
Affiliation(s)
- Yanwei Luo
- The Third Xiangya Hospital of Central South University, Department of Blood Transfusion, Changsha, China
| | - Rong Gui
- The Third Xiangya Hospital of Central South University, Department of Blood Transfusion, Changsha, China
| |
Collapse
|
16
|
The Non-Coding RNA Landscape of Plasma Cell Dyscrasias. Cancers (Basel) 2020; 12:cancers12020320. [PMID: 32019064 PMCID: PMC7072200 DOI: 10.3390/cancers12020320] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Despite substantial advancements have been done in the understanding of the pathogenesis of plasma cell (PC) disorders, these malignancies remain hard-to-treat. The discovery and subsequent characterization of non-coding transcripts, which include several members with diverse length and mode of action, has unraveled novel mechanisms of gene expression regulation often malfunctioning in cancer. Increasing evidence indicates that such non-coding molecules also feature in the pathobiology of PC dyscrasias, where they are endowed with strong therapeutic and/or prognostic potential. In this review, we aim to summarize the most relevant findings on the biological and clinical features of the non-coding RNA landscape of malignant PCs, with major focus on multiple myeloma. The most relevant classes of non-coding RNAs will be examined, along with the mechanisms accounting for their dysregulation and the recent strategies used for their targeting in PC dyscrasias. It is hoped these insights may lead to clinical applications of non-coding RNA molecules as biomarkers or therapeutic targets/agents in the near future.
Collapse
|